基于桌面级MEM的快速成型技术

合集下载

快速成型技术

快速成型技术
56
金属直接成形:
金属合金粉末的直接烧结。该方法基于SLS (激光选择性烧 结) 工艺。美国Austin大学在这方面进行了大量的研究,并 研制了成形高温材料的烧结设备。
用金属丝线,利用堆焊的方法成形金属零件。英国的 Nottingham 大学正在进行这方面的研究。
用激光切割金属板材,并用激光焊接的方法将各层截面连 接起来。
CT图像
点云
曲面
RP模型
41
基于快速成型的人工生物活性骨骼制造原理
42
生物材料快速成型机
43
网状弹力绷带和弹力网帽
升降颈托 (高分子)
44
(四)微型机械/零件制造的研究开发
采用激光熔化金属粉末材料直接制造金属零件是RP技 术向RM发展的必然趋势,也是世界各国研究开发的热点。 微型部件,薄壁金属零部件,通信产品零部件等难于用传统 方法加工,适合于光化学快速成型。
23
24
(一)产品开发过程中的设计评价和功能测试
25
26
27
检验发动机外壳和管接头的装配情况
28
奇瑞发动机进气管(石膏型铸造 )
29
发动机叶轮
风洞实验/寿命计算和热量计算 30
(二)快速制造模具及复杂金属零件(小批量)
蜡模
金刚砂模
31
制作周期:10天 32
坦克发动机部件
飞机发动机部件
微型光快速成型CAD/CAM技术研究,是我国国防科工 委青年基金项目的一部分。采用激光直接烧结微细金属粉末 技术可以制造三维微型机械。
利用微纳粉末金属材料进行微成型目前尚处于探索阶段。 目前已经成功制作出壁厚只有100μm左右的微小金属件。
45
桌面制造系统是RP领域产品开发的一个热点。RP设备系 统作为CAD系统三维图形输出的外设而被人们接受。而桌面系 统要求体积小,操作、维护简单,噪音、污染少,对环境无特 别要求,且成形速度快,但精度要求适当降低。美国Sanders Prototype 公司推出了廉价的桌面系统Model Maker。

简述快速成型技术的应用领域。

简述快速成型技术的应用领域。

简述快速成型技术的应用领域。

快速成型技术(Rapid Prototyping,RP)是一种通过逐层堆积材料构建三维实体模型的制造技术,它可以快速、精确地制造出产品的样件或模型。

快速成型技术的应用领域非常广泛,下面将从工业设计、医疗领域、建筑设计和教育领域等方面进行简要介绍。

快速成型技术在工业设计领域得到了广泛应用。

在产品设计过程中,通过快速成型技术可以快速制造出产品的样件,供设计师进行实物验证和修正,从而加快产品开发周期。

此外,快速成型技术还可以制造出复杂形状的零部件,为工程师提供更多的设计自由度和创新空间。

快速成型技术在医疗领域也有重要的应用。

医疗器械的研发和生产需要经过严格的验证和测试,而快速成型技术可以快速制造出医疗器械的样件,用于验证其功能和可用性。

此外,快速成型技术还可以制造出个性化医疗器械,如植入式器械和义肢等,为患者提供更好的医疗服务。

快速成型技术在建筑设计领域也有广泛的应用。

传统的建筑模型制作过程需要耗费大量的时间和人力,而快速成型技术可以快速制造出建筑模型,帮助设计师和业主更好地理解和评估建筑设计方案。

此外,快速成型技术还可以制造出建筑构件,如曲面墙板和装饰雕塑等,为建筑设计提供更多的创意和可能性。

快速成型技术在教育领域也有广泛的应用。

通过快速成型技术,学生可以将自己的创意转化为实物,提升创造力和动手能力。

同时,快速成型技术还可以用于制作教学模型和实验装置,帮助学生更好地理解和掌握知识。

快速成型技术在工业设计、医疗领域、建筑设计和教育领域等方面都有广泛的应用。

随着技术的不断发展,快速成型技术将在更多的领域中发挥重要作用,为人们的生活和工作带来更多的便利和创新。

快速成型技术及其在工业生产中的应用

快速成型技术及其在工业生产中的应用

快速成型技术及其在工业生产中的应用快速成型技术是近年来工业生产领域中一个炙手可热的技术,其将传统的制造方式推向了一个全新的境界,对于工业生产的质量、效率、成本的优化均有积极的帮助,在未来的发展中,其前景更加广阔。

一、快速成型技术概述快速成型技术是指通过计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,利用激光、电子束、喷墨等方式将原料制造成零部件的新型制造技术。

目前,应用较广泛的快速成型技术主要有激光烧结成型、光固化成型、激光熔化成型、线切割成型、喷墨成型等。

二、快速成型技术在工业生产中应用1. 工业设计快速成型技术最大的优势是在产品设计阶段,可以快速制造出实际尺寸的零部件,从而帮助实现更好的设计效果。

传统的模型制作需要用手工完成,周期较长、成本高,且不利于修改,而快速成型技术可以快速、准确、灵活地制造出多种模型,帮助设计师实现更好的设计效果。

2. 制造业在工业生产领域中,快速成型技术广泛应用于各种制造行业,如汽车、航空、医疗等。

在汽车行业中,快速成型技术可以快速地生产出各种所需零部件,从而实现零部件的快速替换和更新,提高整车的制造效率和质量,同时,由于快速成型技术可以精确制造各种模具,因此可以生产各种复杂、精密的模具,为汽车制造业带来更大的便利。

在航空行业中,快速成型技术的应用范围也十分广泛,主要用于生产各种复杂、精密的零部件,从而提高飞机的制造效率和质量。

在医疗行业中,快速成型技术可以用于生产各种医疗器械和植入物。

其制造出来的零部件可以依据患者的具体情况进行制造,因此可以更好地满足医疗行业的需求。

3. 艺术设计快速成型技术还可以用于艺术设计领域。

由于其精度和灵活性较高,因此可以造就出更多新颖、独特的艺术品,对于传统艺术的转型和发展有着积极的作用。

由于快速成型技术可以将艺术家的想象力变为现实,因此可以给艺术家带来更多的自由度和创作灵感。

三、快速成型技术发展前景随着科技的不断进步和市场需求的不断增加,快速成型技术在工业生产领域中的应用前景十分广阔。

MEM基于仿生学的工程结构设计优化

MEM基于仿生学的工程结构设计优化

MEM基于仿生学的工程结构设计优化随着科技的发展和对可持续性的追求,越来越多的工程领域开始借鉴生物学中的原理和设计思路,以实现工程结构设计的优化。

其中,MEM(多功能智能材料)基于仿生学的工程结构设计优化成为了研究的热点。

本文将介绍MEM基于仿生学的工程结构设计优化的原理、方法和应用。

一、MEM基本原理MEM(Multifunctional Smart Materials)是指具有多种功能的智能材料,它们能够在外界刺激下实现形状、颜色、光学、力学和导电等方面的可逆调控。

MEM的设计灵感来自于生物界中的优秀结构,例如蜘蛛丝的韧性、莲花叶的自清洁和鸟羽毛的自适应性。

二、仿生学在工程结构设计中的应用1. 结构轻量化:通过仿生学的思路,可以借鉴骨骼结构和竹鞭的机械优势,将其应用于工程结构的设计,实现轻量化。

通过优化结构的几何形状和材料的分布,可以提高结构的强度和刚度,并降低结构的重量和材料的使用量。

2. 自适应性和自愈合:仿生学的原理可以被用于设计结构自适应性和自愈合能力,以增强结构的可靠性和耐久性。

例如,借鉴螃蟹壳的结构,工程结构可以在受到外力时发生形变,以吸收能量和防止破裂。

3. 纳米结构优化:利用纳米材料的特性,结合仿生学设计原则,可以实现对工程结构的纳米级优化。

通过将纳米材料嵌入结构中,可以改善结构的机械、热学和光学性能。

三、MEM基于仿生学的工程结构设计方法1. 结构拓扑优化:通过仿生学的思路,结合数学模型和优化算法,可以对工程结构的拓扑进行优化,以提高结构的性能。

例如,通过模拟骨骼的生长过程,优化结构的拓扑形状,减少应力集中并提高结构的强度。

2. 材料优化和组合:结合仿生学的思想,研究者可以通过选择合适的材料和设计合理的组合方式,实现工程结构的性能优化。

例如,通过嵌入纳米材料或设计多层材料结构,可以实现优化的力学性能和光学性能。

3. 结构形状优化:仿生学的原理可以被应用于工程结构的形状优化,以提高结构的体积效率和力学性能。

机械设计中的快速成型技术有哪些

机械设计中的快速成型技术有哪些

机械设计中的快速成型技术有哪些在当今的机械设计领域,快速成型技术正发挥着日益重要的作用。

它为设计师和工程师们提供了一种高效、精确且创新的方法来将概念转化为实际的产品模型。

那么,究竟有哪些常见的快速成型技术呢?首先,我们来谈谈 3D 打印技术。

这是目前应用最为广泛的快速成型技术之一。

它通过逐层堆积材料的方式来构建物体。

常见的 3D 打印材料包括塑料、金属、陶瓷等。

根据不同的技术原理,3D 打印又可以分为熔融沉积成型(FDM)、光固化成型(SLA)、选择性激光烧结(SLS)等多种类型。

熔融沉积成型(FDM)是一种相对简单且成本较低的3D 打印技术。

它将丝状的热塑性材料通过加热喷头挤出,按照预定的路径逐层堆积,形成三维物体。

这种技术适用于制作一些对精度要求不是特别高,但需要快速获得原型的产品,比如简单的机械零件、模型等。

光固化成型(SLA)则利用紫外线激光照射液态光敏树脂,使其逐层固化成型。

由于其能够实现较高的精度和光滑的表面质量,常用于制作具有复杂形状和精细结构的零件,如珠宝模具、医疗器械部件等。

选择性激光烧结(SLS)则适用于打印金属、陶瓷等粉末材料。

激光束按照模型的切片信息有选择地烧结粉末,未被烧结的粉末则起到支撑作用。

这种技术能够制造出具有高强度和良好机械性能的零件。

除了 3D 打印,立体光刻技术(Stereolithography)也是一种重要的快速成型方法。

它使用紫外线激光逐层固化液态光敏树脂,从而构建出三维物体。

与 3D 打印中的光固化成型技术相似,但在精度和细节表现上可能更具优势。

还有一种常见的快速成型技术是分层实体制造(LOM)。

它将薄片材料(如纸、塑料薄膜等)逐层粘结在一起,然后通过激光切割或刀具切割出零件的轮廓。

这种技术的优点是成型速度快,适用于制作大型零件的原型。

数控加工(CNC)虽然不是严格意义上的快速成型技术,但在机械设计中也经常被用于快速制造零件。

通过计算机控制机床对材料进行切削、钻孔、铣削等加工操作,可以获得高精度的零件。

快速成型的技术ppt课件

快速成型的技术ppt课件
的。E.M.Sachs于1989年申请了3DP(Three-Dimensional Printing) 专利,该专利是非成形材料微滴喷射成形范畴的核心专利之一。3DP 工艺与SLS工艺类似,采用粉末材料成形,如陶瓷粉末,金属粉末。 所不同的是材料粉末不是通过烧结连接起来的,而是通过喷头用粘接 剂(如硅胶)将零件的截面“印刷”在材料粉末上面。用粘接剂粘接的 零件强度较低,还须后处理。具体工艺过程如下:上一层粘结完毕后, 成型缸下降一个距离(等于层厚:0.013~0.1mm),供粉缸上升一高 度,推出若干粉末,并被铺粉辊推到成型缸,铺平并被压实。喷头在 计算机控制下,按下一建造截面的成形数据有选择地喷射粘结剂建造 层面。铺粉辊铺粉时多余的粉末被集粉装置收集。如此周而复始地送 粉、铺粉和喷射粘结剂,最终完成一个三维粉体的粘结。未被喷射粘 结剂的地方为干粉,在成形过程中起支撑作用,且成形结束后,比较 容易去除。
• 该工艺的特点是成形速度快,成形材料价格低,适合做 桌面型的快速成形设备。并且可以在粘结剂中添加颜料, 可以制作彩色原型,这是该工艺最具竞争力的特点之一, 有限元分析模型和多部件装配体非常适合用该工艺制造。 缺点是成形件的强度较低,只能做概念型使用,而不能做 功能性试验。
• 三维印刷(3DP)--高速多彩的快速成型工艺
料(ABS等)、陶瓷粉、金属粉、砂等,可以在航空,机 械,家电,建筑,医疗等各个领域应用。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
• 主要工艺:

RP技术结合了众多当代高新技术:计算机辅助设计、
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 )-制作大型铸件的快速成型工艺

快速成型技术概述

快速成型技术概述

快速成型技术概述现代科学技术的飞速进展,尤其是微电子、计算机、数控技术、激光技术、材料科学的进步为制造技术的变革与进展制造了前所未有的机遇,使得机械制造能够突破传统的制造模式,进展出一项崭新的制造技术一一,快速成型技术。

诞生背景快速成型技术的诞生主要有两方面的缘由:1)市场拉动市场全球化和用户需求共性化为先进制造技术提出了新的要求,随着市场一体化的进展,市场竞争越来越激烈,产品的开发速度成为竞争的主要冲突。

同时用户需求多样化的趋势日益明显,因此要求产品制造技术有较强的敏捷性,在不增加成本的前提下能够以小批量生产甚至单件生产产品。

2)技术推动新技术的进展为快速成型技术的产生奠定了技术基础,信息技术、计算机技术的进展、CAD/CAM技术的进展、材料科学的进展一新材料的消失、激光技术的进展为快速成型技术的产生和进展奠定了技术基础。

快速成型技术就是在这样的社会背景下在80年月后期产生于美国并快速扩展到欧洲和日本。

由于即技术的成型原理突破了传统加工中的塑性成形(如锻、冲、拉伸、铸、注塑加工等和切削成形的工艺方法,可以在没有工装夹具或模具的条件下快速制造出任意简单外形又具有肯定功能的三维实体原型或零件,因此被认为是近二十年来制造技术领域的一次重大突破。

基本原理与特征快速成型技术是一种将原型(或零件、部件)的几何外形!结构和所选材料的组合信息建立数字化描述模型,之后把这些信息输出到计算机掌握的机电集成制造系统进行材料的添加、加工,通过逐点、逐线、逐面进行材料的三维堆砌成型, 再经过必要的处理,使其在外观、强度和性能等方面达到设计要求,实现快速!精确地制造原型或实际零件、部件的现代化方法。

快速成型技术的特征为:(1)可以制造出任意简单的三维几何实体;(2)CAD模型直接驱动;(3)成形设施无需专用夹具或工具;(4)成形过程中无人干预或较少干预;快速成型技术的优势(1)响应速度快:与传统的加工技术相比,RP技术实现了CAD模型直接驱动, 成形时间短,从产品CAD或从实体反求获得数据到制成原型,一般只需要几小时至几十个小时,速度比传统成型加工方法快得多"这项技术尤其适于新产品的开发,适合小批量、简单(如凹槽、凸肩和空心嵌套等)、异形产品的直接生产而不受产品外形简单程度的限制,还改善了设计过程中的人机沟通,使产品设计和模具生产并行,从而缩短了产品设计、开发的周期,加快了产品更新换代的速度,大大地降低了新产品的开发成本和企业研制新产品的风险。

快速成型制造的几种典型工艺与后处理

快速成型制造的几种典型工艺与后处理

应用
汽车、建筑等领域。
选择性激光烧结(SLS)工艺
原理
01
选择性激光烧结技术采用粉末材料作为原料,通过计算机控制
激光束对材料进行选择性烧结,最终得到三维实体。
特点
02
选择性激光烧结技术适合制作金属零件,具有较高的强度和硬
度。
应用
03
航空航天、汽车等领域。
三维打印(3DP)工艺
原理
三维打印技术采用粉末或液体材料作为原料,通过计算机控制喷嘴 将材料逐层喷射到成型区,最终得到三维实体。
用于制造轻量化结构件和复杂 零部件。
新产品开发
用于制造产品原型,方便进行 设计验证和功能测试。
医疗器械制造
用于制造医疗设备和器械,如 手术器械、假肢等。
教育领域
用于教学和实验,让学生更好 地理解产品设计、制造和材料 科学等方面的知识。
02
几种典型的快速成型工艺
立体光刻(SL)工艺
原理
立体光刻技术采用光敏树脂作为 原料,通过计算机控制紫外激光 束照射到光敏树脂表面,逐层固
在汽车制造领域,快速成型制造技术可以用于生产汽车设计原型,这些原型可以用于测试、修改等。
应用案例四:文化创意领域
艺术品
快速成型制造技术可以用于生产艺术品,如雕塑、装置艺术等。
玩具
在文化创意领域,快速成型制造技术可以用于生产玩具,这些玩具可以用于娱乐、教育等。
THANKS。
应用案例二:医疗领域
医疗器械
快速成型制造技术可以用于生产医疗器械,如手术器械、牙 科器械等。
人体模型
在医疗领域,快速成型制造技术可以用于生产人体模型,这 些模型可以用于手术模拟、康复训练等。
应用案例三:汽车制造领域
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档