古县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载

古县高中2018-2019学年高二上学期数学期末模拟试卷含解析

古县高中2018-2019学年高二上学期数学期末模拟试卷含解析

古县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣12. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种3. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( )A .x 2﹣=1 B .﹣=1 C .﹣=1 D .﹣=14. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题. 5. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .6. 正方体的内切球与外接球的半径之比为( )A .B .C .D .7. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .38. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3} B .{1,3,5}C .{1,4,5}D .{2,3,4} 9. 函数y=x+xlnx 的单调递增区间是( )A .(0,e ﹣2)B .(e ﹣2,+∞)C .(﹣∞,e ﹣2)D .(e ﹣2,+∞)10.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④11.一个几何体的三视图如图所示,则该几何体的体积是( ) A .64 B .72 C .80 D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 12.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.二、填空题13.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.14.若函数63e ()()32ex x bf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力. 15.【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是__________________.16.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .17.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .18.(﹣2)7的展开式中,x 2的系数是 .三、解答题19.(本题10分)解关于的不等式2(1)10ax a x -++>.20.设函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在上的最大值与最小值.21.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)22.如图,点A 是以线段BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,点G 是AD 的中点,连接CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .(1)求证:BF=EF;(2)求证:PA是圆O的切线.23.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M在PD上.(I)求证:AD⊥PB;(Ⅱ)若,则当λ为何值时,平面BEM⊥平面PAB?(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.24.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.古县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.2.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.3.【答案】B【解析】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.4.【答案】C5.【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 6. 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长, 设正方体的棱长为:2a ,所以内切球的半径为:a ;外接球的直径为2a ,半径为:a ,所以,正方体的内切球与外接球的半径之比为:故选C7. 【答案】D 【解析】解:设等差数列{a n }的公差为d ,则S 4=4a 1+d=﹣2,S 5=5a 1+d=0,联立解得,∴S 6=6a 1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.8. 【答案】B【解析】解:∵全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩C u N=﹛2,4﹜, ∴集合M ,N 对应的韦恩图为 所以N={1,3,5} 故选B9. 【答案】B【解析】解:函数的定义域为(0,+∞)求导函数可得f ′(x )=lnx+2,令f ′(x )>0,可得x >e ﹣2, ∴函数f (x )的单调增区间是(e ﹣2,+∞)故选B .10.【答案】A 【解析】考点:斜二测画法. 11.【答案】C. 【解析】12.【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为12PC ==可得34243316ππ=,解得72PA =,故选B .二、填空题13.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++. 14.【答案】2016【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得0063e 032eba -=,整理,得2016ab =. 15.【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。

古县民族中学2018-2019学年高二上学期二次月考试数学

古县民族中学2018-2019学年高二上学期二次月考试数学

古县民族中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0B .1C .2D .32. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种 C .270种D .540种3. 不等式的解集为( )A .或B .C .或D .4. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)5. 已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.6. 设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-1 7. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题. 8. 已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或109. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.10.已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力. 11.函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}12.lgx ,lgy ,lgz 成等差数列是由y 2=zx 成立的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件二、填空题13.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .14.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________.15.设为单位向量,①若为平面内的某个向量,则=||•;②若与平行,则=||•;③若与平行且||=1,则=.上述命题中,假命题个数是 .16.将一张坐标纸折叠一次,使点()0,2与点()4,0重合,且点()7,3与点(),m n 重合,则m n +的 值是 .17.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.18.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .三、解答题19.如图,在Rt △ABC 中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE ,CE 为边向Rt △BEC 外作正△EBA 和正△CED .(Ⅰ)求线段AD 的长;(Ⅱ)比较∠ADC 和∠ABC 的大小.20.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .21.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.22.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围; (3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.23.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)24.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A 万元,则超出部分按log 5(2A+1)进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出奖金y 关于销售利润x 的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?古县民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:命题“若x 2>0,则x >0”的逆命题是“若x >0,则x 2>0”,是真命题; 否命题是“若x 2≤0,则x ≤0”,是真命题; 逆否命题是“若x ≤0,则x 2≤0”,是假命题;综上,以上3个命题中真命题的个数是2. 故选:C2. 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C 31C 62C 21C 42=540种.故选D .3. 【答案】A 【解析】 令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A4. 【答案】B【解析】解:∵f (1)=﹣3<0,f (2)=﹣=2﹣>0,∴函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是(1,2), 故选:B .5. 【答案】D【解析】当OC ⊥平面AOB 平面时,三棱锥O ABC -的体积最大,且此时OC 为球的半径.设球的半径为R ,则由题意,得211sin 6032R R ⨯⨯︒⋅=6R =,所以球的体积为342883R π=π,故选D . 6. 【答案】D 【解析】试题分析:当公比1-=q 时,0524==S S ,成立.当1-≠q 时,24,S S 都不等于,所以42224==-q S S S , 2±=∴q ,故选D.考点:等比数列的性质. 7. 【答案】C8. 【答案】D 【解析】试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 00>≤x x ,当0≤x 时,212=x,解得1-=x ,当0>x 时,21lg =x ,解得10=x ,所以输入的是1-或10,故选D.考点:1.分段函数;2.程序框图.11111] 9. 【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d=+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.10.【答案】D第Ⅱ卷(共90分)11.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x ≤4且x ≠2,∴函数f (x )的定义域为{x|1<x ≤4且x ≠2}.故选B12.【答案】A【解析】解:lgx ,lgy ,lgz 成等差数列,∴2lgy=lgx •lgz ,即y 2=zx ,∴充分性成立,因为y 2=zx ,但是x ,z 可能同时为负数,所以必要性不成立,故选:A .【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.二、填空题13.【答案】.【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,∴3aa=1(1﹣2a),解得a=﹣1或a=,经检验当a=﹣1时,两直线重合,应舍去故答案为:.【点评】本题考查直线的一般式方程和平行关系,属基础题.14.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-115.【答案】3.【解析】解:对于①,向量是既有大小又有方向的量,=||•的模相同,但方向不一定相同,∴①是假命题;对于②,若与平行时,与方向有两种情况,一是同向,二是反向,反向时=﹣||•,∴②是假命题;对于③,若与平行且||=1时,与方向有两种情况,一是同向,二是反向,反向时=﹣,∴③是假命题;综上,上述命题中,假命题的个数是3.故答案为:3.【点评】本题考查了平面向量的概念以及应用的问题,解题时应把握向量的基本概念是什么,是基础题目.16.【答案】34 5【解析】考点:点关于直线对称;直线的点斜式方程.17.【答案】6【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.18.【答案】2.【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,∴定义域关于原点对称,即﹣2a+3a﹣1=0,∴a=1,∵函数为奇函数,∴f(﹣x)==﹣,即b•2x﹣1=﹣b+2x,∴b=1.即a+b=2,故答案为:2.三、解答题19.【答案】【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=,在△ADE 中,AE=BE=,DE=CE=1,∠AED=150°,由余弦定理可得AD==;(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,∴问题转化为比较∠ADE 与∠EBC 的大小.在△ADE 中,由正弦定理可得,∴sin ∠ADE=<=sin30°, ∴∠ADE <30°∴∠ADC <∠ABC .【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.20.【答案】(1)A B ⊆;(2){}5,3,0=C .【解析】考点:1、集合的表示;2、子集的性质.21.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析. 【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>, 由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=,即()()212121212ln x x x x x x x x +++=-, 令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=, 则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增, 所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1 考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.【答案】(1)2()243f x x x =-+;(2)102a <<;(3)1m <-.试题解析:(1)由已知,设2()(1)1f x a x =-+,由(0)3f =,得2a =,故2()243f x x x =-+. (2)要使函数不单调,则211a a <<+,则102a <<. (3)由已知,即2243221x x x m -+>++,化简得2310x x m -+->, 设2()31g x x x m =-+-,则只要min ()0g x >,而min ()(1)1g x g m ==--,得1m <-.考点:二次函数图象与性质.【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为()()()20f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为()()()()120f x a x x x x a =--≠.23.【答案】(1)切线恒过定点1,22e ⎛⎫ ⎪⎝⎭.(2) a 的范围是11,22⎡⎤-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足 ()()()12f x g x f x <<恒成立函数()g x 有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭;试题解析: (1)因为()12f x ax x '=+,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭, 整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫ ⎪⎝⎭. (2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭,对()1,x ∈+∞恒成立, 因为()()1212p x a x a x =--+'()22121a x ax x --+=()()()1211*x a x x⎡⎤---⎣⎦= 令()0p x '=,得极值点11x =,2121x a =-, ①当112a <<时,有211x x >=,即112a <<时,在()2,x +∞上有()0p x '>, 此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意; ②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()1,p x p ∈+∞,也不合题意; ③当12a ≤时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数; 要使()0p x <在此区间上恒成立,只须满足()111022p a a =--≤⇒≥-, 所以1122a -≤≤.综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. (利用参数分离得正确答案扣2分)(3)当23a =时,()21145ln 639f x x x x =++,()221423f x x x =+ 记()()22115ln 39y f x f x x x =-=-,()1,x ∈+∞. 因为22565399x x y x x='-=-,令0y '=,得x =所以()()21y f x f x =-在⎛ ⎝为减函数,在⎫+∞⎪⎪⎭上为增函数,所以当x =时,min 59180y = 设()()()15901180R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个 24.【答案】【解析】解:(1)由题意,当销售利润不超过8万元时,按销售利润的1%进行奖励;当销售利润超过8万元时,若超出A 万元,则超出部分按log 5(2A+1)进行奖励,∴0<x ≤8时,y=0.15x ;x >8时,y=1.2+log 5(2x ﹣15)∴奖金y 关于销售利润x 的关系式y=(2)由题意知1.2+log 5(2x ﹣15)=3.2,解得x=20.所以,小江的销售利润是20万元.【点评】本题以实际问题为载体,考查函数模型的构建,考查学生的计算能力,属于中档题.。

古县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析

古县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析

古县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 为了得到函数的图象,只需把函数y=sin3x 的图象()A .向右平移个单位长度B .向左平移个单位长度C .向右平移个单位长度D .向左平移个单位长度2. 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛C 24y x =F (0,2)A FA C M 物线的准线交于点,则的值是( )C N ||:||MN FNA .B .C .D 2)-21:(13. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .4. 学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A .20种B .24种C .26种D .30种5. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A .B .C .D .6. 已知函数与轴的交点为,且图像上两对称轴之间的最()2sin()f x x ωϕ=+(0)2πϕ<<y (0,1)小距离为,则使成立的的最小值为()1111]2π()()0f x t f x t +--+=t A .B .C .D .6π3π2π23π7. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是()A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}8.=()A .﹣iB .iC .1+iD .1﹣i9. 函数f (x )=2x ﹣的零点个数为( )A .0B .1C .2D .310.如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为()A .B .2C .D .3 11.在等差数列中,,公差,为的前项和.若向量,,{}n a 11a =0d n S {}n a n 13(,)m a a =133(,)n a a=-且,则的最小值为( )0m n ×=2163n n S a ++A .B.C .D .43292【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在n 考查学生的学生运算能力,观察分析,解决问题的能力.12.已知双曲线(a >0,b >0)的一条渐近线方程为,则双曲线的离心率为()A .B .C .D .二、填空题13.设函数 则______;若,,则的大小关系是______.14.函数()x f x xe =在点()()1,1f 处的切线的斜率是 .15.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题:①存在一条定直线与所有的圆均相切;②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交;④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号). 16.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 . 17.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.18.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π;②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题;④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.其中正确命题的序号是 . 三、解答题19.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.20.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n .21.(本小题满分13分)椭圆:的左、右焦点分别为、,直线经过点与椭圆交于点C 22221(0)x y a b a b+=>>1F 2F :1l x my =-1F C ,点在轴的上方.当时,M M x 0m =1||MF =(Ⅰ)求椭圆的方程;C (Ⅱ)若点是椭圆上位于轴上方的一点, ,且,求直线的方程.N C x 12//MF NF 12123MF F NF F S S ∆∆=l 22.(本小题满分12分)某校高二奥赛班名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生N 数有21人.(1)求总人数和分数在110-115分的人数;N (2)现准备从分数在110-115的名学生(女生占)中任选3人,求其中恰好含有一名女生的概率;13(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩进行分析,下面是该生7次考试的成绩.y数学888311792108100112物理949110896104101106已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理y 成绩大约是多少?附:对于一组数据,……,其回归线的斜率和截距的最小二乘估计分11(,)u v 22(,)u v (,)n n u v v u αβ=+别为:,.^121()(()niii nii u u v v u u β==--=-∑∑^^a v u β=-23.已知函数f (x )=(log 2x ﹣2)(log 4x ﹣)(1)当x ∈[2,4]时,求该函数的值域;(2)若f (x )>mlog 2x 对于x ∈[4,16]恒成立,求m 的取值范围.24.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.古县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:把函数y=sin3x的图象向右平移个单位长度,可得y=sin3(x﹣)=sin(3x﹣)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.2.【答案】D【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题M得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.3.【答案】C【解析】解:由于q=2,∴∴;故选:C.4.【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案.故共有10+6+3+1=20种不同的分配方案,故选:A.【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.5.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.6.【答案】A【解析】考点:三角函数的图象性质.7.【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B ).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},则A∩(∁U B)={x|1≤x<2}.故选:B.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.8.【答案】B【解析】解:===i.故选:B.【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.9.【答案】C【解析】解:易知函数的定义域为{x|x≠1},∵>0,∴函数在(﹣∞,1)和(1,+∞)上都是增函数,又<0,f(0)=1﹣(﹣2)=3>0,故函数在区间(﹣4,0)上有一零点;又f(2)=4﹣4=0,∴函数在(1,+∞)上有一零点0,综上可得函数有两个零点.故选:C.【点评】本题考查函数零点的判断.解题关键是掌握函数零点的判断方法.利用函数单调性确定在相应区间的零点的唯一性.属于中档题.10.【答案】B【解析】解:因为AD•(BC•AC•sin60°)≥V D﹣ABC=,BC=1,即AD•≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B.【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.11.【答案】A【解析】12.【答案】A【解析】解:∵双曲线的中心在原点,焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c==5t(t>0)∴该双曲线的离心率是e==.故选A.【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.二、填空题13.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。

古县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

古县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析

古县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .2. 双曲线E 与椭圆C :+=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积x 29y 23为π,则E 的方程为( )A.-=1B.-=1x 23y 23x 24y 22C.-y 2=1 D.-=1x 25x22y 243. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则()A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交但不垂直4. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是()A .B .C .D .5. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .76. 三个数60.5,0.56,log 0.56的大小顺序为( )A .log 0.56<0.56<60.5B .log 0.56<60.5<0.56C .0.56<60.5<log 0.56D .0.56<log 0.56<60.57. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A∈8. 复数(为虚数单位),则的共轭复数为( )2(2)i z i-=i z A . B . C . D .43i -+43i +34i +34i-【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.9. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件10.执行右面的程序框图,如果输入的,则输出的属于( )[1,1]t ∈-S A. B. C. D.[0,2]e -(,2]e -¥-[0,5][3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.11.设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为()A .94B . C.92D .412.命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >0二、填空题13.在数列中,则实数a= ,b= .14.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.15.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n 个等式为 . 16.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .17. 设函数,.有下列四个命题:()xf x e =()lng x x m =+①若对任意,关于的不等式恒成立,则;[1,2]x ∈x ()()f x g x >m e <②若存在,使得不等式成立,则;0[1,2]x ∈00()()f x g x >2ln 2m e <-③若对任意及任意,不等式恒成立,则;1[1,2]x ∈2[1,2]x ∈12()()f x g x >ln 22em <-④若对任意,存在,使得不等式成立,则.1[1,2]x ∈2[1,2]x ∈12()()f x g x >m e <其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若有三个零点,则实数m 的取值范围是________.()()g x f x m =-三、解答题19.已知函数f (x )=log 2(x ﹣3),(1)求f (51)﹣f (6)的值;(2)若f (x )≤0,求x 的取值范围. 20.(本小题满分12分)设椭圆的离心率,圆与直线相切,为坐标原2222:1(0)x y C a b a b +=>>12e =22127x y +=1x y a b+=O 点.(1)求椭圆的方程;C (2)过点任作一直线交椭圆于两点,记,若在线段上取一点,使(4,0)Q -C ,M N MQ QN λ=MN R 得,试判断当直线运动时,点是否在某一定直一上运动?若是,请求出该定直线的方MR RN λ=-R 程;若不是,请说明理由.21.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且.(Ⅰ)求角B 的大小;(Ⅱ)若b=6,a+c=8,求△ABC 的面积.22.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角θ的正弦值; (2)证明:B 1F ∥平面A 1BE .23.(本题满分15分)设点是椭圆上任意一点,过点作椭圆的切线,与椭圆交于,P 14:221=+y x C P )1(14:22222>=+t ty t x C A 两点.B (1)求证:;PB PA =(2)的面积是否为定值?若是,求出这个定值;若不是,请说明理由.OAB ∆【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.B 1124.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.古县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m 则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解. 2. 【答案】【解析】选C.可设双曲线E 的方程为-=1,x 2a 2y 2b 2渐近线方程为y =±x ,即bx ±ay =0,b a由题意得E 的一个焦点坐标为(,0),圆的半径为1,6∴焦点到渐近线的距离为1.即=1,|6b |b 2+a 2又a 2+b 2=6,∴b =1,a =,5∴E 的方程为-y 2=1,故选C.x 253. 【答案】B【解析】解:∵ =(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥,因此l ⊥α.故选:B . 4. 【答案】A【解析】解:0<a <1,实数x ,y 满足,即y=,故函数y 为偶函数,它的图象关于y轴对称,在(0,+∞)上单调递增,且函数的图象经过点(0,1),故选:A .【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题. 5. 【答案】【解析】解析:选B.程序运行次序为第一次t =5,i =2;第二次t =16,i =3;第三次t =8,i =4;第四次t =4,i =5,故输出的i =5.6. 【答案】A【解析】解:∵60.5>60=1,0<0.56<0.50=1,log 0.56<log 0.51=0.∴log 0.56<0.56<60.5.故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题. 7. 【答案】A 【解析】试题分析:因为{}|5A x N x =∈< ,而,即B 、C 正确,又因为且,1.5,1,.5,1N N A A ∉-∉∴∉-∉0N ∈05<所以,即D 正确,故选A. 10A ∈考点:集合与元素的关系.8. 【答案】A【解析】根据复数的运算可知,可知的共轭复数为,故选A.43)2()2(22--=--=-=i i i ii z z 43z i =-+9. 【答案】B【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立,若a ⊥b ,则α⊥β不一定成立,故“α⊥β”是“a ⊥b ”的充分不必要条件,故选:B .【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键. 10.【答案】B11.【答案】]【解析】试题分析:设()()2ln 31g x ax x =-+的值域为A ,因为函数()1f x =-在[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。

古县一中2018-2019学年高二上学期数学期末模拟试卷含解析

古县一中2018-2019学年高二上学期数学期末模拟试卷含解析

古县一中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0)D .(0,1)2. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( ) A.B.C.D.3. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数4. ∃x ∈R ,x 2﹣2x+3>0的否定是( )A .不存在x ∈R ,使∃x 2﹣2x+3≥0B .∃x ∈R ,x 2﹣2x+3≤0C .∀x ∈R ,x 2﹣2x+3≤0D .∀x ∈R ,x 2﹣2x+3>05. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )6. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}012|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.7. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l8. 在等差数列{}n a 中,11a =,公差0d ≠,n S 为{}n a 的前n 项和.若向量13(,)m a a =,133(,)n a a =-, 且0m n ?,则2163n n S a ++的最小值为( )A .4B .3 C.2 D .92【命题意图】本题考查等差数列的性质,等差数列的前n 项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力. 9. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C.充要条件 D.既不充分也非必要条件10.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()A.B.y=x2C.y=﹣x|x| D.y=x﹣211.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是()A.8πcm2B.12πcm2C.16πcm2D.20πcm212.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的为()A.②④B.③④C.①②D.①③13.已知双曲线(a>0,b>0)的右焦点F,直线x=与其渐近线交于A,B两点,且△ABF为钝角三角形,则双曲线离心率的取值范围是()A.B.C.D.14.复数z=(m∈R,i为虚数单位)在复平面上对应的点不可能位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限15.若集合M={y|y=2x,x≤1},N={x|≤0},则N∩M()A.(1﹣1,] B.(0,1] C.[﹣1,1] D.(﹣1,2]二、填空题16.命题“若a>0,b>0,则ab>0”的逆否命题是(填“真命题”或“假命题”.)17.已知a=(cosx﹣sinx)dx,则二项式(x2﹣)6展开式中的常数项是.18.i是虚数单位,化简:=.19.一个总体分为A,B,C三层,用分层抽样的方法从中抽取一个容量为15的样本,若B层中每个个体被抽到的概率都为,则总体的个数为.三、解答题20.已知函数f (x )=2sin (ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示;(1)求ω,φ;(2)将y=f (x )的图象向左平移θ(θ>0)个单位长度,得到y=g (x )的图象,若y=g (x )图象的一个对称点为(,0),求θ的最小值.(3)对任意的x ∈[,]时,方程f (x )=m 有两个不等根,求m 的取值范围.21.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.(1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值;22.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++23.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[] C[]D[]24.(本小题满分12分)已知圆C :022=++++F Ey Dx y x 的圆心在第二象限,半径为2,且圆C 与直线043=+y x 及y 轴都相切.(1)求F E D 、、;(2)若直线022=+-y x 与圆C 交于B A 、两点,求||AB .25.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,). (1)求a 的值;(2)比较f (2)与f (b 2+2)的大小;(3)求函数f (x )=a (x ≥0)的值域.古县一中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.2.【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx﹣2,即kx﹣y﹣2=0,若过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d≤1,即≤1,即k2﹣3≥0,解得k≤﹣或k≥,即≤α≤且α≠,综上所述,≤α≤,故选:A.3.【答案】C【解析】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.4.【答案】C【解析】解:因为特称命题的否定是全称命题,所以,∃x∈R,x2﹣2x+3>0的否定是:∀x∈R,x2﹣2x+3≤0.故选:C.5.【答案】B【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},∴∁U M={0,1},∴N∩(∁U M)={0,1},故选:B.【点评】本题主要考查集合的子交并补运算,属于基础题.6.【答案】C7.【答案】C111]【解析】考点:线线,线面,面面的位置关系8.【答案】A【解析】9.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A10.【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;函数y=﹣x|x|为奇函数,不满足条件;函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.11.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B12.【答案】A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN.在①中:由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;在②中:由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.13.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.14.【答案】C【解析】解:z====+i,当1+m>0且1﹣m>0时,有解:﹣1<m<1;当1+m>0且1﹣m<0时,有解:m>1;当1+m<0且1﹣m>0时,有解:m<﹣1;当1+m<0且1﹣m<0时,无解;故选:C.【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.15.【答案】B【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x≤1,即N=(﹣1,1],则M∩N=(0,1],故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.二、填空题16.【答案】真命题【解析】解:若a>0,b>0,则ab>0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.17.【答案】240.【解析】解:a=(cosx﹣sinx)dx=(sinx+cosx)=﹣1﹣1=﹣2,则二项式(x2﹣)6=(x2+)6展开始的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.18.【答案】﹣1+2i.【解析】解:=故答案为:﹣1+2i.19.【答案】300.【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15÷=300.故答案为:300.【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.三、解答题20.【答案】【解析】解:(1)根据函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象,可得•=,求得ω=2.再根据五点法作图可得2•+φ=,求得φ=﹣,∴f(x)=2sin(2x﹣).(2)将y=f(x)的图象向左平移θ(θ>0)个单位长度,得到y=g(x)=2sin=2sin(2x+2θ﹣)的图象,∵y=g(x)图象的一个对称点为(,0),∴2•+2θ﹣=kπ,k∈Z,∴θ=﹣,故θ的最小正值为.(3)对任意的x∈[,]时,2x﹣∈[,],sin(2x﹣)∈,即f(x)∈,∵方程f(x)=m有两个不等根,结合函数f(x),x∈[,]时的图象可得,1≤m<2.21.【答案】(1)证明见解析;(2.【解析】试题解析:(2)在三角形AMC 中,由22,3,cos 3AM AC MAC ==∠=,得 2222cos 5CM AC AM AC AN MAC =+-∠=, 222AM MC AC +=,则AM MC ⊥, ∵PA ⊥底面,ABCD PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD平面PAD AD =,∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD ,在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连结NF ,则ANF ∠为直线AN 与平面PMN 所成角。

2018-2019学年高二(上)期末数学试卷2带答案

2018-2019学年高二(上)期末数学试卷2带答案

2018-2019学年高二(上)期末数学试卷2带答案一、填空题(本大题满分36分)本大题共12小题,每个空格填对得3分,否则一律得0分.1.(3分)直线3x﹣4y﹣5=0的倾斜角的大小为(结果用反三角函数值表示)2.(3分)若=(﹣5,4),=(7,9),则与同向的单位向量的坐标是.3.(3分)若线性方程组的增广矩阵为,解为,则a+b=.4.(3分)行列式中中元素﹣3的代数余子式的值为7,则k=.5.(3分)以点P(3,4)和点Q(﹣5,6)为一条直径的两个端点的圆的方程是.6.(3分)若顶点在原点的抛物线的焦点与圆x2+y2﹣4x=0的圆心重合,则该抛物线的准线方程为.7.(3分)在△ABC中,|AB|=3,|BC|=7,|CA|=5,则在方向上的投影是.8.(3分)已知双曲线kx2﹣y2=1的一条渐进线的方向向量=(2,﹣1),则k=.9.(3分)在正三角形ABC中,D是BC上的点,AB=3,BD=1,则=.10.(3分)已知F1、F2是双曲线C:﹣=1(a>0,b>0)的两个焦点,P 是双曲线C上一点,且⊥,若△PF1F2的面积为16,则b=.11.(3分)若点O和点F分别为椭圆+y2=1的中心和左焦点,点P为椭圆上的任意一点,则|OP|2+|PF|2的最小值为.12.(3分)在平面直角坐标系中,两个动圆均过点A(1,0)且与直线l:x=﹣1相切,圆心分别为C1、C2,若动点M满足2=+,则M的轨迹方程为.二、本大题共4小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.13.(4分)“”是“方程组有唯一解”的()A.充分不必要条件 B.必要不充分条C.充要条件D.既不充分又不必要条件14.(4分)某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.715.(4分)已知集合P={(x,y)||x|+2|y|=5},Q={(x,y)|x2+y2=5},则集合P∩Q中元素的个数是()A.0 B.2 C.4 D.816.(4分)已知对称轴为坐标轴的双曲线的渐进线方程为y=±x(a>0,b>0),若双曲线上有一点M(x0,y0),使b|x0|<a|y0|,则该双曲线的焦点()A.在x轴上B.在y轴上C.当a>b时,在x轴上D.当a>b时,在y轴上三、解答题(本大题满分48分)本大题共5小题,解答应写出文字说明,证明过程或演算步骤.17.(8分)已知:、、是同一平面内的三个向量,其中=(1,2)(1)若||=2,且∥,求的坐标;(2)若||=,且+2与2﹣垂直,求与的夹角θ.18.(8分)已知直线l经过点P(﹣2,),并且与直线l0:x﹣y+2=0的夹角为,求直线l的方程.19.(10分)如图所示,A(2,0)、B、C是椭圆E:+=1(a>b>0)上的三点,BC过椭圆E的中心且斜率为1,椭圆长轴的一个端点与短轴的两个端点内构成正三角形.(1)求椭圆E的方程;(2)求△ABC的面积.20.(10分)如图所示的封闭区域的边界是由两个关于x轴对称的半圆与截取于同一双曲线的两段曲线组合而成的,其中上半圆所在圆的方程是x2+y2﹣4y﹣4=0,双曲线的左右顶点A、B是该圆与x轴的交点,双曲线与该圆的另两个交点是该圆平行于x轴的一条直径的两个端点.(1)求双曲线的方程;(2)记双曲线的左、右焦点为F1、F2,试在封闭区域的边界上求点P,使得∠F1PF2是直角.21.(12分)对于曲线C:f(x,y)=0,若存在非负实常数M和m,使得曲线C 上任意一点P(x,y)有m≤|OP|≤M成立(其中O为坐标原点),则称曲线C 为既有外界又有内界的曲线,简称“有界曲线”,并将最小的外界M0成为曲线C 的外确界,最大的内界m0成为曲线C的内确界.(1)曲线y2=4x与曲线(x﹣1)2+y2=4是否为“有界曲线”?若是,求出其外确界与内确界;若不是,请说明理由;(2)已知曲线C上任意一点P(x,y)到定点F1(﹣1,0),F2(1,0)的距离之积为常数a(a>0),求曲线C的外确界与内确界.参考答案与试题解析一、填空题(本大题满分36分)本大题共12小题,每个空格填对得3分,否则一律得0分.1.(3分)直线3x﹣4y﹣5=0的倾斜角的大小为arctan(结果用反三角函数值表示)【分析】根据所给的直线3x﹣4y﹣5=0,得到直线的斜率时,直线的斜率是倾斜角的正切,得到tanα=,α∈[0,π],根据倾斜角的范围和正切的反三角函数的值域确定结果.【解答】解:∵直线3x﹣4y﹣5=0,∴直线的斜率时,直线的斜率是倾斜角的正切,∴tanα=,α∈[0,π],∴α=arctan,故答案为:arctan.【点评】本题考查反三角函数的应用及直线的倾斜角与斜率的关系,本题解题的关键是理解反三角函数的值域和倾斜角的范围,本题是一个基础题.2.(3分)若=(﹣5,4),=(7,9),则与同向的单位向量的坐标是(,).【分析】根据坐标运算求出向量,再求与同向的单位向量即可.【解答】解:∵=(﹣5,4),=(7,9),∴=(12,5),||==13;∴与同向的单位向量的坐标为=(,).故答案为:(,).【点评】本题考查了平面向量的坐标运算与单位向量的应用问题,是基础题目.3.(3分)若线性方程组的增广矩阵为,解为,则a+b=2.【分析】根据增广矩阵的定义得到是方程组的解,解方程组即可.【解答】解:由题意知是方程组的解,即,则a+b=1+1=2,故答案为:2.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.4.(3分)行列式中中元素﹣3的代数余子式的值为7,则k=3.【分析】由题意可知求得A12=﹣=k+4,代入即可求得k的值.【解答】解:由题意可知:设A=,元素﹣3的代数余子式A12=﹣=k+4,∴k+4=7,∴k=3,故答案为:3.【点评】本题考查三阶行列式的代数余子式的定义及行列式的运算,考察计算能力,属于基础题.5.(3分)以点P(3,4)和点Q(﹣5,6)为一条直径的两个端点的圆的方程是(x+1)2+(y﹣5)2=17.【分析】由中点坐标公式求出圆心,由两点间距离公式求出圆半径,由此能求出圆的方程.【解答】解:∵点P(3,4)和点Q(﹣5,6),∴以点P(3,4)和点Q(﹣5,6)为一条直径的两个端点的圆的圆心为(﹣1,5),圆的半径r===.∴圆的方程为:(x+1)2+(y﹣5)2=17.故答案为:(x+1)2+(y﹣5)2=17.【点评】本题考查圆的方程的求法,是基础题,解题时要认真审题,注意中点坐标公式和两点间距离公式的合理运用.6.(3分)若顶点在原点的抛物线的焦点与圆x2+y2﹣4x=0的圆心重合,则该抛物线的准线方程为x=﹣2.【分析】由已知得抛物线的焦点F(2,0),由此能求出该抛物线的准线方程.【解答】解:∵顶点在原点的抛物线的焦点与圆x2+y2﹣4x=0的圆心重合,∴抛物线的焦点F(2,0),∴该抛物线的准线方程为x=﹣2.故答案为:x=﹣2.【点评】本题考查抛物线的准线方程的求法,是基础题,解题时要认真审题,注意抛物线、圆的性质的合理运用.7.(3分)在△ABC中,|AB|=3,|BC|=7,|CA|=5,则在方向上的投影是.【分析】利用余弦定理求出A,则与的夹角为π﹣A.【解答】解:cosA===﹣.∴在方向上的投影是||•cos(π﹣A)=3×=.故答案为.【点评】本题考查了平面向量的夹角,余弦定理,属于基础题.8.(3分)已知双曲线kx2﹣y2=1的一条渐进线的方向向量=(2,﹣1),则k=.【分析】根据题设条件知求出渐近线的斜率,建立方程求出k.【解答】解:∵双曲线kx2﹣y2=1的渐近线的一条渐近线的方向向量=(2,﹣1),∴渐近线的斜率为=,∴k=.故答案为:.【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用.9.(3分)在正三角形ABC中,D是BC上的点,AB=3,BD=1,则=.【分析】利用向量的加法法则化,展开后利用数量积运算得答案.【解答】解:如图,∵AB=3,BD=1,∠B=60°,∴===.故答案为:.【点评】本题考查平面向量的数量积运算,考查了向量的加法法则,是基础题.10.(3分)已知F1、F2是双曲线C:﹣=1(a>0,b>0)的两个焦点,P 是双曲线C上一点,且⊥,若△PF1F2的面积为16,则b=4.【分析】Rt△PF1F2中,由勾股定理及双曲线的定义,△PF1F2面积为16,即可求出b.【解答】解:设|PF1|=m,|PF2|=n,⊥,得∠F1PF2=90°,∴m2+n2=4c2,△PF1F2的面积为16,∴mn=32∴4a2=(m﹣n)2=4c2﹣64,∴b2=c2﹣a2=16,∴b=4.故答案为:4.【点评】本题给出双曲线的焦点三角形为直角三角形及它的面积,着重考查了勾股定理、双曲线的定义和简单几何性质等知识.11.(3分)若点O和点F分别为椭圆+y2=1的中心和左焦点,点P为椭圆上的任意一点,则|OP|2+|PF|2的最小值为2.【分析】先求出左焦点坐标F,设P(x,y),根据P(x,y)在椭圆上可得到x、y的关系式,表示出|OP|2+|PF|2,再将x、y的关系式代入组成二次函数进而可确定答案.【解答】解:由题意,F(﹣1,0),设点P(x,y),则有+y2=1,解得y2=1﹣,因为|OP|2+|PF|2=x2+y2+(x+1)2+y2=x2+(x+1)2+2﹣x2=(x+1)2+2,此二次函数对应的抛物线的对称轴为x=﹣1,|OP|2+|PF|2的最小值为2.故答案为:2.【点评】本题考查椭圆的方程、几何性质、两点间的距离公式、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程序以及知识的综合应用能力、运算能力.12.(3分)在平面直角坐标系中,两个动圆均过点A(1,0)且与直线l:x=﹣1相切,圆心分别为C1、C2,若动点M满足2=+,则M的轨迹方程为y2=2x﹣1.【分析】由抛物线的定义可得动圆的圆心轨迹方程为y2=4x,利用2=+,确定坐标之间的关系,即可求出M的轨迹方程.【解答】解:由抛物线的定义可得动圆的圆心轨迹方程为y2=4x,设C1(a,b),C2(m,n),M(x,y),则∵2=+,∴2(x﹣m,y﹣n)=(a﹣m,b﹣n)+(1﹣m,﹣n),∴2x=a+1,2y=b,∴a=2x﹣1,b=2y,∵b2=4a,∴(2y)2=4(2x﹣1),即y2=2x﹣1.故答案为:y2=2x﹣1.【点评】本题考查轨迹方程,考查向量知识的运用,考查学生分析解决问题的能力,确定坐标之间的关系是关键.二、本大题共4小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.13.(4分)“”是“方程组有唯一解”的()A.充分不必要条件 B.必要不充分条C.充要条件D.既不充分又不必要条件【分析】根据两直线间的位置关系,从而得到答案.【解答】解:由⇔a1 b2≠a2 b1,⇔直线a1x+b1y=c1和直线a2x+b2y=c2不平行,⇔方程组有唯一解,故选:C.【点评】本题考查了充分必要条件,考查了直线之间的位置关系,是一道基础题.14.(4分)某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.7【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量k的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当S=0时,满足继续循环的条件,故S=1,k=1;当S=1时,满足继续循环的条件,故S=3,k=2;当S=3时,满足继续循环的条件,故S=11,k=3;当S=11时,满足继续循环的条件,故S=2059,k=4;当S=2049时,不满足继续循环的条件,故输出的k值为4,故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.15.(4分)已知集合P={(x,y)||x|+2|y|=5},Q={(x,y)|x2+y2=5},则集合P∩Q中元素的个数是()A.0 B.2 C.4 D.8【分析】做出P与Q中表示的图象,确定出两集合的交集,即可做出判断.【解答】解:对于P中|x|+2|y|=5,当x>0,y>0时,化简得:x+2y=5;当x>0,y<0时,化简得:x﹣2y=5;当x<0,y>0时,化简得:﹣x+2y=5;当x<0,y<0时,化简得:﹣x﹣2y=5,对于Q中,x2+y2=5,表示圆心为原点,半径为的圆,做出图形,如图所示,则集合P∩Q=∅,即P∩Q中元素的个数是0个,故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.16.(4分)已知对称轴为坐标轴的双曲线的渐进线方程为y=±x(a>0,b>0),若双曲线上有一点M(x0,y0),使b|x0|<a|y0|,则该双曲线的焦点()A.在x轴上B.在y轴上C.当a>b时,在x轴上D.当a>b时,在y轴上【分析】利用题设不等式,令二者平方,整理求得﹣>0,即可判断出焦点的位置.【解答】解:∵a|y0|>b|x0|≥0∴平方a2y02>b2x02∴﹣>0∴焦点在y轴故选:B.【点评】本题主要考查了双曲线的简单性质.考查了学生分析问题和解决问题的能力.三、解答题(本大题满分48分)本大题共5小题,解答应写出文字说明,证明过程或演算步骤.17.(8分)已知:、、是同一平面内的三个向量,其中=(1,2)(1)若||=2,且∥,求的坐标;(2)若||=,且+2与2﹣垂直,求与的夹角θ.【分析】(1)设,由||=2,且∥,知,由此能求出的坐标.(2)由,知,整理得,故,由此能求出与的夹角θ.【解答】解:(1)设,∵||=2,且∥,∴,…(3分)解得或,…(5分)故或.…(6分)(2)∵,∴,即,…(8分)∴,整理得,…(10分)∴,…(12分)又∵θ∈[0,π],∴θ=π.…(14分)【点评】本题考查平面向量的坐标运算和数量积判断两个平面垂直的条件的灵活运用,是基础题.解题时要认真审题,仔细解答.18.(8分)已知直线l经过点P(﹣2,),并且与直线l0:x﹣y+2=0的夹角为,求直线l的方程.【分析】根据条件求出直线l的倾斜角,可得直线l的斜率,再用点斜式求得直线l的方程.【解答】解:由于直线l0:x﹣y+2=0的斜率为,故它的倾斜角为,由于直线l和直线l0:x﹣y+2=0的夹角为,故直线l的倾斜角为或,故直线l的斜率不存在或斜率为﹣.再根据直线l经过点P(﹣2,),可得直线l的方程为x=﹣2,或y﹣=﹣(x+2),即x=﹣2,或x+y﹣1=0.如图:【点评】本题主要考查直线的倾斜角和斜率,两条直线的夹角,用点斜式求直线的方程,属于基础题.19.(10分)如图所示,A(2,0)、B、C是椭圆E:+=1(a>b>0)上的三点,BC过椭圆E的中心且斜率为1,椭圆长轴的一个端点与短轴的两个端点内构成正三角形.(1)求椭圆E的方程;(2)求△ABC的面积.【分析】(1)由题意可得a=2,再由正三角形的条件可得a=b,解得b,进而得到椭圆方程;(2)由题意写出A点坐标,直线CB方程,联立直线方程与椭圆方程可求得交=|OA|•|y B﹣y C|,代入数值即可求得面积.点C、B的纵坐标,S△ABC【解答】解:(1)A的坐标为(2,0),即有a=2,椭圆长轴的一个端点与短轴的两个端点构成正三角形,可得a=b,解得b=2,则椭圆E的方程为,(2)直线BC的方程为y=x,代入椭圆方程x2+3y2=12,得y=x=±,=|OA|•|y B﹣y C|=×2=6,∴S△ABC△ABC的面积为6.【点评】本题考查求椭圆的标准方程,直线与椭圆的位置关系、三角形面积公式,考查学生分析问题解决问题的能力,属于中档题.20.(10分)如图所示的封闭区域的边界是由两个关于x轴对称的半圆与截取于同一双曲线的两段曲线组合而成的,其中上半圆所在圆的方程是x2+y2﹣4y﹣4=0,双曲线的左右顶点A、B是该圆与x轴的交点,双曲线与该圆的另两个交点是该圆平行于x轴的一条直径的两个端点.(1)求双曲线的方程;(2)记双曲线的左、右焦点为F1、F2,试在封闭区域的边界上求点P,使得∠F1PF2是直角.【分析】(1)根据上半个圆所在圆的方程得出两圆的圆心与半径,再求出双曲线的顶点坐标与标准方程;(2)设点P的坐标,根据∠F1PF2是直角得出方程x2+y2=8,分别与双曲线和圆的方程联立,即可求出点P的坐标,注意检验,排除不合题意的坐标.【解答】解:(1)上半个圆所在圆的方程为x2+y2﹣4y﹣4=0,圆心为(0,2),半径为2;则下半个圆所在圆的圆心为(0,﹣2),半径为2;双曲线的左、右顶点A、B是该圆与x轴的交点,即为(﹣2,0),(2,0),即a=2,由于双曲线与半圆相交于与x轴平行的直径的两端点,则令y=2,解得x=±2,即有交点为(±2,2);设双曲线的方程为﹣=1(a>0,b>0),则﹣=1,且a=2,解得b=2;所以双曲线的方程为﹣=1;(2)双曲线的左、右焦点为F1(﹣2,0),F2(2,0),若∠F1PF2是直角,设点P(x,y),则有x2+y2=8,由,解得x2=6,y2=2;由,解得y=±1(不满足题意,应舍去);所以在封闭区域的边界上所求点P的坐标为(±,)和(±,﹣).【点评】本题考查了双曲线的标准方程的求法问题,也考查了圆与圆、圆与双曲线的位置关系,是综合性题目.21.(12分)对于曲线C:f(x,y)=0,若存在非负实常数M和m,使得曲线C 上任意一点P(x,y)有m≤|OP|≤M成立(其中O为坐标原点),则称曲线C 为既有外界又有内界的曲线,简称“有界曲线”,并将最小的外界M0成为曲线C 的外确界,最大的内界m0成为曲线C的内确界.(1)曲线y2=4x与曲线(x﹣1)2+y2=4是否为“有界曲线”?若是,求出其外确界与内确界;若不是,请说明理由;(2)已知曲线C上任意一点P(x,y)到定点F1(﹣1,0),F2(1,0)的距离之积为常数a(a>0),求曲线C的外确界与内确界.【分析】(1)由外确界与内确界的概念,结合曲线方程,数形结合得答案;(2)由题意求出曲线C的方程,进一步得到x的范围,把x2+y2转化为含有x的代数式,分类讨论得答案.【解答】解:(1)y2=4x的图象为开口向右的抛物线,抛物线上的点到原点的距离的最小值为0,无最大值,∴曲线y2=4x不是“有界曲线”;∵曲线(x﹣1)2+y2=4的轨迹为以(1,0)为圆心,以2为半径的圆,如图:由图可知曲线(x﹣1)2+y2=4上的点到原点距离的最小值为1,最大值为3,则曲线(x﹣1)2+y2=4是“有界曲线”,其外确界为3,内确界为1;(2)由已知得:,整理得:(x2+y2+1)2﹣4x2=a2,∴,∵y2≥0,∴,∴(x2+1)2≤4x2+a2,∴(x2﹣1)2≤a2,∴1﹣a≤x2≤a+1,则=,∵1﹣a≤x2≤a+1,∴(a﹣2)2≤4x2+a2≤(a+2)2,即,当0<a<1时,2﹣a,则,∴,则曲线C的外确界与内确界分别为;当1≤a≤2时,2﹣a,则,∴0,则曲线C的外确界与内确界分别为,0;当2<a≤3时,a﹣2,则a﹣3≤﹣1≤a+1,∴0,则曲线C的外确界与内确界分别为,0;当a>3时,a﹣2,则a﹣3≤﹣1≤a+1,∴,则曲线C的外确界与内确界分别为,.【点评】本题考查曲线的外确界与内确界的求法,体现了分类讨论的数学思想方法,理解题意是关键,注意函数与方程思想的合理运用,属难题.。

古县高中2018-2019学年高二上学期数学期末模拟试卷含解析

古县高中2018-2019学年高二上学期数学期末模拟试卷含解析

第 9 页,共 16 页
【解析】因为函数 f ( x) 为奇函数且 x R ,则由 f (0) 0 ,得 15.【答案】
63e0 b 0 ,整理,得 ab 2016 . a 32e0
【解析】

睛 : 函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。某些数学问题从表面上 看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起 到化难为易、化繁为简的作用。因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这 是非常必要的。根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问 题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。 16.【答案】 a 【解析】

9. 【答案】B
第 8 页,共 16 页
【解析】解:函数的定义域为(0,+∞) 求导函数可得 f′(x)=lnx+2,令 f′(x)>0,可得 x>e﹣2, ∴函数 f(x)的单调增区间是(e﹣2,+∞) 故选 B. 10.【答案】A 【解析】
考 点:斜二测画法. 11.【答案】C. 【 解 析 】
1 1 1 PC PA2 AC 2 PA2 8 ,所以由球的体积 2 2 2
二、填空题
13.【答案】54 【解析】根据程序框图可知循环体共运行了 9 次,输出的 x 是 1,3,5,7,9,11,13,15, 17 中不是 3 的 倍数的数,所以所有输出值的和 1 5 7 11 13 17 54 . 14.【答案】2016
试题分析: f ( x)
'
考点:导数的几何意义;不等式恒成立问题. 【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项: (1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上, 可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重

2018-2019学年高二上学期期末考试数学试题 (答案+解析)

2018-2019学年高二上学期期末考试数学试题 (答案+解析)

2018-2019学年高二上学期期末考试一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则” B .命题“,”的否定“,”C .若为假命题,则,均为假命题D .“”是“直线:与直线:平行”的充要条件 3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A .B .C .D .4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A .B .C .D .5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A .B .C .D .6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是( )A .B .C .D .7.已知12,F F 是椭圆221169x y +=的两焦点,过点2F 的直线交椭圆于,A B 两点,在1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D . 9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A .B .C .D .10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+点,若,则实数的值为()A.B.C.2 D.312.已知双曲线22221x ya b-=的左、右顶点分别为,A B,P为双曲线左支上一点,ABP∆为等腰三角形且外接圆的半径为5a,则双曲线的离心率为()A.155B.154C.153D.152二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程; (2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.参考答案一、单选题1.与圆224630x y x y +-++=同圆心,且过()1,1-的圆的方程是( )A .224680x y x y +-+-=B .224680x y x y +-++= C .224680x y x y ++--= D .224680x y x y ++-+= 【答案】B【解析】试题分析:把原圆的方程写成标准方程为()()222310x y -++=,由于两圆共圆心,可设另一个圆方程为:()()22223x y r -++=,把1,1x y ==-代入所设方程,得:()()22221213,5r r -+-+=∴=,所以所求的圆的方程为()()22235x y -++=,化简为:22-4680x y x y +++=,故选B.【考点】1、圆的一般式方程;2、圆的标准方程的. 2.下列说法中正确的是( ) A .命题“若,则方程有实数根”的逆否命题为“若方程无实B.命题“,”的否定“,”C.若为假命题,则,均为假命题D.“”是“直线:与直线:平行”的充要条件【答案】A【解析】根据命题的条件、结论及逆否命题的定义判断;根据特称命题的否定是全称命题判断,根据复合命题的真值表判断;根据平行线的性质判断.【详解】否定“若,则方程有实数根”条件与结论,再将否定后的条件与结论互换可得其逆否命题为“若方程无实数根,则”,正确;命题“,”的否定“,”,不正确;若为假命题,则至少有一个是假命题,不正确;“直线:与直线:平行”的充要条件是“或”,不正确,故选A.【点睛】本题通过对多个命题真假的判断,综合考查逆否命题的定义、特称命题的否定、复合命题的真值表、平行线的性质,属于中档题.这种题型综合性较强,也是高考的命题热点,做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.3.已知双曲线的一个焦点坐标为,渐近线方程为,则双曲线的标准方程是( )A.B.C.D.【答案】C【解析】根据焦点坐标求得、双曲线的渐近线方程,结合,利用待定系数法进行求解即可.【详解】对应的双曲线方程为,双曲线的一个焦点是,且,则,则,则,则,即双曲线的方程为,故选C.【点睛】本题主要考查双曲线方程的求解,属于基础题. 求解双曲线方程的题型一般步骤:(1)判断焦点位置;(2)设方程;(3)列方程组求参数;(4)得结论.4.如图所示的程序框图的算法思路来源于“欧几里得算法”.图中的“”表示除以的余数,若输入的值分别为和,则执行该程序输出的结果为( )A.B.C.D.【答案】A【解析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输.【详解】若输入的值分别为,则,不满足条件,循环;,余数为13 ,即,不满足条件,循环;,余数为0 ,即,满足条件,输出,故选A.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 5.已知抛物线上一点到抛物线焦点的距离等于,则直线的斜率为( )A.B.C.D.【答案】A【解析】根据抛物线的定义可求出的横坐标,代入抛物线方程解出的纵坐标,代入斜率公式计算斜率.【详解】抛物线的焦点为,准线方程为,点到焦点的距离等于到准线的距离,所以,代入抛物线方程解得,,故选A.【点睛】本题主要考查抛物线的定义和几何性质,斜率公式的应用,属于中档题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决..6.将一颗质地均匀的骰子先后抛掷次,则出现向上的点数之和小于的概率是()A.B.C.D.【答案】D【解析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,利用对立事件概率计算公式,结合古典概型概率公式能求出向上的点数之和小于10的概率.【详解】将一颗质地均匀的骰子(一种各个面上分别标有个点的正方体玩具)先后抛掷2次,基本事件总数为,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:共6个,出现向上的点数之和小于10的概率为,故选D.【点睛】本题考查古典概型概率公式的应用以及对立事件概率计算公式的应用,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.1AF B ∆中,若有两边之和是10,则第三边的长度为( )A .3B .4C .5D .6 【答案】D【解析】由椭圆的定义得12128{8AF AF BF BF +=+=两式相加得|AB|+|AF 2|+|BF 2|=16,又因为在△AF 1B 中,有两边之和是10, 所以第三边的长度为:16-10=6 故选D . 8.在直三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )A .B .C .D .【答案】C 【解析】【详解】延长到点,使得,连接,则是平行四边形,可得,根据异面直线所成角的概念可知,所成的锐角即为所求的异面直线所成的角, 设三棱柱的棱长为1,则,在中,根据余弦定理可得,所以异面直线与所成角的余弦值为,故选C.【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.9.在棱长为的正方体中,分别为棱、的中点,为棱上的一点,且,则点到平面的距离为( )A.B.C.D.【答案】D【解析】以为原点,为轴、为轴、为轴,建立空间直角坐标系,利用向量法能求出点到平面的距离 .【详解】以为原点,为轴、为轴、为轴,建立空间直角坐标系,则,,设平面的法向量,则,取,得,点到平面的距离为,故选D.【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.10.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,P 为x 轴上的动点,则||||PN PM -的最大值是( ) A .254+ B .9 C .7 D .252+ 【答案】B【解析】试题分析:圆()()221111C x y -++=:的圆心1(1)E -,,半径为1,圆()()222459C x y -+-=:的圆心5(4)F ,,半径是3.要使PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+;5(4)F ,关于x 轴的对称点)5(4F '-,,2241515()()PF PE PF PE EF -='-≤'=-+-+=,故4PF PE -+ 的最大值为549+= ,故选:B .【考点】圆与圆的位置关系及其判定.【思路点睛】先根据两圆的方程求出圆心和半径,要使|PN PM -最大,需PN 最大,且PM 最小,PN 最大值为3,PF PM +的最小值为1PE -,故PN PM -最大值是()()314PF PE PF PE +--=-+,再利用对称性,求出所求式子的最大值. 11.已知抛物线的焦点为,直线与C 交于A 、B (A 在轴上方)两点,若,则实数的值为( )A .B .C .2D .3【答案】D【解析】试题分析:由得或,即,,又,所以,,显然,即.故选D .【考点】直线与抛物线的位置关系,向量的数乘.【名师点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式AB =x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. (3)直线与抛物线相交问题,如果含有参数,一般采用“设而不求”方法,但象本题则是直接把直线方程与抛物线方程联立方程组解得交点坐标,再进行相减的运算.12.已知双曲线22221x y a b-=的左、右顶点分别为,A B , P 为双曲线左支上一点,ABP ∆为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为( )A .155 B .154 C .153 D .152【答案】C【解析】由题意知等腰ABP ∆中, ||2AB AP a ==,设ABP APB θ∠=∠=,则12F AP θ∠=,其中θ必为锐角.∵ABP ∆外接圆的半径为5a , ∴225sin aa θ=, ∴5sin 5θ=, 25cos 5θ=, ∴25254253sin22,cos22155555θθ⎛⎫=⨯⨯==⨯-= ⎪ ⎪⎝⎭. 设点P 的坐标为(),x y ,则118cos2,sin255a ax a AP y AP θθ=+===, 故点P 的坐标为118,55a a ⎛⎫⎪⎝⎭.由点P在椭圆上得2222118551a aa b⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,整理得2223ba=,∴221513c bea a==+=.选C .点睛:本题将解三角形和双曲线的性质结合在一起考查,综合性较强,解题时要抓住问题的关键和要点,从所要求的离心率出发,寻找双曲线中,a c之间的数量关系,其中通过解三角形得到点P的坐标是解题的突破口.在得到点P的坐标后根据点在椭圆上可得,a b间的关系,最后根据离心率的定义可得所求.二、填空题13.某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:,,…,后得到频率分布直方图(如下图所示),则分数在内的人数是__________.【答案】30【解析】由频率分布直方图得,分数在内的频率为:,分数在内的人数为:,故答案为.14.过点作斜率为的直线与椭圆C:相交于两点,若是线段的中点,则椭圆C的离心率等于______.【答案】【解析】利用点差法,结合是线段的中点,斜率为,可得,结合即可求出椭圆的离心率.【详解】设,则①,②,是线段的中点,,直线的斜率是,所以,①②两式相减可得,即,,,故答案为.【点睛】本题考查椭圆的离心率,以及“点差法”的应用,属于中档题. 对于有关弦中点问题常用“ 点差法”,其解题步骤为:①设点(即设出弦的两端点坐标);②代入(即代入圆锥曲线方程);③作差(即两式相减,再用平方差公式分解因式);④整理(即转化为斜率与中点坐标的关系式),然后求解.15.三棱锥中,已知平面,是边长为的正三角形,为的中点,若直线与平面所成角的正弦值为,则的长为_____.【答案】2或【解析】设是的中点,连接,在平面内作,则,可证明平面,连接,则是与平面所成的角,设,利用平面所成的角的正弦值为,列方程求解即可.【详解】设是的中点,连接,平面,,为正三角形,,平面,在平面内作,则,平面,连接,则是与平面所成的角,设,在直角三角形中,,求得,,平面所成的角的正弦值为,,解得或,即的长为2或,故答案为2或.【点睛】本题主要考查线面垂直的判定定理与性质,以及直线与平面所成的角,属于难题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.三、解答题16.设命题:函数的定义域为;命题:不等式对一切均成立.(1)如果是真命题,求实数的取值范围;(2)如果命题“”为真命题,“”为假命题,求实数的取值范围.【答案】(1)(2)或【解析】(1)利用的判别式小于零即可得结果;(2)化简命题可得,化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.【详解】(1)命题是真命题,则若,,的取值范.(2)若命题是真命题,设,令,,当时取最大值,,又因为“”为真命题,“”为假命题,所以一真一假.①若真假,,且,则得;②若假真,则得,且,得.综上,实数的取值范围为或.【点睛】本题通过判断或命题、且命题的真假,综合考查函数的定义域、值域以及不等式恒成立问题,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.17.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了组昼夜温差与颗种子发芽数,得到如下资料:组号 1 2 3 4 5温差()10 11 13 12 8发芽数(颗)23 25 30 26 16经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取组数据求出线性回归方程,再用没选取的组数据进行检验.(1)若选取的是第组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)【答案】(1)(2)可靠【解析】(1)根据所给的数据,先做出的平均数,即做出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程;(2)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.【详解】(1)由题意:,,.,故回归直线方程为:.(2)当时,,当时,,所以(1)中所得的回归直线方程是可靠的. 【点睛】本题主要考查线性回归方程的求解与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.18.在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.(1)求甲乙恰有一人中奖的概率;(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.【答案】(1)(2)【解析】(1)利用古典概型概率公式分别求出甲中奖与乙中奖的概率,利用对立事件的概率公式求出甲不中奖与乙不中奖的概率,然后利用独立事件概率公式、互斥事件的概率公式求解即可;(2)设甲乙到达时间分别为9:00起第小时,则.甲乙到达时间为正方形区域,甲比乙先到则需满足,利用线性规划以及几何概型概率公式可得结果.【详解】(1)记“甲取得三个球同色”为事件A,“乙取得三个球同色”为事件B,“甲乙恰有一人中奖”为事件C.所以A与B相互独立,记两红球为1,2号,四个白球分别为3,4,5,6号,从6个球中抽取3个的所有可能情况有个基本事件.其中事件A包括个基本事件故,所以所以.(2)设甲乙到达时间分别为9:00起第x,y小时,则0≤x≤,≤y≤1.甲乙到达时间(x,y)为图中正方形区域,甲比乙先到则需满足x<y,为图中阴影部分区域.设甲比乙先到为事件B,则P(B)=1-=.【点睛】本题主要考查古典概型、“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.19.已知圆与圆关于直线+1对称.(1)求圆的方程;(2)过点的直线与圆交与两点,若,求直线的方程.【答案】(1);(2)或.【解析】(1)将圆化为标准方程,求出其圆心和半径,并求出圆心关于直线+1对称点的坐标,从而可得结果;(2)先验证斜率不存在时,直线符合题意;斜率存在时,由可求得的夹角,可得圆心到直线的距离,利用点到直线的距离公式列方程可得到直线的斜率,由点斜式可得结果.【详解】(1)圆的标准方程为(x﹣2)2+y2=4,圆心C1(2,0),半径r1=2,设圆的标准方程为,∵圆C1与圆C2关于直线y=x+1对称,所以,解得.故圆的方程为.(2),所以易得点到直线的距离为,当的斜率不存在时,的方程为,符合要求;当的斜率存在时,设的方程为,由得,故的方程为;综上,的方程为或.【点睛】本题主要圆的方程,直线的点斜式方程的应用,属于中档题.在解题过程中需要用“点斜式”、“斜截式”设直线方程时,一定不要忘记讨论直线斜率不存在的情况,这是解析几何解题过程中容易出错的地方.20.如图,四边形ABCD与BDEF均为菱形,设AC与BD相交于点O,若∠DAB=∠DBF=60°,且FA=FC.(1)求证:FC∥平面EAD;(2)求二面角A-FC-B的余弦值.【答案】(1)见解析(2)【解析】(1)先证明平面FBC∥平面EAD,即证明FC∥平面EAD.(2)利用向量法求二面角A-FC-B的余弦值.【详解】(1)证明:∵四边形ABCD与BDEF均为菱形,∴AD∥BC,DE∥BF.∵AD⊄平面FBC,DE⊄平面FBC,∴AD∥平面FBC,DE∥平面FBC,又AD∩DE=D,AD⊂平面EAD,DE⊂平面EAD,∴平面FBC∥平面EAD,又FC⊂平面FBC,∴FC∥平面EAD.(2)连接FO、FD,∵四边形BDEF为菱形,且∠DBF=60°,∴△DBF为等边三角形,∵O为BD中点.所以FO⊥BD,O为AC中点,且F A=FC,∴AC⊥FO,又AC∩BD=O,∴FO⊥平面ABCD,∴OA、OB、OF两两垂直,建立如图所示的空间直角坐标系O-xyz,设AB=2,因为四边形ABCD为菱形,∠DAB=60°,则BD=2,OB=1,OA=OF=,∴O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),F(0,0,),∴=(,0,),=(,1,0),设平面BFC的一个法向量为n=(x,y,z),则有∴令x=1,则n=(1,-,-1),∵BD⊥平面AFC,∴平面AFC的一个法向量为=(0,1,0).∵二面角A-FC-B为锐二面角,设二面角的平面角为θ,∴cosθ=|cos〈n,〉|===,∴二面角A-FC-B的余弦值为.【点睛】(1)本题主要考查空间位置关系的证明,考查二面角的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理计算能力.(2) 二面角的求法方法一:(几何法)找作(定义法、三垂线法、垂面法)证(定义)指求(解三角形).方法二:(向量法)首先求出两个平面的法向量;再代入公式(其中分别是两个平面的法向量,是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“”号)21.已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且是等腰直角三角形.(1)求椭圆的方程;(2)是否存在直线交椭圆于两点,且使为的垂心(垂心:三角形三条高的交点)?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)【解析】试题分析:(1)由题意可求得b=1,a =,则椭圆方程为;(2)假设直线存在,设出直线的斜截式方程,联立直线与椭圆的方程,结合题意和韦达定理可得满足题意的直线存在,直线方程为.试题解析:(1)由△OMF是等腰直角三角形得b=1,a =故椭圆方程为(2)假设存在直线l交椭圆于P,Q两点,且使F为△PQM的垂心设P(,),Q(,)因为M(0,1),F(1,0),故,故直线l的斜率于是设直线l的方程为由得由题意知△>0,即<3,且由题意应有,又故解得或经检验,当时,△PQM不存在,故舍去;当时,所求直线满足题意综上,存在直线l,且直线l的方程为点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,] C .(﹣∞,] D .(﹣∞,]2. 已知双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,且双曲线C 过点P (﹣2,0),则双曲线C 的渐近线方程是( )A .y=±xB .y=±C .xy=±2xD .y=±x3. 已知命题:()(0x p f x a a =>且1)a ≠是单调增函数;命题5:(,)44q x ππ∀∈,sin cos x x >.则下列命题为真命题的是( )A .p q ∧B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧4. 已知f (x )=,则“f[f (a )]=1“是“a=1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .即不充分也不必要条件5. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( ) A .6B .9C .36D .726. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .567. 在下面程序框图中,输入44N =,则输出的S 的值是( )A .251B .253C .255D .260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类. 8. 已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .B .C .(﹣,)D .9. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-10.如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .11.一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化12.满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.二、填空题13.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交;③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).14.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .15.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .16.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.17.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________. 18.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]三、解答题19.实数m 取什么数值时,复数z=m+1+(m ﹣1)i 分别是: (1)实数? (2)虚数? (3)纯虚数?20.已知a>0,a≠1,命题p:“函数f(x)=a x在(0,+∞)上单调递减”,命题q:“关于x的不等式x2﹣2ax+≥0对一切的x∈R恒成立”,若p∧q为假命题,p∨q为真命题,求实数a的取值范围.21.设f(x)=ax2﹣(a+1)x+1(1)解关于x的不等式f(x)>0;(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.22.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.(Ⅰ)求圆C的方程;(Ⅱ)若,求实数k的值;(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.23.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且.(Ⅰ)求角B的大小;(Ⅱ)若b=6,a+c=8,求△ABC的面积.24.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.古县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,所以(x+y)(+)=10+≥10=16,当且仅当时等号成立,所以2m﹣1≤16,解得m;故m的取值范围是(﹣];故选D.2.【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(﹣2,0),可得a=2,所以b=2.双曲线C的渐近线方程是y=±x.故选:A.【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查.3.【答案】D【解析】考点:1、指数函数与三角函数的性质;2、真值表的应用.4.【答案】B【解析】解:当a=1,则f(a)=f(1)=0,则f(0)=0+1=1,则必要性成立,若x≤0,若f(x)=1,则2x+1=1,则x=0,若x>0,若f(x)=1,则x2﹣1=1,则x=,即若f[f(a)]=1,则f(a)=0或,若a>0,则由f(a)=0或1得a2﹣1=0或a2﹣1=,即a2=1或a2=+1,解得a=1或a=,若a≤0,则由f(a)=0或1得2a+1=0或2a+1=,即a=﹣,此时充分性不成立,即“f[f(a)]=1“是“a=1”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可.5.【答案】D【解析】解:设等比数列{a n}的公比为q,∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.则a2a6=9×q6=72.故选:D.6.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a6+a23=2.则{a n}的前28项之和S28==14(a6+a23)=28.故选:C.【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.7.【答案】B8.【答案】A【解析】解:函数f(x)=31+|x|﹣为偶函数,当x≥0时,f(x)=31+x﹣∵此时y=31+x为增函数,y=为减函数,∴当x ≥0时,f (x )为增函数, 则当x ≤0时,f (x )为减函数, ∵f (x )>f (2x ﹣1), ∴|x|>|2x ﹣1|, ∴x 2>(2x ﹣1)2, 解得:x ∈,故选:A .【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.9. 【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 10.【答案】 D【解析】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1: +y 2=1上的点,∴2a=4,b=1,c=;∴|AF 1|+|AF 2|=2a=4,即x+y=4;① 又四边形AF 1BF 2为矩形,∴+=,即x 2+y 2=(2c )2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m ,焦距为2n ,则2m=|AF2|﹣|AF 1|=y ﹣x=2,2n=2c=2,∴双曲线C 2的离心率e===.故选D .【点评】本题考查椭圆与双曲线的简单性质,求得|AF 1|与|AF 2|是关键,考查分析与运算能力,属于中档题.11.【答案】B 【解析】考点:棱柱、棱锥、棱台的体积.12.【答案】D.【解析】二、填空题13.【答案】②④【解析】解:根据题意得:圆心(k﹣1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k:圆心(k﹣1,3k),半径为k2,圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R﹣r=(k+1)2﹣k2=2k+,任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④. 故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.14.【答案】②④⑤【解析】解析:构造函数()()x g x e f x =,()[()()]0x g x e f x f x ''=+>,()g x 在R 上递增, ∴()x f x e -<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误;构造函数()()x f x g x e =,()()()0xf x f xg x e'-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;构造函数2()()g x x f x =,2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误;由()()0f x f x x '+>得()()0xf x f x x '+>,即()()0xf x x'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确;由()()x e xf x f x x '+=得2()()x e xf x f x x-'=,设()()xg x e xf x =-,则()()()xg x e f x xf x ''=--(1)x x x e e e x x x=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.15.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2. 设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n 2=8m=32,可得n=±4,因此,点P 的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.16.【答案】48【解析】0,117.【答案】()【解析】-18.【答案】[]1,1【解析】考点:函数的定义域.三、解答题19.【答案】【解析】解:(1)当m﹣1=0,即m=1时,复数z是实数;(2)当m﹣1≠0,即m≠1时,复数z是虚数;(3)当m+1=0,且m﹣1≠0时,即m=﹣1时,复数z 是纯虚数.【点评】本题考查复数的概念,属于基础题.20.【答案】【解析】解:若p为真,则0<a<1;若q为真,则△=4a2﹣1≤0,得,又a>0,a≠1,∴.因为p∧q为假命题,p∨q为真命题,所以p,q中必有一个为真,且另一个为假.①当p为真,q为假时,由;②当p为假,q为真时,无解.综上,a的取值范围是.【点评】1.求解本题时,应注意大前提“a>0,a≠1”,a的取值范围是在此条件下进行的.21.【答案】【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,即有(ax﹣1)(x﹣1)>0,当a=0时,即有1﹣x>0,解得x<1;当a<0时,即有(x﹣1)(x﹣)<0,由1>可得<x<1;当a=1时,(x﹣1)2>0,即有x∈R,x≠1;当a>1时,1>,可得x>1或x<;当0<a<1时,1<,可得x<1或x>.综上可得,a=0时,解集为{x|x<1};a<0时,解集为{x|<x<1};a=1时,解集为{x|x∈R,x≠1};a>1时,解集为{x|x>1或x<};0<a<1时,解集为{x|x<1或x>}.(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,即为ax2﹣(a+1)x+1>0,即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].则g(﹣1)>0,且g(1)>0,即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,即(x﹣1)(x+2)<0,且x(x﹣1)>0,解得﹣2<x<1,且x>1或x<0.可得﹣2<x<0.故x的取值范围是(﹣2,0).22.【答案】【解析】【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值.【解答】解:(I)设圆心C(a,a),半径为r.因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,…(2分)所以圆C的方程是x2+y2=4.…(4分)(II)方法一:因为,…(6分)所以,∠POQ=120°,…(7分)所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)又,所以k=0.…(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)由题意得:…(7分)因为=x1•x2+y1•y2=﹣2,又,所以x1•x2+y1•y2=,…(8分)化简得:﹣5k2﹣3+3(k2+1)=0,所以k2=0,即k=0.…(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)又根据垂径定理和勾股定理得到,,…(11分)而,即…(13分)当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)方法二:设四边形PMQN的面积为S.当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)当直线l的斜率k≠0时,设则,代入消元得(1+k2)x2+2kx﹣3=0所以同理得到.…(11分)=…(12分)因为,所以,…(13分)当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)23.【答案】【解析】解:(Ⅰ)由2bsinA=a,以及正弦定理,得sinB=,又∵B为锐角,∴B=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由余弦定理b2=a2+c2﹣2accosB,∴a2+c2﹣ac=36,∵a+c=8,∴ac=,∴S △ABC ==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣24.【答案】【解析】解:(Ⅰ)设点P (x ,y )在矩阵M 对应的变换作用下所得的点为P ′(x ′,y ′),则即=,∴M=.又det (M )=﹣3,∴M ﹣1=;(Ⅱ)设点A (x ,y )在矩阵M 对应的变换作用下所得的点为A ′(x ′,y ′),则=M ﹣1=,即,∴代入4x+y ﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.。

相关文档
最新文档