“分类讨论”练习

合集下载

分类讨论型试题(含答案)[下学期]

分类讨论型试题(含答案)[下学期]

分类讨论型问题探究分类思想是解题的一种常用思想方法,它有利于培养和发展学生思维的条理性、缜密性、灵活性,使学生学会完整地考虑问题、化整为零地解决问题,学生只有掌握了分类的思想方法,在解题中才不会出现漏解的情况.例1(2005年黑龙江) 王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.分析:本题是无附图的几何试题,在此情况下一般要考虑多种情况的出现,需要对题目进行分情况讨论。

分类思想在中考解题中有着广泛的应用,我们在解题中应仔细分析题意,挖掘题目的题设,结论中可能出现的不同的情况,然后采用分类的思想加以解决.解:(1)当等腰三角形为锐角三角形时(如图1),由勾股定理得AE =25(m )由DE ∥FC 得,FCED AC AE =,得FC =24(m ) S △ABC =12 ×40×24=480(m 2)(2)当等腰三角形为钝角三角形时(如图2)同理可得,S △ABC =12×64×24=768(m 2)说明:本题主要考查勾股定理、相似三角形的判定及性质等内容。

练习一 1、(2005年资阳市)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A. 2a b +B. 2a b -C. 2a b +或2a b - D. a+b 或a-b2.(2005年杭州)在右图的几何体中, 上下底面都是平行四边形, 各个侧面都是梯形, 那么图中和下底面平行的直线有( )(A) 1条 (B) 2条 (C) 4条 (D) 8条3(2005年潍坊市)已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( ).A .5cmB .11cmC .3cmD .5cm 或11cm图1图2A4.(2005年北京) 在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD BD DC 2 ·,则∠BCA 的度数为____________。

高中数学思想二 分类讨论思想 专题练习

高中数学思想二 分类讨论思想 专题练习

高中数学思想二 分类讨论思想 专题练习一.选择题1. 已知实数m 是2,8的等比中项,则曲线x 2-y 2m=1的离心率为( )A.2B.32C. 5D.5或322. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”.已知函数f (x )=e x+te x +1是“可构造三角形函数”,则实数t 的取值范围是( )A .[0,+∞)B .[0,1]C .[1,2]D .[12,2]3.已知集合()(){}{}210,log 1A x x a x a B x x =---<=<,若R B C A ⊆,则实数a 的取值范围是( ) A .(],1-∞-B .[)2,+∞C .(][),12,-∞-⋃+∞D .[]1,2-4.若11133ab⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列各式中一定成立的是( )A .n 0()l a b ->B .21b a ->C .11a b->- D .log log (0c c a b c >>且1)c ≠5.定义在R 上的函数()f x 满足()(2)f x f x -=,且当1≥x 时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .136.函数()log 1xa f x a x =-(0a >,且1a ≠)有两个零点,则a 的取值范围为( )A .(1,)+∞B .1(1,)e ⎧⎫⋃+∞⎨⎬⎩⎭C .{}ee(1,)-⋃+∞D .1ee (1,)⎧⎫⋃+∞⎨⎬⎩⎭7.已知函数,若,且,则的取值范围是( )A. B. C.D.8.已知函数()43120194f x ax x x =-++,()'f x 是()f x 的导函数,若()'f x 存在有唯一的零点0x ,且()00,x ∈+∞,则实数a 的取值范围是( )A .(),2-∞-B .(),1-∞-C .()1,+∞D .()2,+∞9.已知函数,且在上的最大值为,则实数的值为( ) A . B .1 C. D .210.已知函数,(是常数),若在上单调递减,则下列结论中:①;②;③有最小值.正确结论的个数为( ) A .0 B .1 C.2 D .3二、填空题11.已知,,,则的取值范围为________.ln(1),0()11,02x x f x x x +>⎧⎪=⎨+≤⎪⎩m n <()()f m f n =n m -[32ln 2,2)-[32ln 2,2]-[1,2]e -[1,2)e -()()3sin 2f x ax x a R =-∈0,2π⎡⎤⎢⎥⎣⎦32π-a 1232()32f x x ax bx c =+++()232g x x ax b =++ a b c ,,()f x ()0 1,()()010f f ⋅≤()()010g g ⋅≥23a b -{|322}A x x =≤≤{|2135}B x a x a =+≤≤-B A ⊆a12.两条渐近线所成的锐角为,且经过点的双曲线的标准方程为____________. 13.若数列,则__________. 14. 已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为________ cm 2.三、解答题15.已知,设,成立;,成立,如果“”为真,“”为假,求的取值范围. 16.已知函数21()ln ()2f x a x x a R =+∈. (1)若函数()f x 在点(1,(1))f 处的切线方程为4230--=x y ,求实数a 的值; (2)当0a >时,证明函数()()(1)g x f x a x =-+恰有一个零点.17.已知函数,其中为自然对数的底数,常数.(1)求函数在区间上的零点个数;(2)函数的导数,是否存在无数个,使得为函数的极60︒{}n a 23n a n n +=+12231na a a n +++=+m R ∈[]: 1 1p x ∀∈-,2224820x x m m --+-≥[]: 1 2q x ∃∈,()212log 11x mx -+<-p q ∨p q ∧m ()116xa f x x e ⎛⎫=--+ ⎪⎝⎭2.718e =0a >()f x ()0,+∞()F x ()()()xF x e a f x '=-()1,4a ∈ln a ()F x大值点?说明理由.高中数学思想二 分类讨论思想 专题练习一.选择题1. 已知实数m 是2,8的等比中项,则曲线x 2-y 2m=1的离心率为( )A.2B.32C. 5D.5或32答案 D解析 ∵m 是2,8的等比中项,∴m 2=16,∴m =±4. 当m =4时,曲线为双曲线,其中a =1,c =5,e =ca =5; 当m =-4时,曲线为椭圆,其中a =2,c =3,e =c a =32,故选D.2. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”.已知函数f (x )=e x+te x +1是“可构造三角形函数”,则实数t 的取值范围是( )A .[0,+∞)B .[0,1]C .[1,2]D .[12,2]答案 D解析 f (x )=e x +t e x +1=1+t -1e x +1,由题意得f (x )>0恒成立,所以t -1e x +1>-1恒成立,即t >-e x 恒成立,所以t ≥0.①若t ∈[0,1],则f (x )是增函数,当x →+∞时,得f (x )max →1,当x →-∞时,得f (x )min →t ,所以值域为(t,1).因为三角形任意两边之和大于第三边,所以t +t ≥1,解得12≤t ≤1;②若t ∈(1,+∞),则f (x )是减函数,当x →+∞时,得f (x )min →1,当x →-∞时,得f (x )max →t ,所以值域为(1,t ),同理可得1+1≥t ,所以1<t ≤2,综上得t ∈[12,2].3.已知集合()(){}{}210,log 1A x x a x a B x x =---<=<,若R B C A ⊆,则实数a 的取值范围是( ) A .(],1-∞- B .[)2,+∞C .(][),12,-∞-⋃+∞D .[]1,2-【答案】C 【详解】由题意,可得集合()(){}{}101A x x a x a x a x a =---<=<<+,所以{R C A x x a =≤或1}x a ≥+,又由集合{}{}2log 102B x x x x =<=<<,因为R B C A ⊆,所以2a ≥或10a +≤,解得1a ≤-或2a ≥, 所以实数a 的取值范围是][,(),12∞-⋃+∞-, 故选:C .4.若11133ab⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列各式中一定成立的是( )A .n 0()l a b ->B .21b a ->C .11a b->- D .log log (0c c a b c >>且1)c ≠【答案】C 【详解】解析:指数函数13xy ⎛⎫= ⎪⎝⎭在(,)-∞+∞上是单调递减的, 由11133ab⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭可知,0a b >>. 所以11a b<,则11a b ->-.故C 正确;0a b ->,但不一定有1a b ->,则不一定有()ln 0a b ->,故A 错误;函数2xy =在(),-∞+∞上是单调递增的,0b a -<.则0221b a -<=,故B 错误; 当01c <<时,函数c y log x =在0,上单调递减,则log log c c a b <.故D 错误. 故选:C5.定义在R 上的函数()f x 满足()(2)f x f x -=,且当1≥x 时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .13【答案】C 【详解】当14x ≤<时,3y x =-+单调递减,()()241log 41f x f >=-=-, 当4x ≥时,()f x 单调递减,()()41f x f ≥=-,故()f x 在[)1,+∞上单调递减,由()(2)f x f x -=,得()f x 的对称轴为1x =,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,即对[,1]x t t ∈+,不等式()()1f x f x +t ≤+恒成立,-1x x t ∴≥+,即()()221x x t -≥+, 即()22110t x t ++-≤,()()()22211011321110t t t t t t t ⎧++-≤⎪⇒-≤≤-⎨+++-≤⎪⎩ 故实数t 的最大值为13-. 故选:C.6.函数()log 1xa f x a x =-(0a >,且1a ≠)有两个零点,则a 的取值范围为( )A .(1,)+∞B .1(1,)e ⎧⎫⋃+∞⎨⎬⎩⎭C .{}ee(1,)-⋃+∞D .1ee (1,)⎧⎫⋃+∞⎨⎬⎩⎭【答案】D 【详解】()0f x =,得1log a x x a =,即11log xax a ⎛⎫= ⎪⎝⎭.由题意知函数1log a y x =图象与函数1xy a ⎛⎫= ⎪⎝⎭图象有两个交点.当1a >时,11log ,xay x y a ⎛⎫== ⎪⎝⎭草图如下,显然有两交点.当01a <<时,函数1log a y x =图象与函数1xy a ⎛⎫= ⎪⎝⎭图象有两个交点时,注意到11,log xay y x a ⎛⎫== ⎪⎝⎭互为反函数,图象关于直线y x =对称,可知函数1x y a ⎛⎫= ⎪⎝⎭图象与直线y x =相切,设切点横坐标0x ,则0111ln 1x x x a a a ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩,解得01e,e .e x a -=⎧⎪⎨⎪=⎩ 综上,a 的取值范围为1e e (1,)-⎧⎫+∞⎨⎬⎩⎭.故选:D .7.已知函数,若,且,则的取值范围是( )ln(1),0()11,02x x f x x x +>⎧⎪=⎨+≤⎪⎩m n <()()f m f n =n m -A. B. C.D.【答案】A【解析】如图,作出函数的图象,不妨设,由可知函数的图象与直线有两个交点,而时,函数单调递增,其图象与轴交于点,所以.又,所以,,由,得,解得.由,即,解得;由,即,解得;记(),.所以当时,,函数单调递减;当时,,函数单调递增.所以函数的最小值为;而,.所以.8.已知函数()43120194f x ax x x =-++,()'f x 是()f x 的导函数,若()'f x 存在有唯一的零点0x ,且()00,x ∈+∞,则实数a 的取值范围是( )A .(),2-∞-B .(),1-∞-C .()1,+∞D .()2,+∞【答案】A 【解析】[32ln 2,2)-[32ln 2,2]-[1,2]e -[1,2)e -()y f x =()()f m f n t ==()()f m f n =()f x y t =0x ≤()y f x =y (0,1)01t <≤m n <0m ≤0n >01t <≤0ln(1)1n <+≤01n e <≤-()f m t =112m t +=22m t =-()f n t =ln(1)n t +=1t n e =-()1(22)21t t g t n m e t e t =-=---=-+01t <≤()2tg t e '=-0ln 2t <<()0g t '<()g t ln 21t <≤()0g t '>()g t ()g t ln 2(ln 2)2ln 2132ln 2g e =-+=-0(0)12g e =+=(1)2112g e e =-+=-<32ln 2()2g t -≤<()3231f x ax x =-+'.显然()00f '≠,令()0f x '=得:2331x a x-=,()0x ≠ 令()2331x t x x -=,()0x ≠,()()()4311x x t x x+-'=-知: 当(),1x ∈-∞-时,()0t x '<,()t x 为减函数;当()1,0x ∈-时,()0t x '>,()t x 为增函数; 当()0,1x ∈时,()0t x '>,()t x 为增函数;当()1,x ∈+∞时,()0t x '<,()t x 为减函数, 作出()t x 的大致图象如图所示,则当()12a t <-=-时,()t x 存在唯一的正零点.故选A9.已知函数,且在上的最大值为,则实数的值为( ) A .B .1 C. D .2 【答案】B【解析】由已知得,对于任意的,有,当时,,不合题意;当时,,从而在单调递减,又函数在上图象是连续不断的,故函数在上的最大值为,不合题意;当时,,从而在,单调递增,又函数在上图象是连续不断的,故函数在上的最大值为,解得.()()3sin 2f x ax x a R =-∈0,2π⎡⎤⎢⎥⎣⎦32π-a 1232()()sin cos f x a x x x '=+[]20x π∈,sin cos 0x x x +>0a =()32f x =-0a <()[]002x f x π∈'<,,()f x [0]2π, [0]2π,()203f =-0a >]2[0x π∈,,()0f x '>()f x [0]2π, [0]2π,()223322f a πππ-=⋅-=1a =10.已知函数,(是常数),若在上单调递减,则下列结论中:①;②;③有最小值.正确结论的个数为( ) A .0 B .1 C.2 D .3 【答案】C【解析】由题意,得,若函数在上单调递减,则,即,所以,故②正确;不妨设,则,故①错;画出不等式组表示的平面区域,如图所示,令,则,①当,即时,抛物线与直线有公共点,联立两个方程消去得,,所以;当,即时,抛物线与平面区域必有公共点,综上所述,,所以有最小值,故③正确,故选C .二、填空题11.已知,,,则的取值范围为________. 【答案】【解析】因为,所以.当时,,可得;当时,()32f x x ax bx c =+++()232g x x ax b =++ a b c ,,()f x ()0 1,()()010f f ⋅≤()()010g g ⋅≥23a b -()232f x x ax b '=++()f x (0,1)(0)0(1)0f f '≤⎧⎨'≤⎩0320b a b ≤⎧⎨++≤⎩()()01(32)0g g b a b ⋅=⋅++≥32()235f x x x x =--+()()015(1235)0f f ⋅=⋅--+>0320b a b ≤⎧⎨++≤⎩23z a b =-2133z b a =-33z ->-9z <2133zb a =-230a b ++=b 2690a a z ++-=2(3)0z a =+≥09z ≤<33z-≤-9z ≥0z ≥23z a b =-{|322}A x x =≤≤{|2135}B x a x a =+≤≤-B A ⊆a (,9]-∞B A ⊆Φ≠Φ=B B 或Φ=B 1253+<-a a 6<a Φ≠B,可得,综上:. 12.两条渐近线所成的锐角为,且经过点的双曲线的标准方程为____________.【答案】或 【解析】分类讨论:当双曲线的焦点位于轴时,其标准方程为,其渐近线方程为:,则:,解得:,双曲线的方程为; 当双曲线的焦点位于轴时,其标准方程为,其渐近线方程为:,则:,解得:,双曲线的方程为; 综上可得,双曲线方程为:或. 13.若数列,则__________. 【答案】【解析】令,得,所以.当时,.与已知式相减,得,所以,时,适合⎪⎩⎪⎨⎧≤-≥+≥22533126a a a 96≤≤a 9≤a 60︒22113x y -=223177y x -=x 22221x y a b -=by x a=±22603{ 231btan aa b ==-=221{ 3a b ==22113x y -=y 22221y x a b -=ay x b=±22603{ 321btan aa b ==-=227{ 37a b ==223177y x -=22113x y -=223177y x -={}n a 23n a n n +=+12231na a a n +++=+226n n +1n =4a 1=16a 1=2n ≥)1(3)1(a a a 21-n 21-+-=+++n n 22)1(3)1()3(22+=----+=n n n n n a n 2)1(4+=n a n 1n =1a.所以,所以,∴. 14. 已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为________ cm 2.答案 18+23或12+4 3解析 该几何体有两种情况:第一种,由如图①所示的棱长为2的正方体挖去一个三棱锥P -ABC 所得到的,所求的表面积为6×22-3×(12×2×2)+34×(22)2=18+23(cm 2).第二种,由如图②所示的棱长为2的正方体挖去三棱锥P -ABC 与三棱锥M -DEF 所得到的,所求的表面积为6×22-6×(12×2×2)+2×34×(22)2=12+43(cm 2).n a 2)1(4+=n a n 441+=+n n a n 12231n a a an +++=+n n n n 622)448(2+=++-三、解答题15.已知,设,成立;,成立,如果“”为真,“”为假,求的取值范围.【解析】若为真:对,恒成立,设,配方得,∴在上的最小值为,∴,解得,∴为真时:;若为真:,成立,∴成立.设,易知在上是增函数,∴的最大值为,∴,∴为真时,,∵”为真,“”为假,∴与一真一假,当真假时,∴,当假真时,∴,综上所述,的取值范围是或. 16.已知函数21()ln ()2f x a x x a R =+∈. (1)若函数()f x 在点(1,(1))f 处的切线方程为4230--=x y ,求实数a 的值; (2)当0a >时,证明函数()()(1)g x f x a x =-+恰有一个零点. (1)()'af x x x=+. 由切线的斜率为2得()'112f a =+=. ∴1a =.(2)()21ln 2g x a x x =+()1a x -+,0x >, ∴()'a g x x x =+()()()11x a x a x---+=. 1.当01a <<时,m R ∈[]: 1 1p x ∀∈-,2224820x x m m --+-≥[]: 1 2q x ∃∈,()212log 11x mx -+<-p q ∨p q ∧m p []1 1x ∀∈-,224822m m x x -≤--()222f x x x =--()()213f x x =--()f x []1 1-,3-2483m m -≤-1322m ≤≤p 1322m ≤≤q []1 2x ∃≤,212x mx -+>21x m x -<()211x g x x x x -==-()g x []1 2,()g x ()322g =32m <q 32m <p q ∨p q ∧p q p q 132232m m ⎧≤≤⎪⎪⎨⎪≥⎪⎩32m =p q 132232m m m ⎧<>⎪⎪⎨⎪<⎪⎩或12m <m 12m <32m =由()'0g x >得0x a <<或1x >,()'0g x <得1a x <<, ∴()g x 在()0,a 上递增,在(),1a 上递减,在()1,+∞上递增.又()21ln 2g a a a a =+()11ln 12a a a a a ⎛⎫-+=-- ⎪⎝⎭0<,()()22ln 220g a a a +=+>,∴当01a <<时函数()g x 恰有一个零点. 2.当1a =时,()'0g x ≥恒成立,()g x 在()0,+∞上递增.又()11202g =-<,()4ln40g =>, 所以当1a =时函数()g x 恰有一个零点. 3.当1a >时,由()'0g x >得01x <<或x a >,()'0g x <得1x a <<, ∴()g x 在()0,1上递增,在()1,a 上递减,在(),a +∞上递增. 又()1102g a =--<, ()()22ln 220g a a a +=+>,∴当1a >时函数()g x 恰有一个零点.综上,当0a >时,函数()()()1g x f x a x =-+恰有一个零点.17.已知函数,其中为自然对数的底数,常数.(1)求函数在区间上的零点个数;(2)函数的导数,是否存在无数个,使得为函数的极大值点?说明理由.【解析】(1),当时,单调递减;当时,单调递增;因为,所以存在,使,且当时,,当时,.故函数在区间上有1个零点,即. (2)(法一)当时,.因为当时,;当,. 由(1)知,当时,;当时,.下证:当时,,即证., 记…,所以在单调递增,由,所以存在唯一零点,使得,且时,单调递减,时,单调递增.所以当时,.…… 由,得当时,. 故.当时,单调递增;当时,单调递减.所以存在()116xa f x x e ⎛⎫=--+ ⎪⎝⎭2.718e =0a >()f x ()0,+∞()F x ()()()x F x e a f x '=-()1,4a ∈ln a ()F x ()6x a f x x e ⎛'⎫=-⎪⎝⎭06a x <<()()0f x f x '<,6ax >()()0f x f x '>,()00,110666a a a f f f ⎛⎫⎛⎫<=-+=⎪ ⎪⎝⎭⎝⎭0,166a a x ⎛⎫∈+ ⎪⎝⎭()00f x =00x x <<()0f x <0x x >()0f x >()f x ()0,+∞0x 1a >ln 0a >()0,ln x a ∈0x e a -<()ln ,x a ∈+∞0x e a ->()00,x x ∈()0f x <()0,x x ∈+∞()0f x >()1,a e ∈0ln a x <()ln 0f a <()2ln ln 11ln 166a a f a a a a a ⎛⎫=--+=--+ ⎪⎝⎭()[]2ln 1,1,6x g x x x x x e =--+∈()()3ln ,033x xg x x g x x''-='=->()g x '()1,e ()()110,1033eg g e ''=-=-()01,t e ∈()01g t '=()01,x t ∈()()0,g x g x '<()0,x t e ∈()()0,g x g x '>()1,x e ∈()()(){}max 1,g x g g e <()()21610,066e g g e -=-<=<()1,x e ∈()0g x <()0ln 0,0ln f a a x <<<0ln x a <<()()()()()0,0,0,xxe af x F x e a f x F x -'-<=0ln a x x <<()()()()()0,0,0,x xe af x F x e a f x F x -><=-<',使得为的极大值点.(2)(法二)因为当时,;当,. 由(1)知,当时,;当时,.所以存在无数个,使得为函数的极大值点,即存在无数个,使得成立,①…由(1),问题①等价于,存在无数个,使得成立,因为, 记,因为,当时,,所以在单调递增,因为,所以存在唯一零点,使得,且当时,单调递减;当时,单调递增;所以,当时,,②由,可得,代入②式可得,当时,, 所以,必存在,使得,即对任意有解, ()()1,1,4a e ∈⊂ln a ()F x ()0,ln x a ∈0x e a -<()ln ,x a ∈+∞0x e a ->()00,x x ∈()0f x <()0,x x ∈+∞()0f x >()1,4a ∈ln a ()F x ()1,4a ∈0ln a x <()1,4a ∈()ln 0f a <()2ln ln 11ln 166a a f a a a a a ⎛⎫=--+=--+ ⎪⎝⎭()()2ln 1,1,46x g x x x x x =--+∈()()ln ,1,4,3x g x x x '=-∈()33x g x x '-'=3,22x ⎛⎫∈ ⎪⎝⎭()0g x ''>()g x '3,22⎛⎫ ⎪⎝⎭()3312ln 0,2ln202223g g ⎛⎫=-=''- ⎪⎝⎭03,22t ⎛⎫∈⎪⎝⎭()00g t '=03,2x t ⎛⎫∈ ⎪⎝⎭()()0,g x g x '<()0,2x t ∈()()0,g x g x '>3,22x ⎡⎤∈⎢⎥⎣⎦()()200000min ln 16t g x g t t t t ==--+()00g t '=00ln 3t t =()()2000min 16t g x g t t ==-+03,22t ⎛⎫∈ ⎪⎝⎭()()220000311106628t t g t t -=-+=-≤-<3,22x ⎛⎫∈⎪⎝⎭()0g x <()3,2,ln 02a f a ⎛⎫∈< ⎪⎝⎭所以对任意,函数存在极大值点为.3,22a ⎛⎫∈⎪⎝⎭()F x ln a。

初二分类讨论练习题

初二分类讨论练习题

初二分类讨论练习题分类讨论是数学中常用的解题方法之一,通过将问题分解为若干个同类子问题来解决整体问题。

在初二数学学习中,分类思维的训练对于培养学生的逻辑思维和分析问题的能力是十分重要的。

本文将给出一些初二分类讨论的练习题,帮助学生加深对该解题方法的理解和运用。

一、排列组合类练习题1. 一个三位数,各位数字均不相同,且都是奇数,有多少个?解析:首先,百位数有5个选择(1、3、5、7、9),十位数有4个选择(0除外),个位数有3个选择,所以总共的不同三位奇数有15个。

2. 一桶里共有红球、蓝球、黄球各若干个,其中红球至少有两个,蓝球至少有三个,黄球至少有四个。

问这桶球中至少有几个球?解析:设红球个数为x,蓝球个数为y,黄球个数为z,根据题意,可列出不等式组如下:x >= 2y >= 3z >= 4求解这个不等式组,我们可以得到最少球的个数为2+3+4=9个。

二、几何形状类练习题1. 如图所示,已知矩形ABCD的长为6cm,宽为4cm,将其四个角各剪去一个相同的小正方形,则所得图形的面积为多少?解析:设每个小正方形的边长为x cm,根据题意,可列出如下方程:(6-2x)(4-2x) = 24将方程化简并解方程,得到x=1,故每个小正方形的边长为1cm,所得图形的面积为24-4=20平方厘米。

2. 如图所示,正三角形ABC的边长为8cm,点P在边BC上,且AP的长度为5cm,则三角形ABP的面积为多少?解析:根据正三角形的性质,角APB也是一个等边三角形,所以三角形ABP的面积为1/2 * 5 * 4 = 10平方厘米。

三、代数方程类练习题1. 一个数的九倍减去这个数的四倍等于24,求这个数是多少?解析:设这个数为x,根据题意,可列出方程9x - 4x = 24解方程得到x = 4,所以这个数是4。

2. 一个三位数能被3整除,且百位、十位、个位数字之和为15,求这个三位数是多少?解析:首先,百位数字至少为1,因为3个位数的情况下最小值为102。

人教版数学六上分类讨论题

人教版数学六上分类讨论题

人教版数学六上分类讨论题
人教版数学六年级上册分类讨论题包括以下几种类型:
1. 分情况讨论题:这类题目需要分不同的情况进行讨论,根据不同的情况得出不同的结论。

例题:某校六年级有120名学生,其中参加篮球比赛的有24人,参加乒乓球比赛的有18人,既参加篮球比赛又参加乒乓球比赛的有3人,参加这两
项比赛的学生共有多少人?
2. 分类计数原理题:这类题目需要使用分类计数原理进行计算,即各类事物独立地被考虑,各类事物之间无影响。

例题:用1、2、3、4四个数字可组成的四位数有()个。

3. 分类讨论应用题:这类题目需要先对题目中的条件进行分类讨论,再根据不同的情况得出不同的结果。

例题:甲、乙两地相距150千米,小明和小华同时从甲地出发向乙地前进,小明每小时行4千米,小华每小时行5千米,小明到达乙地后立即返回,途中与小华相遇,从出发到相遇一共经过多少时间?
通过以上分类讨论题的练习,可以帮助学生更好地理解分类讨论的思想,提高数学思维能力和解决问题的能力。

初中数学专题“分类讨论”专题练习(含答案)

初中数学专题“分类讨论”专题练习(含答案)

“分类讨论”专题练习1.已知AB 是圆的直径,AC 是弦,AB =2,AC =2,弦AD =1,则∠CAD = .2. 若(x 2-x -1)x +2=1,则x =___________.3. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.4.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( ) A.2a b+ B.2a b- C.2a b +或2a b- D. a+b 或a-b5.同一平面上的四个点,过每两点画一直线,则直线的条数是( ) A.1 B.4 C.6 D.1或4或66. 若||3,||2,,( )a b a b a b ==>+=且则A .5或-1B .-5或1C .5或1D .-5或-1 7.已知抛物线y =ax 2+bx +c 经过点(1,2).(1)若a =1,抛物线顶点为A ,它与x 轴交于两点B 、C ,且△ABC 为等边三角形,求b 的值.(2)若abc =4,且a ≥b ≥c ,求|a |+|b |+|c |的最小值.8.长宽都为整数的矩形,可以分成边长都为整数的小正方形。

例如一个边长2⨯4的矩形:可以分成三种情况: (1)(2)一个长宽为3⨯6的矩形,可以怎样分成小正方形,请画出你的不同分法。

9.已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.分成两个正方形,面积分别为4,4分成8个正方形,面积每个都是1分成5个正方形,1个面积为4,4个面积是110.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A C ,在坐标轴上,60cm OA =,80cm OC =.动点P 从点O 出发,以5cm/s 的速度沿x 轴匀速向点C 运动,到达点C 即停止.设点P 运动的时间为s t . (1)过点P 作对角线OB 的垂线,垂足为点T .求PT 的长y 与时间t 的函数关系式,并写出自变量t 的取值范围;(2)在点P 运动过程中,当点O 关于直线AP 的对称点O '恰好落在对角线OB 上时,求此时直线AP 的函数解析式; (3)探索:以A P T ,,三点为顶点的APT △的面积能否达到矩形OABC 面积的14?请说明理由.答案:1. 15°或105°2. 2、-1、0、-23. 腰长6底边9或腰长8底边54.C5.D6.C7. 解:⑴由题意,a +b +c =2, ∵a =1,∴b +c =1 抛物线顶点为A (-b 2,c -b 24)设B (x 1,0),C (x 2,0),∵x 1+x 2=-b ,x 1x 2=c ,△=b 2-4c >0 ∴|BC|=| x 1-x 2|=| x 1-x 2|2=(x 1+x 2)2-4 x 1x 2=b 2-4c ∵△ABC 为等边三角形,∴b 24 -c = 32b 2-4c即b 2-4c =23·b 2-4c ,∵b 2-4c >0,∴b 2-4c =2 3∵c =1-b , ∴b 2+4b -16=0, b =-2±2 5 所求b 值为-2±2 5⑵∵a ≥b ≥c ,若a <0,则b <0,c <0,a +b +c <0,与a +b +c =2矛盾. ∴a >0. ∵b +c =2-a ,bc =4a∴b 、c 是一元二次方程x 2-(2-a )x +4a =0的两实根.∴△=(2-a )2-4×4a≥0,∴a 3-4a 2+4a -16≥0, 即(a 2+4)(a -4)≥0,故a ≥4. ∵abc >0,∴a 、b 、c 为全大于0或一正二负.①若a 、b 、c 均大于0,∵a ≥4,与a +b +c =2矛盾; ②若a 、b 、c 为一正二负,则a >0,b <0,c <0, 则|a |+|b |+|c |=a -b -c =a -(2-a )=2a -2, ∵ a ≥4,故2a -2≥6当a =4,b =c =-1时,满足题设条件且使不等式等号成立. 故|a |+|b |+|c |的最小值为6. 8.分7种情况画图9.解:(1)由()332)1(+⋅=⋅-m m ,得m =-,因此k =(2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,BE =,BC =因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B ,故不符题意.当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF m m =>,则1AF ,12AD m =,由点(1A --,,得点11(1)D m --,.因此()()32323111=+-+-m m ,解之得1m =10m =舍去),因此点6D ⎛ ⎝⎭.此时的长度不等,故四边形ADBC 是梯形.如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足, 则60DCH =∠,设22(0)CH mm =>,则2DH =,由点(10)C -,,得点22(1)D m -+, 因此()323122=⋅+-m m .解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形.如图3,当过点C 作AB 同理可得,点(2D --,,四边形ABCD 是梯形. 综上所述,函数y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:6D ⎛ ⎝⎭或(1D 或(2D --,. 图1图2 图310.解:(1)在矩形OABC 中,60OA =,80OC =,100OB AC ∴===PT OB ⊥,Rt Rt OPT OBC ∴△∽△. PT OP BC OB ∴=,即560100PT t=,3y PT t ∴== 当点P 运动到C 点时即停止运动,此时t 的最大值为80165=.所以,t 的取值范围是016t ≤≤.(2)当O 点关于直线AP 的对称点O '恰好在对角线OB 上时,A T P ,,三点应在一条直线上(如答图2).AP OB ∴⊥,12∠=∠. Rt Rt AOP OCB ∴△∽△,OP AOCB OC∴=. 45OP ∴=.∴点P 的坐标为(450),设直线AP 的函数解析式为y kx b =+.将点(060)A ,和点(450)P ,代入解析式,得60045.a b k b =+⎧⎨=+⎩,解这个方程组,得4360.k b ⎧=-⎪⎨⎪=⎩, ∴此时直线AP 的函数解析式是4603y x =-+.(3)由(2)知,当4595t ==时,A T P ,,三点在一条直线上,此时点A T P ,, 不构成三角形.故分两种情况:(i )当09t <<时,点T 位于AOP △的内部(如答图3).过A 点作AE OB ⊥,垂足为点E ,由AO AB OB AE =可得48AE =.APT AOP ATO OTP S S S S ∴=--△△△△211160544843654222t t t t t t =⨯⨯-⨯⨯-⨯⨯=-+. 若14APT OABC S S =△矩形,则应有26541200t t -+=,即292000t t -+=.此时,2(9)412000--⨯⨯<,所以该方程无实数根.所以,当09t <<时,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.(答图2)(答图1)(ii )当916t <≤时,点T 位于AOP △的外部.(如答图4)此时2654APT ATO OTP AOP S S S S t t =+-=-△△△△.若14APT OABC S S =△矩形,则应有26541200t t -=,即292000t t --=.解这个方程,得192t +=,2902t -=<(舍去).由于288162525>=,991722t +∴=>=.而此时916t <≤,所以92t +=也不符合题意,故舍去. 所以,当916t <≤时,以A P T ,,为顶点的APT △的面积也不能达到矩形OABC 面积的14. 综上所述,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.。

利用导数求含参数的函数单调区间的分类讨论归类

利用导数求含参数的函数单调区间的分类讨论归类

利用导数求含参数的函数单调区间的分类讨论归类一、根据判别式 △=b ²-4ac 讨论↵例1.已知函数. f(x)=x ³+ax ²+x+1(a∈R),求f(x)的单调区间.解: f ′(x )=3x²+2ax +1,判别式△=b ²-4ac=4(a ²-3),(1)当 a >√3或 a <−√3时,则在 (−∞,−a−√a 2−33)和 (−a+√a 2−33,+∞)上,f'(x)>0, f(x)是增函数;在 (−a−√a 2−33,−a+√a 2−33),f ′(x )<0,f(x)是减函数;(2)当 −√3<a <√3时,则对所有x∈R, f'(x)>0, f(x)是(-∞,+∞)上的增函数;↵二、根据判二次函数根的大小讨论↵例2:已知函数. f (x )=(x²+ax −3a²+3a )eˣ(a ∈R 且 a ≠23),求f(x)的单调区间. 解: f ′(x )=[x²+(a +2)x −2a²+4a ]⋅eˣ,f ′(x )=(0得x=-2a 或x=a-2↵(1)当 a >23时,则-2a<a-2,在(-∞,-2a)和(a-2,+∞)上, f'(x)>0, f(x)是增函数;在(-2a,a-2)上, f'(x)<0, f(x)是减函数;(2)当 a <23时,则a-2<-2a,在(-∞,a -2)和(-2a,+∞)上, f'(x)>0, f(x)是增函数;在(a-2,-2a)上, f'(x)<0, f(x)是减函数;题型归纳总结:求导后是二次函数的形式,如果根的大小不确定,应对根的大小讨论确定单调区间.练习2↵三、根据定义域的隐含条件讨论。

例3:已知函数f(x)=lnx-ax(a∈R),求f(x)的单调区间.解: f ′(x )=1x −a (x ⟩0), (1)当a≤0时, f ′(x )=1x −a >0,在(0,+∞)上,f'(x)>0, f(x)是增函数;(2)当a>0时,令 f ′(x )=1x −a =0,得 x =1a ,题型归纳总结:定义域有限制时,定义域与不等式解集的交集为分类标准讨论。

八年级数学等腰三角形中的分类讨论专项练习

八年级数学等腰三角形中的分类讨论专项练习

八年级数学等腰三角形中的分类讨论专项练习类型一:遇角需讨论1.若等腰三角形的一个外角等于110°则底角的度数为()A.70°或40° B.40°或55° C.55°或70° D.70°2.已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的底角的度数为()A.15°或75° B.70° C.20° D.70°或20°3.若等腰三角形一腰上的高与底边的夹角为70°,则顶角的度数为___________________.4.数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.5.【定义】数学课上,陈老师对我们说:如果1条线段将一个三角形分成2个等腰三角形,那么这条线段就称为这个三角形的“好线”;如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】(1)如图①,在△ABC中,∠A=27°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数;(2)如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(3)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形中最大内角的所有可能值为____________________________________________;(4)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在边BC上,点E 在边AB上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.类型二:遇边需讨论6.若一个等腰三角形的一边长为6cm,周长为30cm,则它的另两边长分别为()A.6cm.,18 cm B.12 cm,12 cmC.6 cm,12 cm D.6 cm,18 cm 或12cm,12 cm a,相交于点O,∠1=50°,点A在直线a上,直线b存在点B,使以点O,7.如图,直线bA,B为顶点的三角形是等腰三角形,这样的点B有()A.1个B.2个C.3个D.4个8.如图,有一个三角形纸片ABC,∠A=80°,D是边AC上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是_________________________.9.在等腰三角形ABC中,如果过顶角的顶点A的一条直线AD将△ABC分割成两个等腰三角形,那么∠BAC=_________________________.10.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:画出3种不同的示意图,并在所画等腰三角形长为3的边上标注数字3)类型三:遇中线需讨论11.已知等腰三角形的底边长为10cm,一腰上的中线把这个等腰三角形的周长分为两部分,其中一部分比另一部分长5cm,那么这个等腰三角形的腰长为____________________cm.12.已知等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边长和腰长.参考答案CD140°5、6、B7、D 8、15。

分类讨论思想练习题

分类讨论思想练习题

分类讨论思想练习题思维的分类是人类对事物进行认识和理解的基础。

分类讨论思想练习题是一种常见的思维训练方法,旨在通过分析和归纳,提高我们对问题的认知和解决能力。

本文将从概念分类、问题分类和解决方案分类三个方面,详细讨论分类讨论思想练习题的应用和意义。

一、概念分类概念分类是对不同事物之间的相似性和区别性进行归纳和总结的过程。

在思考问题时,我们可以根据问题的性质和特点,将问题进行概念分类,以便更好地理解问题的本质和内涵。

以数学问题为例,我们可以将数学问题分为代数问题、几何问题和概率问题等。

通过对不同类型问题的分类,我们能够更好地理解和应用相应的数学知识,提高解决问题的能力。

二、问题分类问题分类是对问题进行细致的分解和划分,以便更好地分析和解决问题。

通过将复杂的问题拆解为若干个相对简单的小问题,我们可以更加有条理地思考和解决问题。

以企业经营问题为例,我们可以将问题分为市场问题、财务问题和人力资源问题等。

通过对不同方面问题的分类,我们可以更加深入地分析和解决企业经营中的各种挑战。

三、解决方案分类解决方案分类是对不同解决方案进行归纳和分类的过程。

在面对问题时,我们可以通过对解决方案的分类,从而找到最适合的解决方法,提升问题解决的效率和质量。

以环境保护问题为例,我们可以将解决方案分为政府干预类、技术创新类和公众参与类等。

通过对不同解决方案的分类,我们能够更有针对性地采取措施,保护好我们的环境。

分类讨论思想练习题的意义:1. 提高思维能力:通过对事物进行分类,使我们更好地理解和认识事物的内涵和特点,提高我们的思维能力。

2. 更有针对性地解决问题:通过对问题进行分类,我们能够更加系统和全面地分析问题,从而找到最适合的解决方法。

3. 增强问题解决的效率:通过对解决方案进行分类,我们能够更加迅速地找到解决问题的途径,提高问题解决的效率。

4. 培养创新意识:分类讨论思想练习题的过程中,我们需要对事物和问题进行归纳和总结,这培养了我们的创新意识和思维能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“分类讨论”练习
1.已知AB 是圆的直径,AC 是弦,AB =2,AC =2,弦AD =1,则∠CAD = .
2. 若(x 2-x -1)x +2=1,则x =___________.
3. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.
4.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a >b ),则此圆的半径为( ) A.
2
a b
+ B.
2
a b
- C.
2a b +或2
a b
- D. a +b 或a -b
5.同一平面上的四个点,过每两点画一直线,则直线的条数是( ) A. 1 B. 4 C. 6 D. 1或4或6
6. 若||3,||2,,( )a b a b a b ==>+=且则
A .5或-1
B .-5或1
C .5或1
D .-5或-1 7.已知抛物线y =ax 2+bx +c 经过点(1,2).
(1)若a =1,抛物线顶点为A ,它与x 轴交于两点B 、C ,且△ABC 为等边三角形,求b 的值. (2)若abc =4,且a ≥b ≥c ,求|a |+|b |+|c |的最小值.
8.长宽都为整数的矩形,可以分成边长都为整数的小正方形。

例如一个边长2⨯4的矩形:
可以分成三种情况: (1)
(2)
(3)
一个长宽为3⨯6的矩形,可以怎样分成小正方形,请画出你的不同分法.
9.已知(1
)A m -,
与(2B m +,是反比例函数k
y x
=图象上的两个点.
4,4
8个正方形,面积每个都是1 分成5个正方形,1个面积为4,4个面积是1
(1)求k 的值;
(2)若点(10)C -,,则在反比例函数k
y x
=
图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.
10.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A C ,在坐标轴上,60cm OA =,80cm OC =.动点P 从点O 出发,以5cm/s 的速度沿x 轴匀速向点C 运动,到达点C 即停止.设点P 运动的时间为s t .
(1)过点P 作对角线OB 的垂线,垂足为点T .求PT 的长y 与时间t 的函数关系式,并写出自变量t 的取值范围;
(2)在点P 运动过程中,当点O 关于直线AP 的对称点O '恰好落在对角线OB 上时,求此时直线AP 的函数解析式;
(3)探索:以A P T ,,三点为顶点的APT △的面积能否达到矩形OABC 面积的
1
4
?请说明理由.。

相关文档
最新文档