数学归纳法
数学归纳法

1、2、3;1、2、3;1、2、3;1、…(mod4 )即
猜想: (k≥0),下面证明之
证明当k=0时,由分析可知结论成立
假设对于k结论成立,即
从而可知
那么对于k+1时, ,
即对于k+1时结论成立
所以由数学归纳法知, , 模4不同余于0,所以 ,
数学归纳法
一、数学归纳法
最小数原理:已知 ,则 , ,使得 。
证明若 是有限集,且 ,那么 中元素可以按小到大的顺序排列,取 为其中最小的那个元素,则 , ,使得 。
若 为无限集,且 ,那么 是可列的,因而 中元素可以按小到大的顺序列出,取 为其中最小的那个元素,则 , ,使得 。
综上所述,若 ,则 , ,使得 。
因为 ,j=1,2,…,k,所以
又因为 ,故 。
解得 或 (舍去).
所以n=k+1时命题也成立.
从而, ,命题成立。
例5将质数由小到大编上序号: , , ,…求证:第 个质数 。
证当 时, ,命题成立。
假设 时命题成立,即 ,
将上面这 个不等式相乘,得
所以
因为 , ,…, 都不能整除 ,所以 的质因数 不可能是 , ,…, ,只能大于或等于 ,于是有
由 的假设可知, ,P(n)成立。
再由定理条件 ,命题P(n)成立,能推出 时,命题P(n)成立知,
,命题P(n)成立。
这与B中定有最小正整数 , ,使得 不成立矛盾。
故原假设不成立。即定理结论成立。
特别的:
(1)第一数学归纳法
取 ,当n=1(即 )时,P(1)成立,假如n=k(即 )时,P(k)成立,能推出n=k+1( )时,P(k+1)成立;则对 ,命题P(n)成立。
数学中的数学归纳法

数学中的数学归纳法数学归纳法是数学中一种常用的证明方法,它通过已知某个命题成立和成立条件,则可以推导出该命题对所有符合条件的情况都成立。
数学归纳法在数学领域中发挥着重要的作用,本文将介绍数学归纳法的基本原理和应用。
一、数学归纳法的基本原理数学归纳法的基本原理可以归纳为三个步骤:基础步骤、归纳步骤和归纳假设。
1. 基础步骤:首先要证明当n取某个特定值时,命题成立。
这是数学归纳法的起点,称为基础步骤。
通常情况下,我们会取n=1或n=0作为基础步骤。
2. 归纳步骤:接下来,假设当n=k时,命题成立,即我们假设命题对于某个值k成立。
然后,使用这个假设来证明当n=k+1时,命题也成立。
这一步骤称为归纳步骤。
3. 归纳假设:在归纳步骤中,我们假设命题对于n=k成立,这被称为归纳假设。
通过归纳假设,我们可以推导出命题对于n=k+1的情况也成立。
归纳法的基本原理就是通过基础步骤、归纳步骤和归纳假设,逐步推导出命题的成立。
二、数学归纳法的应用数学归纳法不仅仅是一种证明方法,它也被广泛应用于其他数学问题的解决中。
以下是数学归纳法的一些典型应用。
1. 证明整数性质:数学归纳法常被用来证明某个整数性质对于所有正整数成立。
例如,我们可以利用数学归纳法证明所有正整数的和公式:1 + 2 + 3 + ... + n = n(n + 1) / 2。
2. 证明不等式:数学归纳法还可以应用于证明不等式的成立。
例如,我们可以利用数学归纳法证明对于所有正整数n,2^n > n^2。
3. 证明命题等式:除了整数性质和不等式,数学归纳法也可以应用于证明命题等式的成立。
例如,我们可以利用数学归纳法证明斐波那契数列的通项公式:F(n) = (φ^n - (1-φ)^n) / √5,其中φ为黄金分割率。
数学归纳法作为一种重要的证明方法,广泛应用于数学的各个领域。
它能够简化证明过程,使得证明更加直观和清晰。
总结:数学归纳法是一种重要的证明方法,它通过基础步骤、归纳步骤和归纳假设,逐步推导出命题的成立。
数学归纳法

1、归纳法:
由特殊的事例推出一般结论的推理方法叫做归纳法。
完全归纳法:在逐步考察某个事例的所有可能的情况下 推出结论;
不完全归纳法:在考察某个事例的部分情况下推出结论 分析: (1)归纳法是一种特殊到一般的数学思想方法; (2)完全归纳法推出的结论一定正确,而不完全 归纳法推断出的结论有时不正确
2 2
2 2
B
2
)
1
2
(k C. 1 )
D. ( k 1 )[ 2 ( k 1 ) 3
1]
Ex:在数归法中,证明了若n=k时命题成立,则n=k+1时 命题也成立。现已知n=4时命题不成立,则n=( 3 )时 命题必不成立。
Ex:设 f ( x ) 是定义在正整数集上的函数,且
“当
f (k ) k
D.n 1 2
Ex:用数学归纳法证明
1 2 ( n 1) n ( n 1) 2 1
2 2 2 2 2 2 2
n(2 n 1)
2
时,由 n
k 的假设到证明 n k 1
3
时,等式左边应添加的式子是(
(k (k A. 1 ) 2 k B. 1) k
2、数学归纳法及其证明步骤
数学归纳法是证明与自然数n有关的命题 它的步骤如下: (1)证明当n取第一个值n0时命题成立; (奠基步) (2)假设当n=k(kN*, n≥n0 )时命题成立, 证明当n=k+1时命题也成立 (假设递推步) 由(1)和(2)得:该命题对n≥n0 成立 分析: (1)数学归纳法适用范围仅限于有关自然数的命题。 整数、有理数和实数等有关的命题都不适用; (2)数学归纳法的两个步骤缺一不可。
数学归纳法

A、1
B、1 a
C、1 a a2
D、1 a a2 a3
2、用数学归纳法证明: 1 1 1
1
24 46 68
2n (2n 2)
n 4(n
1)
时,从k到k+1时左边需要增添的项为__1_______
4(k 1)(k 2)
3、用数学归纳法证明: 当n N时,1 2 22 23 25n1是31 的倍数,当n=1时,原式为 _____________
7、用数学归纳法证明:
1 1 1 1 234
1 2n 1
n(n
N
, 且n
1)时,
不等式在n=k 1时的形式是 ____________
1
1 2
1 3
1 4
1 2k 1
1 2k
1 2k 1
1 2k1 1
共有多少项呢? 2k 个项
例1已知数列
1 ,1 , 1 , 1×4 4×7 7×10
,
1
则当n=k+1时,
12 + 22 + … +
k2
+
(k + 1)2
13 35
(2k 1)(2k +1) (2k +1)(2k + 3)
= k2 + k +
(k + 1)2
= k(k + 1)(2k + 3)+ 2(k + 1)2
4k + 2 (2k +1)(2k + 3)
2(2k +1)(2k + 3)
k
1
3k 1 (3k 1)(3k 4)
3k 2 4k 1 (3k 1)(3k 4)
数学归纳法

用数学归纳法需注意:
1.第一步是奠基步骤,是命题论证的基础,称之为 归纳 基础。 2.第二步是归纳步骤,是推理的依据,是判断命题的正确 性能否由特殊推广到一般,它反映了无限递推关系,其中 “假设n=k时成立” 称为归纳假设(注意是“假设”,而 不是确认命题成立)。 3.第三步是总体结论,也不可少。
k (2k 2 1) Sk=12+22+…+k2+(k-1)2+ …+22+12 , 3
=[12+22+…+k2+ (k-1)2 …+22+12] +(k+1)2+ k2 2 2+2k+1 = k ( 2k 1) + 2k2+2k+1 =Sk+2k 3 1 1 3+k+6k2+6k+3) = [(2k3+2)+6(k2+k)+(k+1)] = 3 (2k 3 = 1 (k+1)(2k2+4k+2+1) = 1 (k+1)[2(k+1)2+1],
3
∴ 当n=k+1时公式仍成立。
3
由1)、 2)可知,对一切n∈N ,均有
n( 2n 2 1) Sn 3
。
练习:
1 a n2 1、用数学归纳法证明1 a a a a 1 a (a≠1),在 1+a+a2 验证n=1等式成立时 ,左边应取的项是__________.
例2、求证:(n+1)(n+2)…(n+n)=2n• 1• 3•… •(2n-1)
数学归纳法

数学归纳法1.归纳法归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明. 2.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行:(1) (归纳奠基)证明当n 取第一个值n0(n0∈N*)时命题成立;(2) (归纳递推)假设n =k(k≥n0,k ∈N*)时命题成立,证明当n =k +1时命题也成立. 2.应用数学归纳法时注意几点:(1) 用数学归纳法证明的对象是与正整数n 有关的命题. (2) 在用数学归纳法证明中,两个基本步骤缺一不可.(3) 步骤(2)的证明必须以“假设n =k(k≥n0,k ∈N*)时命题成立”为条件.题型一 用数学归纳法证明等式例1 用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *).证明 (1)当n =1时,左边=12=1,右边=1×(1+1)×(2×1+1)6=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即12+22+…+k 2=k (k +1)(2k +1)6,那么,12+22+…+k 2+(k +1)2=k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6,即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.总结:用数学归纳法证明与正整数有关的一些等式命题,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关.由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.跟踪训练1 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).证明 当n =1时,左边=1-12=12,右边=12,所以等式成立.假设n =k(k ∈N*)时,1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k 成立.那么当n =k +1时,1-12+13-14+…+12k -1-12k +12(k +1)-1-12(k +1)=1k +1+1k +2+…+12k +12k +1-12(k +1)=1k +2+1k +3+…+12k +12k +1+1k +1-12(k +1)]=1(k +1)+1+1(k +1)+2(k +1)+k 2(k +1)综上所述,对于任何n ∈N*,等式都成立.题型二 用数学归纳法证明不等式思考 用数学归纳法证明不等式的关键是什么?答 用数学归纳法证明不等式,首先要清楚由n =k 到n =k +1时不等式两边项的变化;其次推证中可以利用放缩、比较、配凑分析等方法,利用归纳假设证明n =k +1时的结论. 例2 已知数列{b n }的通项公式为b n =2n ,求证:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1都成立. 证明 由b n =2n ,得b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n .下面用数学归纳法证明不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n >n +1成立.(1)当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.(2)假设当n =k (k ≥1且k ∈N *)时不等式成立, 即b 1+1b 1·b 2+1b 2·…·b k +1b k =32·54·76·…·2k +12k>k +1成立. 则当n =k +1时,左边=b 1+1b 1·b 2+1b 2·…·b k +1b k ·b k +1+1b k +1=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=(2k +3)24(k +1)=4k 2+12k +94(k +1)>4k 2+12k +84(k +1)=4(k 2+3k +2)4(k +1)=4(k +1)(k +2)4(k +1)=k +2=(k +1)+1.所以当n =k +1时,不等式也成立.由(1)、(2)可得不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n >n +1对任意的n ∈N *都成立.总结: 用数学归纳法证明不等式时要注意两凑:一凑归纳假设;二凑证明目标.在凑证明目标时,比较法、综合法、分析法都可选用.跟踪训练2 用数学归纳法证明122+132+142+…+1n 2<1-1n (n ≥2,n ∈N *).证明 当n =2时,左式=122=14,右式=1-12=12,因为14<12,所以不等式成立.假设n =k (k ≥2,k ∈N *)时,不等式成立,即122+132+142+…+1k 2<1-1k,则当n =k +1时,122+132+142+…+1k 2+1(k +1)2<1-1k +1(k +1)2=1-(k +1)2-k k (k +1)2=1-k 2+k +1k (k +1)2<1k (k +1)k +1综上所述,对任意n ≥2的正整数,不等式都成立.题型三 利用数学归纳法证明整除问题 例3 求证:a n +1+(a +1)2n-1能被a 2+a +1整除,n ∈N *.证明 (1)当n =1时,a 1+1+(a +1)2×1-1=a 2+a +1,命题显然成立. (2)假设当n =k (k ∈N *)时,a k +1+(a +1)2k-1能被a 2+a +1整除,则当n =k +1时,a k +2+(a +1)2k +1=a ·a k +1+(a +1)2·(a +1)2k -1=aa k +1+(a +1)2k -1]+(a +1)2(a +1)2k -1-a (a +1)2k-1=aa k +1+(a +1)2k -1]+(a 2+a +1)(a +1)2k -1.由归纳假设,上式中的两项均能被a 2+a +1整除,故n =k +1时命题成立.由(1)(2)知,对任意n ∈N *,命题成立.总结: 证明整除性问题的关键是“凑项”,先采用增项、减项、拆项和因式分解等手段,凑成n =k 时的情形,再利用归纳假设使问题获证. 跟踪训练3 证明x 2n -1+y 2n -1(n ∈N *)能被x +y 整除.证明 (1)当n =1时,x 2n -1+y 2n -1=x +y ,能被x +y 整除.(2)假设当n =k (k ∈N *)时,命题成立,即x 2k -1+y 2k-1能被x +y 整除.那么当n =k +1时,x 2(k+1)-1+y 2(k+1)-1=x 2k +1+y 2k +1=x 2k-1+2+y 2k-1+2=x 2·x 2k -1+y 2·y 2k -1+x 2·y 2k-1-x 2·y 2k -1=x 2(x 2k -1+y 2k -1)+y 2k -1(y 2-x 2).∵x 2k -1+y 2k -1能被x +y 整除,y 2-x 2=(y +x )(y -x )也能被x +y 整除,∴当n =k +1时,x 2(k +1)-1+y 2(k+1)-1能被x +y 整除.由(1),(2)可知原命题成立.题型四 用数学归纳法证明数列问题例4 已知数列11×4,14×7,17×10,…,1(3n -2)(3n +1),…,计算S 1,S 2,S 3,S 4,根据计算结果,猜想S n 的表达式,并用数学归纳法进行证明.解 S 1=11×4=14;S 2=14+14×7=27;S 3=27+17×10=310;S 4=310+110×13=413.可以看出,上面表示四个结果的分数中,分子与项数n 一致,分母可用项数n 表示为3n +1. 于是可以猜想S n =n3n +1.下面我们用数学归纳法证明这个猜想.(1)当n =1时,左边=S 1=14,右边=n 3n +1=13×1+1=14,猜想成立.(2)假设当n =k (k ∈N *)时猜想成立,即11×4+14×7+17×10+…+1(3k -2)(3k +1)=k3k +1,那么,11×4+14×7+17×10+…+1(3k -2)(3k +1)+1[3(k +1)-2][3(k +1)+1]=k 3k +1+1(3k +1)(3k +4)=3k 2+4k +1(3k +1)(3k +4)=(3k +1)(k +1)(3k +1)(3k +4)=k +13(k +1)+1,所以,当n =k +1时猜想也成立.根据(1)和(2),可知猜想对任何n ∈N *都成立.总结: 归纳法分为不完全归纳法和完全归纳法,数学归纳法是“完全归纳”的一种科学方法,对于无穷尽的事例,常用不完全归纳法去发现规律,得出结论,并设法给予证明,这就是“归纳——猜想——证明”的基本思想.跟踪训练4 数列{a n }满足S n =2n -a n (S n 为数列{a n }的前n 项和),先计算数列的前4项,再猜想a n ,并证明.解 由a 1=2-a 1,得a 1=1;由a 1+a 2=2×2-a 2,得a 2=32;由a 1+a 2+a 3=2×3-a 3,得a 3=74;由a 1+a 2+a 3+a 4=2×4-a 4,得a 4=158.猜想a n =2n-12n -1.下面证明猜想正确:(1)当n =1时,由上面的计算可知猜想成立.(2)假设当n =k 时猜想成立,则有a k =2k -12k -1,当n =k +1时,S k +a k +1=2(k +1)-a k +1,∴a k +1=122(k +1)-S k ]=k +1-12(2k -2k -12k -1)=2k +1-12(k +1)-1,所以,当n =k +1时,等式也成立.由(1)和(2)可知,a n =2n -12n -1对任意正整数n 都成立.题型五 利用数学归纳法证明几何问题思考 用数学归纳法证明几何问题的关键是什么?答 用数学归纳法证明几何问题的关键是“找项”,即几何元素从k 个变成k +1个时,所证的几何量将增加多少,还需用到几何知识或借助于几何图形来分析,实在分析不出来的情况下,将n =k +1和n =k 分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.例5 平面内有n (n ∈N *,n ≥2)条直线,其中任何两条不平行,任何三条不过同一点,证明:交点的个数f (n )=n (n -1)2.证明 (1)当n =2时,两条直线的交点只有一个,又f (2)=12×2×(2-1)=1,∴当n =2时,命题成立.(2)假设n =k (k >2)时,命题成立,即平面内满足题设的任何k 条直线交点个数f (k )=12k (k -1),那么,当n =k +1时,任取一条直线l ,除l 以外其他k 条直线交点个数为f (k )=12k (k -1),l 与其他k 条直线交点个数为k ,从而k +1条直线共有f (k )+k 个交点,即f (k +1)=f (k )+k =12k (k -1)+k =12k (k -1+2)=12k (k +1)=12(k +1)(k +1)-1],∴当n =k +1时,命题成立.由(1)(2)可知,对任意n ∈N *(n ≥2)命题都成立.总结: 用数学归纳法证明几何问题时,一要注意数形结合,二要注意有必要的文字说明. 跟踪训练5 有n 个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n 个圆把平面分成f (n )=n 2-n +2部分.证明 (1)n =1时,分为2块,f (1)=2,命题成立;(2)假设n =k (k ∈N *)时,被分成f (k )=k 2-k +2部分;那么当n =k +1时,依题意,第k +1个圆与前k 个圆产生2k 个交点,第k +1个圆被截为2k 段弧,每段弧把所经过的区域分为两部分,所以平面上净增加了2k 个区域. ∴f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2-(k +1)+2,即n =k +1时命题成立,由(1)(2)知命题成立.注意:在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1;(2)递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障;(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明. 练习1.若命题A (n )(n ∈N *)在n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( ) A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确答案 C 解析 由已知得n =n 0(n 0∈N *)时命题成立,则有n =n 0+1时命题成立;在n =n 0+1时命题成立的前提下,又可推得n =(n 0+1)+1时命题也成立,依此类推,可知选C. 2.用数学归纳法证明“1+a +a 2+…+a 2n +1=1-a 2n +21-a(a ≠1)”.在验证n =1时,左端计算所得项为( ) A .1+aB .1+a +a 2C .1+a +a 2+a 3D .1+a +a 2+a 3+a 4 答案 C 解析 将n =1代入a 2n+1得a 3,故选C.3.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下: (1)当n =1时,左边=1,右边=21-1=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n ∈N *,等式都成立.上述证明的错误是________.答案 未用归纳假设 解析 本题在由n =k 成立,证n =k +1成立时,应用了等比数列的求和公式,而未用上假设条件,这与数学归纳法的要求不符. 4.用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *)证明 (1)当n =1时,左式=1+12,右式=12+1,所以32≤1+12≤32,命题成立.(2)假设当n =k (k ∈N *)时,命题成立,即1+k 2≤1+12+13+…+12k ≤12+k ,则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1),即当n =k +1时,命题成立.由(1)和(2)可知,命题对所有的n ∈N *都成立. 课后练习1.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2 (n ∈N *),验证n =1时,左边应取的项是( ) A .1 B .1+2 C .1+2+3D .1+2+3+4答案 D 解析 等式左边的数是从1加到n +3. 当n =1时,n +3=4,故此时左边的数为从1加到4.2.用数学归纳法证明“2n >n 2+1对于n ≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取( ) A .2 B .3 C .5D .6答案 C 解析 当n 取1、2、3、4时2n >n 2+1不成立,当n =5时,25=32>52+1=26,第一个能使2n >n 2+1的n 值为5,故选C.3.已知f (n )=1+12+13+…+1n (n ∈N *),证明不等式f (2n )>n 2时,f (2k +1)比f (2k )多的项数是( )A .2k-1项B .2k+1项C .2k 项D .以上都不对答案 C 解析 观察f (n )的表达式可知,右端分母是连续的正整数,f (2k )=1+12+…+12k ,而f (2k +1)=1+12+…+12k +12k +1+12k +2+…+12k +2k .因此f (2k +1)比f (2k )多了2k 项. 4.用数学归纳法证明不等式1n +1+1n +2+…+12n >1124(n ∈N *)的过程中,由n =k 递推到n =k+1时,下列说法正确的是( ) A .增加了一项12(k +1)B .增加了两项12k +1和12(k +1)C .增加了B 中的两项,但又减少了一项1k +1D .增加了A 中的一项,但又减少了一项1k +1答案 C 解析 当n =k 时,不等式左边为1k +1+1k +2+…+12k ,当n =k +1时,不等式左边为1k +2+1k +3+…+12k +12k +1+12k +2,故选C.5.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( ) A .(k +3)3 B .(k +2)3 C .(k +1)3D .(k +1)3+(k +2)3答案 A 解析 假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.6.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *).依次计算出S 1,S 2,S 3,S 4后,可猜想S n 的表达式为________________. 答案 S n =2n n +1解析 S 1=1,S 2=43,S 3=32=64,S 4=85,猜想S n =2nn +1.7.已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1a n ,用数学归纳法证明:a n =n-n -1.证明 (1)当n =1时,a 1=S 1=12(a 1+1a 1),∴a 21=1(a n >0),∴a 1=1,又1-0=1,∴n =1时,结论成立.(2)假设n =k (k ∈N *)时,结论成立,即a k =k -k -1. 当n =k +1时,a k +1=S k +1-S k =12(a k +1+1a k +1)-12(a k +1a k )=12(a k +1+1a k +1)-12(k -k -1+1k -k -1)=12(a k +1+1a k +1)-k . ∴a 2k +1+2ka k +1-1=0,解得a k +1=k +1-k (a n >0),∴n =k +1时,结论成立. 由(1)(2)可知,对n ∈N *都有a n =n -n -1.8.对于不等式n 2+n ≤n +1 (n ∈N *),某学生的证明过程如下:①当n =1时,12+1≤1+1,不等式成立.②假设n =k (n ∈N *)时,不等式成立,即k 2+k ≤k +1,则n =k +1时,(k +1)2+(k +1)=k 2+3k +2<k 2+3k +2+(k +2)=(k +2)2=(k +1)+1,所以当n =k +1时,不等式成立,上述证法( ) A .过程全部正确 B .n =1验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确答案D 解析 从n =k 到n =k +1的推理中没有使用归纳假设,不符合数学归纳法的证题要求. 9.用数学归纳法证明122+132+…+1(n +1)2>12-1n +2.假设n =k 时,不等式成立.则当n =k +1时,应推证的目标不等式是__________________________. 答案122+132+…+1k 2+1(k +1)2+1(k +2)2>12-1k +3解析 观察不等式中的分母变化知,122+132+…+1k 2+1(k +1)2+1(k +2)2>12-1k +3. 10.证明:62n -1+1能被7整除(n ∈N *).证明 (1)当n =1时,62-1+1=7能被7整除.(2)假设当n =k (k ∈N *)时,62k -1+1能被7整除.那么当n =k +1时,62(k+1)-1+1=62k-1+2+1=36×(62k -1+1)-35.∵62k -1+1能被7整除,35也能被7整除,∴当n =k +1时,62(k +1)-1+1能被7整除.由(1),(2)知命题成立.11.求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N *).证明 (1)当n =2时,左边=13+14+15+16>56,不等式成立.(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即1k +1+1k +2+…+13k >56.则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +(13k +1+13k +2+13k +3-1k +1)>56+(13k +1+13k +2+13k +3-1k +1)>56+(3×13k +3-1k +1)=56,所以当n =k +1时不等式也成立.由(1)和(2)可知,原不等式对一切n ≥2,n ∈N *均成立. 12.已知数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n +2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明.解 当n ≥2时,a n =S n -S n -1=S n +1S n +2.∴S n =-1S n -1+2(n ≥2).则有:S 1=a 1=-23,S 2=-1S 1+2=-34,S 3=-1S 2+2=-45,S 4=-1S 3+2=-56,由此猜想:S n =-n +1n +2(n ∈N *).用数学归纳法证明:(1)当n =1时,S 1=-23=a 1,猜想成立. (2)假设n =k (k ∈N *)猜想成立,即S k =-k +1k +2成立,那么n =k +1时,S k +1=-1S k +2=-1-k +1k +2+2=-k +2k +3=-(k +1)+1(k +1)+2.即n =k +1时猜想成立.由(1)(2)可知,对任意正整数n ,猜想结论均成立.13.已知递增等差数列{a n }满足:a 1=1,且a 1,a 2,a 4成等比数列. (1)求数列{a n }的通项公式a n ;(2)若不等式(1-12a 1)·(1-12a 2)·…·(1-12a n )≤m2a n +1对任意n ∈N *,试猜想出实数m 的最小值,并证明.解 (1)设数列{a n }公差为d (d >0),由题意可知a 1·a 4=a 22,即1(1+3d )=(1+d )2,解得d =1或d =0(舍去).所以a n =1+(n -1)·1=n .(2)不等式等价于12·34·56·…·2n -12n ≤m 2n +1,当n =1时,m ≥32;当n =2时,m ≥358;而32>358,所以猜想,m 的最小值为32. 下面证不等式12·34·56·…·2n -12n ≤322n +1对任意n ∈N *恒成立.下面用数学归纳法证明:证明 (1)当n =1时,12≤323=12,命题成立.(2)假设当n =k 时,不等式,12·34·56·…·2k -12k ≤322k +1成立,当n =k +1时,12·34·56·…·2k -12k ·2k +12k +2≤322k +1·2k +12k +2,只要证322k +1·2k +12k +2≤322k +3,只要证2k +12k +2≤12k +3,只要证2k +12k +3≤2k +2,只要证4k 2+8k +3≤4k 2+8k +4,只要证3≤4,显然成立.所以,对任意n ∈N *,不等式12·34·56·…·2n -12n ≤322n +1恒成立.。
数学归纳法

第一节数学归纳法一、基本知识概要:1.数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(k∈N*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法2. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.3.用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n0结论正确;(2)假设当n=k(k∈N*,且k≥n0)时结论正确,证明当n=k+1时结论也正确.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确递推基础不可少,归纳假设要用到,结论写明莫忘掉.1.用数学归纳法证题要注意下面几点:①证题的两个步骤缺一不可,要认真完成第一步的验证过程;②成败的关键取决于第二步对1n的证明:1)突破对“归纳=k+假设”的运用;2)用好命题的条件;3)正确选择与命题有关的知识及变换技巧.2.中学教材内,用数学归纳法证明的问题的主要题型有“等式问题”、“整除问题”、“不等式问题”等,要积累这几种题型的证题经验.3.必须注意,数学归纳法不是对所有“与正整数n 有关的命题”都有效.基础题:1.已知n 为正偶数,用数学归纳法证明 )214121(2114131211nn n n +++++=-++-+- 时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证 (B )A .1+=k n 时等式成立B .2+=k n 时等式成立C .22+=k n 时等式成立D .)2(2+=k n 时等式成立2.设1111()()(1)()1232f n n N f n f n n n n n*=++++∈+-=+++有,则=-+)()1(n f n f ( D )A .121+nB .221+n C .221121+++n n D .221121+-+n n 3.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,由k n =的假设到证明1+=k n 时,等式左边应添加的式子是( B )A .222)1(k k ++ B.22)1(k k ++ C .2)1(+kD .]1)1(2)[1(312+++k k4.用数学归纳法证明“(1)(2)()213(21)n n n n n n +++=⋅⋅⋅⋅-”(+∈N n )时,从“1+==k n k n 到”时,左边应增添的式子是 ( B )A .12+kB .)12(2+kC .112++k k D .122++k k 5.某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立. 现已知当5=n 时该命题不成立,那么可推得( C ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=4时该命题不成立D .当n=4时该命题成立【典型例题选讲】【例1】用数学归纳法证明下述等式问题:(Ⅰ))1)(1(41)()2(2)1(12222222+-=-++-⋅+-⋅n n n n n n n n . [证明]︒1. 当1=n 时,左边0)11(122=-⋅=,右边0201412=⋅⋅⋅=,∴左边=右边,1=n 时等式成立;︒2. 假设k n =时等式成立,即 )1)(1(41)()2(2)1(12222222+-=-⋅++-⋅+-⋅k k k k k k k k , ∴当1+=k n 时,左边])1()1)[(1(])1[(]2)1[(2]1)1[(122222222+-+++-+⋅++-+⋅+-+⋅=k k k k k k k k)]12()12(2)12(1[)]()2(2)1(1[222222++++⋅++⋅+-⋅++-+-⋅=k k k k k k k k k )]12(2)1)[(1(41)12(2)1()1)(1(412++-+=+⋅+++-=k k k k k k k k k k )2()1(41)23)(1(4122++=+++=k k k k k k k =右边,即1+=k n 时等式成立,根据︒︒21与,等式对*∈N n 都正确.【例2】用数学归纳法证明下述整除问题: (Ⅰ)求证:)(53*∈+N n n n 能被6 整除. [证明]︒1. 当1=n 时,13+5×1=6能被6整除,命题正确; ︒2. 假设k n =时命题正确,即k k 53+能被6整除,∴当1+=k n 时,)5()55()133()1(5)1(3233k k k k k k k k +=+++++=+++6)1(3+++k k ,∵两个连续的整数的乘积)1(+k k 是偶数,)1(3+∴k k 能被6整除,6)1(3)5(3++++∴k k k k 能被6整除,即当1+=k n 时命题也正确,由︒︒2,1知命题时*∈N n 都正确.例3、(优化设计P202例1)比较2n 与n 2的大小()n N ∈剖析:比较两数(或式)大小的常用方法本题不适用,故考虑用归纳法推测大小关系,再用数学归纳法证明.解:当n =1时,21>12,当n =2时,22=22,当n =3时,23<32, 当n =4时,24=42,当n =5时,25>52, 猜想:当n ≥5时,2n >n 2. 下面用数学归纳法证明: (1)当n =5时,25>52成立.(2)假设n =k (k ∈N *,k ≥5)时2k >k 2,那么2k +1=2·2k =2k +2k >k 2+(1+1)k >k 2+C 0k +C 1k +C 1-k k =k 2+2k +1=(k +1) 2.∴当n =k +1时,2n >n 2.由(1)(2)可知,对n ≥5的一切自然数2n >n 2都成立. 综上,得当n =1或n ≥5时,2n >n 2;当n =2,4时,2n =n 2;当n =3时,2n <n 2.评述:用数学归纳法证不等式时,要恰当地凑出目标和凑出归纳假设,凑目标时可适当放缩. 例4、是否存在常数使 a 、b 、 c 等式2222222421(1)2(2)....(1)n n n n an bn c•-+-+-=++ 对一切正整数n 成立?证明你的结论。
数学归纳法

5.由 k 到 k+1 这一步,要善于分析题目的结构特点,进行适 当的变形,常用分析、添项、拆项、作差等方法.
6.用不完全归纳法给出结论,用数学归纳法给出证明是高考题 中经常出现的题型,希望同学们用心体会.
7.本节内容是选修与选考内容,在复习时要注意把握好难度 能证明一些简单的数学命题就可以了.
用数学归纳法证明与正整数n有关的等式 用数学归纳法证明:2×1 4+4×1 6+6×1 8+…+2n21n+2 =4nn+1. 【思路分析】 本题主要考查用数学归纳法证明等式的步骤, 注意当 n=k+1 时,两边加上的项和结论各是什么.
【证明】 (1)当 n=1 时,左边=2×1 4=18,右边=18等式成立. (2)假设 n=k 时,2×1 4+4×1 6+6×1 8+…+2k21k+2=4k+k 1成立. 当 n=k+1 时, 2×1 4+4×1 6+6×1 8+…+2k21k+2+2k+212k+4 =4k+k 1+4k+11k+2=4kk+k+12k++12 =4k+k+11k+2 2=4kk++12=4[k+k+11+1] ∴n=k+1 时,等式成立. 由(1)(2)可得对一切正整数 n∈N*,等式成立.
【名师点睛】 数学归纳法证题的两个步骤缺一不可.证 n=k+1 成立时,必须用 n=k 成立的结论,否则,就不是数学 归纳法证明.
1.用数学归纳法证明: 1·n+2(n-1)+3(n-2)+…+(n-1)·2+n·1=16n(n+1)(n+2). 证明:(1)当 n=1 时,左边=1, 右边=16(1+1)(1+2)=1,等式成立. (2)假设 n=k 时,1·k+2(k-1)+3(k-2)+…+(k-1)·2+k·1= 16k(k+1)(k+2)成立.
(2)假设 n=2k(k∈N*)时,命题成立, 即 x2k-y2k 能被 x+y 整除. 当 n=2k+2 时,x2k+2-y2k+2=x2·x2k-y2·y2k =x2(x2k-y2k)+y2k(x2-y2) =x2(x2k-y2k)+y2k(x+y)(x-y). ∵x2(x2k-y2k)、y2k(x+y)(x-y)都能被 x+y 整除, ∴x2k+2-y2k+2 能被 x+y 整除,即 n=2k+2 时命题成立. 由(1)(2)知原命题对一切正偶数均成立. 【名师点睛】 因证明的命题对所有正偶数成立,所以归纳假 设中采用了 n=2k(k∈N*)与它相邻的是 n=2k+2.要注意体会 n =2k+2 时的变形方法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
递推基础不可少 归纳假设要用到
结论写明莫忘掉。
深化概念
例2、 用数学归纳法证明
1 3 5 (2n 1) n2 .
证明:(1)当n=1时,左边=1,右边=1,等式成立. (2)假设当 n k 时,等式成立,即
1 3 5
(2k 1) k .
2
当n k 1时,左边=1 3 5
数学归纳法证题的步骤:
思考3:通过刚才证明,你能总结一下用数学
递推基础 归纳法证题的一般步骤吗?
(1)证明当 n 取第一个值 n0 时 结论正确; (2)在假设当 n k (k N且k n0 ) 结论正确的前提下,
证明当
n k 1
时结论也正确.
递推依据
1 1 1 1、在用数学归纳法证明“ 3 5 5 7 (2n 1)(2n 1) n 1 对于n>1,n N均成立”过程中,第一步要验证的是 6n 3 2 n =______ 等式成立.
巩固概念
例1:用数学归纳法证明:如果{a n }是等差数列,公差为d, 那么a n a1 (n 1)d对于n N均成立
证明:( 1)当n 1时,左边=a1, 右边 a1 n 1该等式成立
(2)假设n k成立,即a k a1 (k 1)d 当n=k+1时,左边=a k+1 a k d =a1 (k-1)d d =a1 kd 右边 若n k成立,则n =k +1也成立 该等式对于n N 均成立
17世纪,法国数学家费马观察到:
2 1
2
1
2 1 2 1 2
22
23
24
都是质数, 1
于是他用归纳推理提出猜想: n 2 任何形如 2 1 的数都是质数(费马猜想) 半个世纪之后,善于计算的欧拉发现,第 5 2 5个费马数F5= 2 1 4294967297 641 6700417
n 2 1 a 2 3 n1 1 a a a a (a 1) 2、用数学归纳法证明 1 a
的过程中,验证n=1等式成立时 ,左边应取的项是
1 a a __________.
2
数学归纳法证题的步骤:
递推基础
(1)证明当 n 取第一个值 n0 时 结论正确; (2)在假设当 n k ( k N且k n0 ) 结论正确的前提下,
3 3 3 3
2 2 2 k ( k 1 ) ( k 2 ) ( k 1)2 ( k 1) 4 4 这就是说,若n=k成立,则n=k+1时,等式也成立.
由(1)和(2)可知,等式对任何 n N 都成立.
课堂小结
递推、类比、归纳 思想
证明等式
两步一结论
2 2
对任何n N , an ( n 2 5n 5)2 1
2.求证: 2 4 6 2n n n 1 证明: (1)n 1时,左边 2,右边=3, n=1时不成立
-----缺少递推依据 2 -----缺少递推基础
假设n=k时成立:即 2 4 6 2k k 2 k 1 当n=k+1时 2 4 6 2k 2( k 1)
第一张骨 牌倒
当n取第一个值时结论 正确
若n=k时结论正确,则 n=k+1时结论正确
条件二 若第 k张 若一张骨
骨牌倒 牌倒下, 下,则 则下一张 第 k+1张 骨牌也倒 骨牌也 下 倒下
形成概念:
定义: 一个与自然数有关的命题 (1)证明当n取第一个值n0时命题成立 (2)在假设当n=k(k∈N+,k≥n0)时命题成立 的前提下,证明当n=k+1时命题也成立 这种证明方法叫做数学归纳法
证明当
n k 1
时结论也正确.
递推依据
1 1 1 1 n 用数学归纳法证明 1 3 3 5 5 7 2n 12n 1 2n 1 1 1 (1) 当n=1时,左边= 1 3 右边= n=1时等式成立。 2 1 1
(2) 假设n=k(k∈N*)时等式成立,即
应用 步骤
与自然数有关题的命题
定义
深化概念
例1、判断下列推理是否正确?若不正确,请完善
1、用数学归纳法证明:如果{a n }是等差数列,公差为d, 那么a n a1 (n 1)d对于n N均成立
证明: 当n 1时,左边=a , 右边 a n 1该等式成立 1 1
假设n k成立,即a k a1 (k 1)d 当n=k+1时,左边=a k+1 a k d =a1 (k-1)d d =a1 kd 右边 若n k成立,则n =k +1也成立 该等式对于n N 均成立
不是质数,从而推翻了费马的猜想
复习引入
计算下面的式子,你能猜想出结果吗? -1 . -1 _____ -1+3 _____ 2 .
-1+3 -5 = _____. -3
4 -1+3 -5+7 = _____.
-5 -1+3 -5+ 7 9 _____.
怎样证明呢
猜想: -1+ 3 - 5 + •n = (-1) n
(2k 1) (2k 1)
k
2
2 ( k 1) 右边 (2k 1)
这就是说,若n=k成立,则 n=k+1时等式也成立. 由(1)和(2)可知,等式对任何 n N 都成立.
n ( n 1) . 练习:用数学归纳法证明 1 2 3 n 4
由(1)(2)可知,该等式对于n N均成立
1 1 左边 1 3 3 5
2k 1 2k 1 2k 1 2k 3
1
1
若n=k成立,则n=k+1时等式也成立。
根据(1)和(2),可知等式对任何n∈N* 都成立。
数学归纳法证题的步骤:
(1)证明当 n 取第一个值 n0 时 结论正确;
递推基础
(2)在假设当 n k ( k N且k n0 ) 结论正确的前提下, 证明当
n k 1
时结论也正确. 递推依据
(3)结论
练习:判断下列推理是否正确?
1.数列通项公式为:an ( n 5n 5) 验证可知: a1 1, a2 1, a3 1, a4 1,
k 2 k 1 2( k 1) ( k 1) 2 ( k 1) 1
所以,若n=k成立,则n=k+1时也成立 即等式对任何 n N *都成立.
深化概念
数学归纳法证题的步骤:
(1)证明当
n取第一个值 n0 时结论正确;
n k 1 时结论也正确.
(2)在假设当 n k ( k N且k n0 )结论正确的前提下, 证明当
例 1:求证2 4 6
n 1时等式成立
2n n n
2
1)当n 1时,左边 2,右边 2, 证明: (
(2)假设n =k成立,即2+4+6+ 当n=k+1时,左边=2+4+6+ +2k=k 2 +k +2k+2(k+1)
=k 2 +k+2k+2 =(k+1) 2 (k 1) =右边 若n =k成立,则n =k +1也成立
+(-1)(2n -1)
n
概念探究
思考1: 如何操作才能使所有的多米诺骨牌都 倒下?谈一下你的见解 思考2:如果多米诺骨牌可 以有无限多个,满足 上述的两个条件,是否可以让多米诺骨牌 无限的倒下去?
骨牌无限 的倒下去
条件一
1 3 5
(1) n (2n 1)
(1) n n,n N=1,右边=1,等式成立. (2)假设当 n k 时,等式成立,就是
2 2
k (k 1) 1 2 3 k . 42 2 k ( k 1) 3 3 3 3 3 3 (k 1) 那么 1 2 3 k (k 1) 4
1 1 1 1 k 2k 12k 1 2k 1 1 3 3 5 5 7
n=k+1时
1 1 1 1 11 1 1 1 1 1 1 k (1 ) ) ( ) ( ) ( 2 2k3 1 2 23 5 2k2 3 5 7 2 2k 1 2k 3 k 1 1 1 3) 1k 1 (k 1)(2k 1) k(2k k 1 (1 ) 右边 2 (2k 2k 3 2k 3 1)(2k 3) (2k 1)(2k 3) 2k 3