中考数学分类讨论题(含答案)

合集下载

中考数学专题复习《勾股定理之折叠问题分类讨论、存在性问题》测试卷(附带答案)

中考数学专题复习《勾股定理之折叠问题分类讨论、存在性问题》测试卷(附带答案)

中考数学专题复习《勾股定理之折叠问题分类讨论存在性问题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 ABC 中 90A ∠= 7AB = 24AC = 点D 为边AC 上一点 将ABC 沿BD 折叠后 点A 的对应点A '恰好落在BC 边上 则线段AD 的长为( )A .407B .214C .16825D .3262.如图是一张直角三角形纸片 已知6AC = 10AB = 将纸片沿AD 折叠 使点C 落在AB 边上的点C '处 则折痕AD 长为( ).A .5B .35C .3D .323.已知2OA = 2OB = 将AOB 沿着某直线CD 折叠后如图所示 CD 与x 轴交于点C 与AB 交于点D 则点C 坐标是( )A .()0.4,0B .()0.5,0C .()0.6,0D .()0.7,04.如图 长方形纸片ABCD 中 6AB = 18AD = 将此长方形纸片折叠 使点D 与点B 重合 点C 落在点H 的位置 折痕为EF 则ABE 的面积为( )A .6B .18C .24D .485.如图 在平行四边形ABCD 中 60B ∠=︒ 4AB = 6AD = E 是AB 边的中点 F 是线段BC 上的动点 将EBF 沿EF 所在直线折叠得到EB F ' 连接B D ' 则B D '的最小值是( )A .4B .6C .2D .26.将长方形纸片ABCD 如图折叠 B C 两点恰好重合在AD 边上的同一点P 处折痕分别是MH NG 若90MPN ∠=︒ 3PM = 5MN = 分别记PHM PNG PMN 的面积为1S 2S 3S 则1S 2S 3S 之间的数量关系是 ( )A .312S S S =+B .312322S S S =+C .32155S S S =-D .2123S S S =-7.如图 直角ABC 中 90C ∠=︒ 3AC = 4BC = 将ABC 沿AB 折叠得ABD △ 点C 的对应点为点D 则点D 到BC 的距离为( )A .125B .245C .9625D .125或245 8.如图 在Rt ABC △纸片中 9043A AB AC ∠=︒==,, 将Rt ABC △纸片按图示方式折叠 使点A 恰好落在斜边BC 上的点E 处 BD 为折痕 则下列四个结论:①BD 平分ABC ∠①AD DE = ①DE EC = ①DEC 的周长为4 其中正确的个数有( )A .1B .2C .3D .4二 填空题9.如图 Rt ABC △中 90ACB ∠=︒ 30B ∠=︒ 4AC = 点P 为AB 上一个动点 以PC 为轴折叠APC △得到QPC 点A 的对应点为点Q 当点Q 落在ABC 内部(不包括边)上时 AP 的取值范围为 .10.如图 在平面直角坐标系中 长方形ABCO 的边OC OA 、分别在x 轴 y 轴上 3AB = 点E 在边BC 上 将长方形ABCO 沿AE 折叠 若点B 的对应点F 恰好是边OC 的三等分点 则点E 的坐标是 .11.如图 有一个直角三角形纸片 两直角边18cm AC = 24cm BC = 现将直角边AC 沿直线AD 折叠 使它落在斜边AB 上 且与AE 重合 则BD = cm .12.已知直线l 为长方形ABCD 的对称轴 5AD = 6AB = 点E 为射线DC 上一个动点 把ADE 沿直线AE 折叠 点D 的对应点D 恰好落在对称轴l 上.则点D 到边CD 的距离是 .13.如图 把长方形ABCD 沿直线BD 向上折叠 使点C 落在C '的位置上 BC '交AD 于E 已知4CD = 8BC = 则EC D '的面积为 .三 解答题14.如图是一张直角三角形ABC 纸片 90C ∠=︒ 6AC = 8BC =.(1)在图1中 将直角边AC 沿AD 折叠 使点C 落在斜边AB 上的点E 处 求CD 的长(2)在图2中 将BFG 沿FG 折叠 使点B 与点A 重合 求BF 的长.15.一数学兴趣小组探究勾股定理在折叠中的应用 如图 将一张长方形纸片ABCD 放在平面直角坐标系中 点A 与原点O 重合 顶点B D 分别在x 轴 y 轴上 P 为边CD 上一动点 连接BP 将BCP 沿BP 折叠 点C 落在点C '处.(1)若4AB = 3AD = 如图1 连接BD 当点C '在线段BD 上时 求点P 的坐标.(2)在(1)的条件下如图2 当点P 与点D 重合时 沿BD 将BCD △折叠得BC D '△ DC '与x 轴交于E 点 求BDE 的面积.(3)若8AB = 4BC = 当ADC '为等腰三角形时 求点P 的坐标.16.如图1 ABC 中 90,BAC AB AC ∠=︒= D E 是直线BC 上两动点 且45DAE =︒∠.探究线段BD DE EC 三条线段之间的数量关系:小明的思路是:如图2 将ABD △沿AD 折叠 得ADF △ 连接EF 看能否将三条线段转化到一个三角形中 …请你参照小明的思路 探究并解决下列问题:(1)猜想BD DE EC 三条线段之间的数量关系 并证明(2)如图3 当动点E 在线段BC 上 动点D 运动在线段CB 延长线上时 其它条件不变 (1)中探究的结论是否发生改变?请说明你的猜想并给予证明.17.已知ABC CDE △≌△ 且90B D ∠=∠=︒ 把ABC 和CDE 拼成如图所示的形状 使点B C D 在同一条直线上 若4AB = 3DE =.(1)求AE 的长(2)将ABC 沿AC 折叠 点B 落在点F 处 延长AF 与CE 相交于点G 求FG 的长.18.如图 在ABC 中 90C ∠=︒ 把ABC 沿直线DE 折叠 使ADE 与BDE 重合.(1)若38A ∠=︒ 则CBD ∠的度数为________(2)若6AC = 4BC = 求AD 的长(3)当(0)AB m m ABC =>,△的面积为24m +时 求BCD △的周长.(用含m 的代数式表示)参考答案:1.B2.B3.B4.C5.C6.C7.C8.C9.234AP <<10.25⎛- ⎝⎭或2⎛- ⎝⎭11.1512.1或9/9或113.614.(1)3CD = (2)254BF15.(1)点P 的坐标为5,32⎛⎫ ⎪⎝⎭ (2)7516(3)当ADC '为等腰三角形时 点P 的坐标为()44,或4⎫⎪⎪⎝⎭.16.(1)222DE BD EC =+(2)不变 222DE BD EC =+17.(1)AE =(2)9418.(1)14︒ (2)133AD =(3)BCD △的周长为4m +.。

2020中考数学冲刺练习-第06讲 分类讨论性问题--含解析

2020中考数学冲刺练习-第06讲 分类讨论性问题--含解析

2020数学中考冲刺专项练习【难点突破】着眼思路,方法点拨, 疑难突破;1.分类讨论是重要的数学思想,也是一种重要的解题策略,很多数学问题很难从整体上去解决,若将其划分为所包含的各个局部问题,就可以逐个予以解决.分类讨论在解题策略上就是分而治之各个击破.2.一般分类讨论的几种情况:(1)由分类定义的概念必须引起的讨论;(2)计算化简法则或定理、原理的限制,必须引起的讨论;(3)相对位置不确定,必须分类讨论;(4)含有多种不定因素,且直接影响完整结论的取得,必须分类讨论.3.分类讨论要根据引发讨论的原因,确定讨论的对象及分类的方法,分类时要做到不遗漏、不重复,善于观察,善于根据事物的特性与规律,把握分类标准,正确分类.应用分类讨论思想解决问题,必须保证分类科学、统一、不重复、不遗漏,并力求最简.运用分类的思想,通过正确的分类,可以使复杂的问题得到清晰、完整、严密的解答.分类讨论应当遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清层次应逐级进行,不越级讨论,其中最重要的一条是“不漏不重”.分类讨论的基本方法是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对各个分类逐步进行讨论,分层进行,获取阶段性结果;最后进行归纳小结,综合得出结论.【名师原创】原创检测,关注素养,提炼主题;【原创1】阅读下列解方程的过程,并完成(1)、(2)小题的解答.解方程:|x﹣2|=3解:当x﹣2<0,即x<2时,原方程可化为:﹣(x﹣2)=3,解得x=﹣1;当x﹣2≥0,即x≥2时,原方程可化为:x﹣2=3,解得x=5;综上所述,方程|x﹣2|=3的解为x=﹣1或x=5.(1)解方程:|2x+1|=5.(2)解方程:|2x+3|﹣|x﹣1|=1.【原创2】已知点P 为线段CB 上方一点,CA ⊥CB ,PA ⊥PB ,且PA =PB ,PM ⊥BC 于M ,若CA =1,PM =4.求CB 的长是 .此题分以下两种情况:①如图1,过P 作PN ⊥CA 于N ,∵PA ⊥PB ,∴∠APB =90°,∵∠NPM =90°,∴∠NPA =∠BPM , 在△PMB 和△PNA 中,⎩⎪⎨⎪⎧∠N =∠BMP ∠NPA =∠BPM PA =PB,∴△PMB ≌△PNA ,∴PM =PN =4=CM ,BM =AN =3,∴BC =7; ②如图2,过P 作PN⊥CA 于N ,∵PA⊥PB, ∴∠APB=90°,∵∠NPM=90°, ∴∠NPA=∠BPM,在△PMB 和△PNA 中,⎩⎪⎨⎪⎧∠N=∠BMP ∠NPA=∠BPM PA =PB ,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=5,可得BC=9.学!科网综上所述,CB=7或9【原创3】如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q 从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A. B. C. D.【原创4】如图所示,在平面直角坐标系中,一次函数 y=kx+b的图像和正比例函数y=3x相交于点A(1,m),且与y轴的交点为C为(0,5),在一次函数y=kx+b图像上存在点B,点B到x轴的的距离为6.(1)求A点的坐标和一次函数的解析式;(2)求△AOB的面积.分析:(1)因为点A的坐标在正比例函数上,利用正比例函数关系求得m的值,又根据一次函数经过点C (0,5),则列二元一次方程组可以解得k、b的值,从而得到一次函数的解析式;(2)点B 到x 轴的的距离为6. 故存有这样的B 点有两种情况,一种在x 轴的上方,一种在x 轴的下方,故连接OB 之后分别得到如图2所示的两种情况,根据三角形面积公式计算即可得到答案.(2)∵一次函数的解析式为y=-2x+5,故与x 轴的交点为(52,0),则OD=52, 第一种情况:当点B 在x 轴上方时,点B 到x 轴的的距离为6.则点B 在第二象限,如图所示,三角形AOB 的面积=三角形OBD 的面积-三角形OAD 的面积, 即AOB S V =15622⨯⨯-15322⨯⨯=154.第二种情况:当点B 在x 轴下方时,点B 到x 轴的的距离为6,则点B 在第四象限,如图所示,三角形AOB 的面积=三角形OBD 的面积+三角形OAD 的面积, 即AOB S V =15622⨯⨯+15322⨯⨯=454.故△AOB 的面积为154或454. 【原创5】如图所示,平面直角坐标中一边长为4的等边△AOB ,抛物线L 经过点A 、O 、B 三点。

2020年中考数学专题训练(四)等腰三角形中的分类讨论思想

2020年中考数学专题训练(四)等腰三角形中的分类讨论思想

专题训练(四)等腰三角形中的分类讨论思想类型一腰与底不明或顶角与底角不明时需分类讨论解题策略:先分不同情况画出图形,再进行计算.当不明确腰和底时,还要利用三角形三边关系进行检验.1.(1)等腰三角形的两边长分别为2和5,则其周长为.(2)等腰三角形的两边长分别为2,3,则其周长为;(3)等腰三角形的两边长分别为2,4,则其周长为.2.若等腰三角形的一个角为80°,则顶角为.3.若等腰三角形的一个角为110°,则顶角为.4.若等腰三角形的一个角为另一个角的两倍,则其底角为.类型二锐角与钝角不明时需分类讨论解题策略:此类题目一般与三角形的高相联系,主要的讨论点在于三角形的形状不同,高的位置不同.5.等腰三角形一腰上的高与另一腰的夹角为45°,求这个三角形的底角的度数.6.已知△ABC中,CA=CB,AD⊥BC于点D,∠CAD=50°,求∠B的度数.7.已知△ABC的高AD,BE所在的直线交于点F,若BF=AC,求∠ABC的度数.类型三画等腰三角形时的分类讨论解题策略:在平面直角坐标系中找一个点,使它与另两个定点构成一个等腰三角形的基本方法有两种:(1)以两定点中的一个为圆心,以两点之间的距离为半径作圆;(2)连接两定点,作线段的垂直平分线.8.在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C(原点除外),使△ABC为等腰三角形,则满足条件的点C有个.9.在平面直角坐标系中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.10.已知点A和B,以点A和点B为两个顶点作等腰直角三角形,一共可以作出个.教师详解详析例112[解析] 本题在解答过程中,要分两种情况:①当2为腰长时,三角形的三边长为2,2,5,显然不能构成三角形;②当5为腰长时,三角形的三边长为5,5,2,能构成三角形,所以其周长为12.1.(1)7或8(2)102.20°或80°3.110°4.45°或72°例2(1)如图①,当△ABC是锐角三角形时,作BD⊥AC于点D.因为∠ABD=45°,所以∠BAC=45°.由三角形的内角和定理可得∠C=67.5°.(2)如图②,当△ABC是钝角三角形时,作BD⊥AC交CA的延长线于点D.因为∠ABD=45°,所以∠BAC=135°.由三角形的内角和定理可得∠C=22.5°.综上,这个三角形的底角的度数为67.5°或22.5°.5.解:当∠C为锐角时,∠B=70°;当∠C为钝角时,∠B=20°.6.解:先证△BDF≌△ADC,①当∠ABC为锐角时,∠ABC=45°;②当∠ABC为钝角时,∠ABC=135°.故∠ABC的度数为45°或135°.例34[解析] 如图,共4个点.7.88.6。

中考数学复习《分类讨论问题》专项检测卷(附带答案)

中考数学复习《分类讨论问题》专项检测卷(附带答案)

中考数学复习《分类讨论问题》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知等腰△ABC 的周长为18㎝,BC=8㎝.若△ABC ≌△A ´B ´C ´,则△A ´B ´C ´中一定有一定有条边等于( )A .7㎝B .2㎝或7㎝C .5㎝D .2㎝或7㎝2.若等腰三角形的两个角度的比是1:2,则这个三角形的顶角为( )度。

A 30 B 60 C 30或90 D 603.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,以过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.54.已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以P 这圆心,且与⊙O 相切的圆的半径一定是( )A .1或5B .1C .5D .不能确定5.若m 为实数,则点P (m -2,m+2)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.相交两圆公共弦长为6,两圆的半径分别为325,则这两圆的圆心距等于( )A .1B .2或6C .7D .1或77.如果关于x 的方程210x mx ++=的两个根的差为1,那么m 等于( )A .2±B .3C .5D .68.平面上A 、B 两点到直线l 的距离分别是2323与则线段AB 的中点C 到直线l 的距离是( )A .2B 3C .23D .不能确定 9.已知22(3)49x m x +-+是完全平方式,则m 的值是( )A .-3B .10C .-4D .10或-410.方程01892=+-x x 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A 12 B 12或15 C 15 D 不能确定二、填空题1.已知AB 是⊙O 的直径,AC 、AD 是弦,且AB =2,AC 2,AD =1,则∠CAD =_______.A BC 2.已知AB 、CD 是⊙O 的两条平行线,AB =12,CD =16,⊙O 的直径为20,则AB 与CD 之间的距离为________.3.方程560x x x ⋅-+=的最大根与最小根的积为______.4.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于________.5.已知ΔABC 中,∠C =90°,AC =3,BC =4,分别以A 和C 为圆心作⊙A 和⊙C ,且⊙C 与直线AB 不相交,⊙A 与⊙C 相切,设⊙A 的半径为r ,那么r 的取值范围是______. 6.已知2225,7x y x y +=+=,则x y -的值等于_______.7.在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,2),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在第_____象限.8.两圆的圆心距d=5,他们的半径分别是一元二次方程0452=+-x x 的两根,判断这两圆的位置关系: .9.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为22的弦AB ,连续PB ,则PB 的长为10.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为22的弦AB ,连续PB ,则PB 的长为11.=+=-+-a 349332无解,求x x ax x 12. ==--+a 2112无解,求x ax13.若两圆相切,圆心距是7,其中一圆的半径为4,则另一圆的半径为_____________.14.一条绳子对折后成右图A 、B, A.B 上一点C ,且有BC=2AC,将其从C 点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为_____三、解答题1.已知实数a ,b 分别满足221122,22,a a b b a b+=+=+求的值. 2.在劳技课上,老师请同学们在一张长为17cm ,宽16cm 的长方形纸板上剪下一个腰长为10cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形上的边上)请你帮助同学们计算剪下的等腰三角形的面积.3.在钝角△ABC 中,AD ⊥BC ,垂足为D 点,且Ad 与DC 的长度为27120x x -+=方程的两个根,⊙O 是△ABC 的外接圆,如果BD 长为(0)a a >.求△ABC 的外接圆⊙O 的面积.ME AB CDN 4.在直角坐标系中,有以A (-1,-1),B (1,-1),C (1,1),D (-1,1)为顶点的正方形,设正方形在直线y =x 上方及直线y=-x+2a 上方部分的面积为S ,(1)求12a =时,S 的值.(2)a 在实数范围内变化时,求S 关于a 的函数关系式.5.在直角坐标系XOY 中,O 为坐标原点,A 、B 、C 三点的坐标分别为A (5,0),B (0,4),C (-1,0),点M 和点N 在x 轴上,(点M 在点N 的左边)点N 在原点的右边,作MP ⊥BN ,垂足为P (点P 在线段BN 上,且点P 与点B 不重合)直线MP 与y 轴交于点G ,MG =BN. (1)求经过A 、B 、C 三点的抛物线的解析式.(2)求点M 的坐标.(3)设ON =t ,△MOG 的面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.(4)过点B 作直线BK 平行于x 轴,在直线BK 上是否存在点R ,使△ORA 为等腰三角形?若存在,请直接写出R 的坐标;若不存在,请说明理由.6.在直角坐标系xoy 中,一次函数32y =+的图象与x 轴交于点A ,与y 轴交于点B .(1)以原点O 为圆心的圆与直线AB 切于点C ,求切点C 的坐标.(2)在x 轴上是否存在点P ,使△PAB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.8.在等腰三角形ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个三角形的底边长为:.9:变换例题12,请问是否在x 轴,y 轴上存在点P,使得P,B,C 三点组成的图形为等腰三角形,请说明理由。

中考数学专题:例+练——第8课时 分类讨论题(含答案)

中考数学专题:例+练——第8课时 分类讨论题(含答案)

第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B .如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

2022年春苏科版九年级数学中考复习《等腰三角形的分类讨论》专题突破训练(附答案)

2022年春苏科版九年级数学中考复习《等腰三角形的分类讨论》专题突破训练(附答案)

2022年春苏科版九年级数学中考复习《等腰三角形的分类讨论》专题突破训练(附答案)一.选择题1.如图,△ABC中,直线l是边AB的垂直平分线,若直线l上存在点P,使得△P AC,△P AB均为等腰三角形,则满足条件的点P的个数共有()A.1B.3C.5D.72.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC上取一点P,使得△P AB 是等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个3.如图,网格中的每个小正方形的顶点称作格点,图中A、B在格点上,则图中满足△ABC 为等腰三角形的格点C的个数为()A.7B.8C.9D.104.若△ABC中刚好有∠B=2∠C,则称此三角形为“可爱三角形”,并且∠A称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明同学们知道这个三角形“可爱角”应该是()A.45°或36°B.72°或36°C.45°或72°D.45°或36°或72°5.若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°6.已知点O在直线AB上,点P在直线AB外,以OP为一边作等腰三角形POM,使第三个顶点M在直线AB上,则点M的个数为()A.2B.2或4C.3或4D.2或3或47.等腰△ABC的一边长为4,另外两边的长是关于x的方程x2﹣10x+m=0的两个实数根,则m的值是()A.24B.25C.26D.24或25二.填空题8.如图,在菱形ABCD中,AB=6,BD=9,M为对角线BD上一动点(M不与B和D重合),过点M作ME∥CD交BC于点E,连接AM,当△ADM为等腰三角形时,ME的长为.9.如图,在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.若∠C=2∠B,且0°<∠BAD<60°,若翻折后得到的△DEF中有两个角相等,则∠BAD=.10.如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB上,∠AED=73°,若点P是等腰△ABC的腰AC上的一点,则当△EDP为等腰三角形时,∠EDP的度数是.11.两块全等的等腰直角三角形如图放置,∠A=90°,DE交AB于点P,E在斜边BC上移动,斜边EF交AC于点Q,BP=3,BC=10,当△BPE是等腰三角形时,则AQ 的长为.12.等腰三角形的一个角为40°,则它的顶角为.三.解答题13.如图所示,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连结AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠BAD=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”).(2)当DC的长为多少时,△ABD与△DCE全等?请说明理由.(3)在点D的运动过程中,△ADE的形状也在改变,请判断当∠BDA等于多少度时,△ADE是等腰三角形.(直接写出结论,不说明理由.)14.在平面直角坐标系中,以坐标原点为圆心的⊙O半径为3.(1)试判断点A(3,3)与⊙O的位置关系,并加以说明.(2)若直线y=x+b与⊙O相交,求b的取值范围.(3)若直线y=x+3与⊙O相交于点A,B.点P是x轴正半轴上的一个动点,以A,B,P三点为顶点的三角形是等腰三角形,求点P的坐标.15.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OC、OB的长分别是一元二次方程x2﹣6x+8=0的两个根,且OC<OB.(1)求点A的坐标;(2)点D是线段AB上的一个动点(点D不与点A,B重合),过点D的直线l与y轴平行,直线l交边AC或边BC于点P,设点D的横坐标为t,线段DP的长为d,求d关于t的函数解析式;(3)在(2)的条件下,是否存在点D,使△ACD为等腰三角形?若存在,请你直接写出点D的坐标,若不存在,请说明理由.16.如图,已知平面直角坐标系内,点A(2,0),点B(0,2),连接AB.动点P从点B出发,沿线段BO向O运动,到达O点后立即停止,速度为每秒个单位,设运动时间为t秒.(1)当点P运动到OB中点时,求此时AP的解析式;(2)在(1)的条件下,若第二象限内有一点Q(a,3),当S△ABQ=S△ABP时,求a的值;(3)如图2,当点P从B点出发运动时,同时有点M从A出发,以每秒1个单位的速度沿直线x=2向上运动,点P停止运动,点M也立即停止运动.过点P作PN⊥y轴交AB于点N.在运动过程中,是否存在t,使得△AMN为等腰三角形?若存在,求出此时的t值,若不存在,说明理由.17.如图,已知直线y=2x+9与y轴交于点A,与x轴交于点B,直线CD与x轴交于点D (6,0),与直线AB相交于点C(﹣3,n).(1)求直线CD的解析式;(2)点E为直线CD上任意一点,过点E作EF⊥x轴交直线AB于点F,作EG⊥y轴于点G,当EF=2EG时,设点E的横坐标为m,直接写出m的值;(3)连接CO,点M为x轴上一点,点N在线段CO上(不与点O重合).当∠CMN=45°,且△CMN为等腰三角形时,直接写出点M的横坐标.18.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)∠OBC=°;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,当△PQB是直角三角形时,求t的值;②若点P、Q的运动路程分别是a,b,当△PQB是等腰三角形时,求出a与b满足的数量关系.19.如图,CD是△ABC的高,CD=8,AD=4,BD=3,点P是BC边上的一个动点(与B、C不重合),PE⊥AB于点E,DF=DE,FQ⊥AB于点F,交AC于点Q,连接QE.(1)若点P是BC的中点,则QE=;(2)在点P的运动过程中,①EF+FQ的值为;②当点P运动到何处时,线段QE最小?最小值是多少?③当△AQE是等腰三角形时,求BE的长.20.如图,在Rt△ABC中,∠ACB=Rt∠,AC=8,AB=10,动点D从点A出发,沿线段AB以每秒2个单位的速度向B运动,过点D作DF⊥AB交BC所在的直线于点F,连结AF,CD.设点D运动时间为t秒.(1)BC的长为;(2)当t=2时,求△ADC的面积.(3)当△ABF是等腰三角形时,求t的值.参考答案一.选择题1.解:分三种情况:如图:当AP=AC时,以A为圆心,AC长为半径画圆,交直线l于点P1,P2,当CA=CP时,以C为圆心,CA长为半径画圆,交直线l于点P3,P4,当P A=PC时,作AC的垂直平分线,交直线l于点P5,∵直线l是边AB的垂直平分线,∴直线l上任意一点(与AB的交点除外)与AB构成的三角形均为等腰三角形,∴满足条件的点P的个数共有5个,故选:C.2.解:分三种情况,如图:∵∠ACB=90°,∠BAC=30°,∴∠ABC=90°﹣∠BAC=60°,当BA=BP时,以B为圆形,BA长为半径画圆,交直线BC于P1,P2两个点,∵BA=BP2,∠ABC=60°,∴△ABP2是等边三角形,∴AB=BP2=AP2,当AB=AP时,以A为圆形,AB长为半径画圆,交直线BC于P2,当P A=PB时,作AB的垂直平分线,交直线BC于P2,综上所述,在直线BC上取一点P,使得△P AB是等腰三角形,则符合条件的点P有2个,故选:B.3.解:如图所示:分三种情况:①以A为圆心,AB长为半径画弧,则圆弧经过的格点C1,C2,C3即为点C的位置;②以B为圆心,AB长为半径画弧,则圆弧经过的格点C3,C4,C5,C6,C7,C8即为点C的位置;③作AB的垂直平分线,垂直平分线没有经过格点;∴△ABC为等腰三角形的格点C的个数为:8,故选:B.4.解:①设三角形底角为α,顶角为2α,则α+α+2α=180°,解得:α=45°,②设三角形的底角为2α,顶角为α,则2α+2α+α=180°,解得:α=36°,∴2α=72°,∴三角形的“可爱角”应该是45°或72°,故选:C.5.解:①50°是底角,则顶角为:180°﹣50°×2=80°;②50°为顶角;所以顶角的度数为50°或80°.故选:D.6.解:如图1中,当∠POB≠90°或∠POB≠60°时,满足条件的点M有2个,如图2中,当∠POB=60°时,满足条件的点M有2个.如图3中,当∠POB=90°时,满足条件的点M有2个.故选:B.7.解:方程x2﹣10x+m=0的有两个实数根,则Δ=100﹣4m≥0,得m≤25,当底边长为4时,另两边相等时,x1+x2=10,∴另两边的长都是为5,则m=x1x2=25;当腰长为4时,另两边中至少有一个是4,则4一定是方程x2﹣10x+m=0的根,代入得:16﹣40+m=0解得m=24.∴m的值为24或25.故选:D.二.填空题8.解:以菱形ABCD的对角线BD所在直线为x轴,以AC所在直线为y轴建立直角坐标系,∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,AC⊥BD,OB=OD=BD=,OA=OC=AC,∴OA===,∴A(0,),D(,0),∴B(﹣,0),∵点M在y轴上,∴设M(m,0),∴AM2=m2+()2=m2+,AD2=62=36,DM2=(﹣m)2,∵ME∥CD,∴∠BME=∠BDC,∠BEM=∠BCD,∴△BME∽△BDC,分三种情况:当AM=AD时,点M与点B重合,不符合题意;当MA=MD时,如图:∵MA2=MD2,∴m2+=(﹣m)2,∴m=,∴M(,0),∵B(﹣,0),∴BM=﹣(﹣)=5,∵△BME∽△BDC,∴=,∴=,∴ME=,当DA=DM时,如图:∵DA2=DM2,∴(﹣m)2=36,∴m=(舍去)或m=﹣,∴M(﹣,0),∵B(﹣,0),∴BM=﹣﹣(﹣)=3,∵△BME∽△BDC,∴=,∴=,∴ME=2,综上所述:ME的长为:或2,故答案为:或2.9.解:∵∠BAC=90°,∵∠C=2∠B,∴∠C=60°,∠B=30°,设∠BAD=x,∴∠ADB=180°﹣∠B﹣∠BAD=150°﹣x,∠ADC=∠B+∠BAD=30°+x,由折叠得:∠B=∠E=30°,∠BAD=∠DAE=x,∠ADB=∠ADE=150°﹣x,∴∠EDF=∠ADE﹣∠ADC=(150°﹣x)﹣(30°+x)=120°﹣2x,∵∠BAC=90°,∠BAD=∠DAE=x,∴∠EAC=∠BAC﹣∠BAE=90°﹣2x,∴∠AFC=180°﹣∠EAC﹣∠C=180°﹣(90°﹣2x)﹣60°=30°+2x,∴∠AFC=∠DFE=30°+2x,分三种情况:当∠EDF=∠DFE,120°﹣2x=30°+2x,∴x=22.5°,∴∠BAD=22.5°,当∠EDF=∠E,120°﹣2x=30°,∴x=45°,∴∠BAD=45°,当∠DFE=∠E,30°+2x=30°,∴x=0°,∵0°<∠BAD<60°,∴x=0°(舍去),综上所述:∠BAD为22.5°或45°,故答案为:22.5°或45°.10.解:∵AB=AC,∠B=50°,∠AED=73°,∵当△DEP是以DE为腰的等腰三角形,①当点P在P1位置时,∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,过D作DG⊥AB于G,DH⊥AC于H,∴DG=DH,在Rt△DEG与Rt△DP1H中,DE=DP1,DG=DH,∴Rt△DEG≌Rt△DP1H(HL),∴∠AP1D=∠AED=73°,∵∠BAC=180°−50°−50°=80°,∴∠EDP1=134°,②当点P在P2位置时,同理证得Rt△DEG≌Rt△DPH(HL),∴∠EDG=∠P2DH,∴∠EDP2=∠GDH=180°−80°=100°,综上∠EDP的度数为134°或或100°.故答案为:134°或100°.11.解:如图,当BP=BE=3时,∵△ABC和△DEF都是等腰直角三角形,BC=10,∴AB=AC=5,∠B=∠C=∠DEF=45°,CE=10﹣3,∵∠DEC是△BEP的外角,∴∠DEF+∠QEC=∠B+∠BPE,∴∠BPE=∠QEC,∴△BPE∽△CQE,∴,∴,∴CQ=10﹣3,∴AQ=AC﹣CQ=5﹣(10﹣3)=8﹣10,当BE=PE时,如图,∵△ABC和△DEF都是等腰直角三角形,BC=10,∴AB=AC=5,∠B=∠C=∠DEF=45°,∵BE=PE,∴∠B=∠BPE=45°,∴∠BEP=180°﹣45°﹣45°=90°,∴∠PEC=90°,∠QEC=45°,∴△BEP和△EQC都是等腰直角三角形,∵BP=3,∴BE=PE=3,∴EC=BC﹣BE=10﹣3=7,∴EQ=QC=,∴AQ=AC﹣CQ=5﹣=,当PB=PE时,如图,∵△ABC和△DEF都是等腰直角三角形,BC=10,∴AB=AC=5,∠B=∠C=∠DEF=45°,∵PB=PE,∴∠B=∠PEB=45°,∴∠QEC=180°﹣45°﹣45°=90°,∴△BEP和△EQC都是等腰直角三角形,∵BP=3,∴BE=BP=×3=6,∴CE=BC﹣BE=10﹣6=4,∴QC=CE=4,∴AQ=AC﹣CQ=5﹣4=,综上所述,AQ的长为8﹣10或或,故答案为:8﹣10或或.12.解:当40°角为顶角时,则顶角为40°,当40°角为底角时,则顶角为180°﹣40°﹣40°=100°,故答案为:40°或100°.三.解答题13.解:(1)∵∠B=40°,∠BDA=115°,∴∠BAD=180°﹣∠B﹣∠BDA=180°﹣115°﹣40°=25°,由图形可知,∠BDA逐渐变小,故答案为:25°;小;(2)当DC=2时,△ABD≌△DCE,理由如下:∵AB=2,∴AB=DC,∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE是等腰三角形,当DA=DE时,∠DAE=∠DEA=70°,∴∠BDA=∠DAE+∠C=70°+40°=110°;当AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不合题意;当EA=ED时,∠EAD=∠ADE=40°,∴∠BDA=∠DAE+∠C=40°+40°=80°,综上所述,当∠BDA的度数为110°或80°时,△ADE是等腰三角形.14.解:(1)∵A(3,3),∴OA=3,∵3>3,∴点A在⊙O外;(2)如图,当直线y=x+b与⊙O相切于点C时,连接OC,则OC=3,∵∠CBO=45°,∴OB=3,∴直线y=x+b与⊙O相交时,﹣3<b<3;(3)∵直线y=x+3与⊙O相交于点A,B.∴A(0,3),B(﹣3,0),∴AB=3,当BA=BP=3时,∴P1(﹣3+3,0),P2(﹣3﹣3,0),当AB=AP时,∵AO⊥x轴,∴BO=OP,∴P3(3,0),当PB=P A时,点P与O重合,∴P4(0,0),∴点P的坐标为(﹣3+3,0)或(﹣3﹣3,0)或(3,0)或(0,0).15.解:(1)解方程x2﹣6x+8=0,可得x1=2,x2=4,∵OC、OB的长分别是一元二次方程x2﹣6x+8=0的两个根,且OC<OB,∴OC=2,OB=4,∵∠ACB=90°,∴∠ACO+∠BCO=∠ACO+∠CAO=90°,∴∠CAO=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即,解得AO=1,∴A(﹣1,0);(2)由(1)可知C(0,2),B(4,0),A(﹣1,0),设直线AC解析式为y=kx+b,∴,解得,∴直线AC的解析式为y=2x+2,同理可求得直线BC解析式为y=﹣x+2,当点D在线段OA上时,即﹣1<t≤0时,则点P在直线AC上,∴P点坐标为(t,2t+2),∴d=2t+2;当点D在线段OB上时,即0<t<4时,则点P在直线BC上,∴P点坐标为,∴d=﹣t+2;综上可知d关于t的函数关系式为d=;(3)存在.由勾股定理得,AC==,当AC=AD=,点D在点A的右侧时,D点的坐标为(﹣1,0),当CA=CD时,∵CO⊥AD,∴OD=OA=1,∴D点的坐标为(1,0),当DA=DC时,如图,OD=DA﹣OA=DC﹣1,在Rt△COD中,DC2=OD2+OC2,即DC2=(DC﹣1)2+22,解得,DC=,∴OD=﹣1=,∴D点的坐标为(,0),综上所述,△ACD为等腰三角形时,D点的坐标为(﹣1,0)或(1,0)或(,0).16.解:(1)∵B(0,2),∴OB的中点为(0,),当点P运动到OB中点时,P(0,),设直线AP的函数解析式为y=kx+,将A(2,0)代入y=kx+得,2k+=0,∴k=﹣,∴直线AP的函数解析式为y=﹣x+;(2)由点A(2,0),B(0,2)可知,直线AB的解析式为y=﹣x+2,∵S△ABQ=S△ABP,∴直线PQ∥AB,∴直线PQ的解析式为y=﹣x+,当y=3时,∴﹣,解得x=1﹣,∴a=1﹣;(3)当AN=MN时,设PN交直线x=2于H,则AM=2AH,∴t=2(2﹣t),解得t=,当AN=AM时,∵OA=2,OB=2,∴AB=4,∴∠ABO=30°,∵BP=t,∴BN=2t,∴2t+t+4,解得t=,当MN=AM时,∵∠MAN=30°,∴AN=t,∴2t+=4,解得t=8﹣4,综上:t=或或8﹣4.17.解:(1)∵点C(﹣3,n)在直线y=2x+9上,∴n=2×(﹣3)+9=3,∴C(﹣3,3),设直线CD的解析式为y=kx+b,∵C(﹣3,3),D(6,0),∴,解得:,∴直线CD的解析式为y=x+2;(2)如图1,设点E的横坐标为m,∵点E在直线CD上,EF⊥x轴交直线AB于点F,EG⊥y轴于点G,∴E(m,m+2),F(m,2m+9),G(0,m+2),∴EF=|(2m+9)﹣(m+2)|=|m+7|,EG=|m|,∵EF=2EG,∴|m+7|=|m|,∴m=﹣或﹣21;(3)如图2,∵∠CMN=45°,且△CMN为等腰三角形,∴CN=MN或CM=MN或CN=CM,①当CN=MN时,则∠MCN=∠CMN=45°,∵C(﹣3,3),∴∠COM=45°,∴∠CMO=90°,即CM⊥x轴,∴M1(﹣3,0),即点M的横坐标为﹣3;②当CM2=M2N2时,则∠M2CN2=∠M2N2C=67.5°,∵∠OM2N2=∠M2N2C﹣∠COM2=67.5°﹣45°=22.5°,∴∠CM2O=∠CM2N2+∠OM2N2=45°+22.5°=67.5°,∴∠M2CN2=∠CM2O,∴OM2=OC=3,∴M2(﹣3,0),即点M的横坐标为﹣3;③当CN=CM时,∠CMN=∠CNM=45°,∴∠MCN=90°,此时,点N必与点O重合,不符合题意;综上所述,点M的横坐标为﹣3或﹣3.18.解:(1)在Rt△COB中,∠COB=90°,OB=2,BC=4,∴∠BOC=30°,∴∠OBC=90°﹣∠BOC=60°,故答案为:60;(2)①由题意,得AP=2t,BQ=t,∵A(﹣3,0),B(2,0),∴AB=5,∴PB=5﹣2t,∵∠OBC=60°≠90°∴只有∠PQB=90°和∠QPB=90°两种情况,当∠PQB=90°时,∵∠OBC=60°,∴∠BPQ=30°,∴BQ=BP,即t=(5﹣2t),解得:t=;当∠QPB=90°时,∵∠OBC=60°,∴∠BQP=30°,∴PB=BQ,即5﹣2t=t,解得:t=2;综上所述,当t=或t=2时,△PQB是直角三角形;②如图:当a<5时,∵AP=a,BQ=b,∴BP=5﹣a,∵△PQB是等腰三角形,∠OBC=60°,∴△PQB是等边三角形,∴b=5﹣a,即a+b=5;如图3:当a>5时,∵AP=a,BQ=b,∴BP=a﹣5,∵△PQB是等腰三角形,∠QBP=120°,∴BP=BQ,即a﹣5=b,∴a﹣b=5,综上所述:当△PQB是等腰三角形时,a与b满足的数量关系为:a+b=5或a﹣b=5.19.解:(1)如图1,设DG=a,∵CD⊥AB,PE⊥AB,QF⊥AB,∴QF∥CD∥EF,∵DE=DF,∴EG=QG,∴DG是△EFQ的中位线,∴QF=2a,∵tan∠BAC==,即=,∴AF=a,DF=DE=4﹣a,∵BD=3,∴BE=3﹣(4﹣a)=a﹣1,∵PE∥CD,BP=PC,∴BE=ED,∴a﹣1=4﹣a,∴a=,∴FQ=2a=5,EF=2(4﹣a)=8﹣2a=8﹣5=3,∴EQ==;故答案:;(2)①如图2,过点Q作QH⊥CD于H,∵FQ⊥AB,CD⊥AB,∴∠QFD=∠FDH=∠QHD=90°,∴四边形FDHQ为矩形,∴DF=QH=DE,FQ=DH,∵tan∠ACD====,∴CH=2QH=EF,∴EF+FQ=DH+CH=8:故答案为:8;②由①得:EF+FQ=8,设EF=x,则FQ=8﹣x,∴EQ===,当x=4时,EQ取最小值为=4,此时,DE=DF=2,∴BE=3﹣2=1,∵PE∥CD,∴==,Rt△BDC中,由勾股定理得:BC==,∴PB=,当PB=时,线段QE最小,最小值是4;③设DE=m,BE=3﹣m,DF=m(0≤m≤3),∴AE=4+m,AF=4﹣m,FQ=8﹣2m,AC===4,AQ=(4﹣m),当△AEQ为等腰三角形时,存在以下三种情况:i)AQ=AE,则4+m=(4﹣m),解得:m=6﹣2,∴BE=3﹣(6﹣2)=2﹣3;ii)AQ=QE,∵QF⊥AE,∴AF=EF,∴4﹣m=2m,∴m=,∴BE=3﹣=;iii)AE=EQ,则4+m=,7m2﹣40m+48=0,解得:m1=4(舍),m2=,∴BE=3﹣=;综上所述,BE的长为2﹣3或或.20.解:(1)在Rt△ABC中,∠ACB=90°,AC=8,AB=10,由勾股定理得:BC===6,故答案为:6;(2)如图1,过点C作CH⊥AB于H,S△ABC=AC•BC=AB•CH,则×8×6=×10×CH,解得:CH=,当t=2时,AD=2×2=4,则S△ADC=×4×=;(3)当F A=FB时,DF⊥AB,∴AD=AB=×10=5,∴t=5÷2=;当AF=AB=10时,∠ACB=90°,则BF=2BC=12,∴AB•DF=BF•AC,即×10×DF=×12×8,解得:DF=,由勾股定理得:AD===,∴t=÷2=;当BF=AB=10时,∵BF=10,BC=6,∴CF=BF﹣BC=10﹣6=4,由勾股定理得:AF===4,∵BF=BA,FD⊥AB,AC⊥BF,∴DF=AC=8,∴AD===4,∴t=4÷2=2;综上所述,△ABF是等腰三角形时,t的值为或或2.。

课标版数学中考第二轮专题复习-分类讨论型试题(含答案

课标版数学中考第二轮专题复习-分类讨论型试题(含答案

分类讨论型问题探究分类思想是解题的一种常用思想方法,它有利于培养和发展学生思维的条理性、缜密性、灵活性,使学生学会完整地考虑问题、化整为零地解决问题,学生只有掌握了分类的思想方法,在解题中才不会出现漏解的情况.例1(2005年黑龙江) 王叔叔家有一块等腰三角形的菜地,腰长为40米,一条笔直的水渠从菜地穿过,这条水渠恰好垂直平分等腰三角形的一腰,水渠穿过菜地部分的长为15米(水渠的宽不计),请你计算这块等腰三角形菜地的面积.分析:本题是无附图的几何试题,在此情况下一般要考虑多种情况的出现,需要对题目进行分情况讨论。

分类思想在中考解题中有着广泛的应用,我们在解题中应仔细分析题意,挖掘题目的题设,结论中可能出现的不同的情况,然后采用分类的思想加以解决. 解:(1)当等腰三角形为锐角三角形时(如图1),由勾股定理得AE =25(m )由DE ∥FC 得,FCEDAC AE =,得FC =24(m ) S △ABC =12 ³40³24=480(m 2)(2)当等腰三角形为钝角三角形时(如图2)同理可得,S △ABC =1264³24=768(m 2)说明:本题主要考查勾股定理、相似三角形的判定及性质等内容。

练习一 1、(2005年资阳市)若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( )A.2a b + B.2a b - C.2a b +或2a b - D. a+b 或a-b2.(2005年杭州)在右图的几何体中, 上下底面都是平行四边形, 各个侧面都是梯形, 那么图中和下底面平行的直线有( )(A) 1条 (B) 2条 (C) 4条 (D) 8条3(2005年潍坊市)已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( ).A .5cmB .11cmC .3cmD .5cm 或11cm图1图2A4.(2005年北京)在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ²,则∠BCA的度数为____________。

2023年九年级中考数学分类讨论专题之等腰三角形中的分类讨论思想专练

2023年九年级中考数学分类讨论专题之等腰三角形中的分类讨论思想专练

中考数学分类讨论专题之等腰三角形中的分类讨论思想专练一.选择题(共10小题)1.已知一个等腰三角形的三边长分别为3x-2,4x-3,7,则这个等腰三角形的周长为()A.23 B.19.5或23C.9或23 D.9或19.5或232.已知方程x 2 -6x+8=0的根,分别是等腰三角形的底边和腰长,则该三角形的周长为()A.6 B.10 C.8 D.124.已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定5.等腰△ABC的一边长为4,另外两边的长是关于x的方程x 2 -10x+m=0的两个实数根,则m的值是()A.24 B.25 C.26 D.24或25为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.在△ABC中,∠A的相邻外角是110°,要使△ABC为等腰三角形,则底角∠B的度数是()A.70 B.55°C.70°或55°D.60°8.等腰三角形的一个外角等于100°,则这个三角形的三个内角分别为()A.80°、80°、20°B.80°、50°、50°C.80°、80°、20°或80°、50°、50°D.以上答案都不对9.如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个10.等腰三角形的一个外角等于100°,则这个三角形的三个内角分别是()A.50°,50°,50°B.80°,80°,20°C.100°,100°,20°D.50°,50°,80°或80°,80°,20°二.填空题(共5小题)11.等腰三角形的三边长分别为m-2,2m+1,8,则等腰三角形的周长为________ .12.等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________ .13.如图,在矩形ABCD中,AB=4,BC=10,点P在BC上,且PB=3,以AP为腰作等腰三角形APM,使得点M落在矩形ABCD边上,则CM=________ .14.如图,在Rt△ABC中,∠C=90°,点E、F分别是边AB、AC上一点,且AF=EF.若∠CFE=72°,则∠B= ________ °.15.如图,在△ABC中,∠ACB=90°,AC=9,BC=5,点P为△ABC内一动点.过点P作PD⊥AC于点且S △PBC = 152,则D,交AB于点E.若△BCP为等腰三角形,PD的长为________ .三.解答题(共5小题)16.如图矩形ABCD中,AB=2,AD=4,点P是边AD上一点,联结BP,过点P作PE⊥BP,交DC于E点,将△ABP沿直线PE翻折,点B落在点B′处,若△B′PD为等腰三角形,求AP的长.17.(1)已知4a 2 -a-4=0,求代数式(2a-3)(2a+3)+(a-1) 2 +(1+a)(2-a)的值;(2)已知a,b满足a 2 +b 2 -10a-4b+29=0,且a,b为等腰三角形△ABC的边长.求△ABC的周长.18.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)当点P在线段AB上时,BP= ________cm.(用含t的代数式表示)(2)若△BCP为直角三角形,则t的取值范围是________ .(3)若△BCP为等腰三角形,直接写出t的值.(4)另有一动点Q从点C开始,按B→A→C→B的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.请直接写出t为何值时,直线PQ把△ABC的周长分成相等的两部分.19.如图,矩形ABCD,点P是对角线AC上的动点(不与A、C重合),连接PB,作PE⊥PB交射线DC于点E.已知AD=6,AB=8.设AP的长为x.(1)如图1,PM⊥AB于点M,交CD于点N.求证:△BMP∽△PNE.是否是定值?若是,请求出这个值;若不是,请说明理(2)试探究:PEPB由.(3)当△PCE是等腰三角形时,请求出所有x的值.20.如图,CD是△ABC的高,CD=8,AD=4,BD=3,点P是BC边上的一个动点(与B、C不重合),PE⊥AB于点E,DF=DE,FQ⊥AB于点F,交AC于点Q,连接QE.(1)若点P是BC的中点,则QE= ________ ;(2)在点P的运动过程中,①EF+FQ的值为________ ;②当点P运动到何处时,线段QE最小?最小值是多少?③当△AQE是等腰三角形时,求BE的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.5.(上海市)在△ABC中,AB=AC=5,3cos5B .如果圆O的半径为10,且经过点B、C,那么线段AO的长等于.6.(•威海市)如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

故顶角可能是50°或80°.【答案】D .2.【解析】在没有明确腰长和底边长的情况下,要分两种情况进行讨论,当腰长是3cm ,底边长是6cm 时,由于3+3不能大于6所以组不成三角形;当腰长是6cm ,地边长是3cm 时能组成三角形.【答案】D3.【解析】由折叠图形的轴对称性可知,B F BF '=,B FE BFE '∠=∠,从而可求得B′E=BF ;第(2)小题要注意分类讨论.【答案】(1)证:由题意得B F BF '=,B FE BFE '∠=∠,在矩形ABCD 中,AD BC ∥,B EF BFE '∴∠=∠,B FE B EF ''∴∠=∠,B F B E ''∴=.B E BF '∴=.(2)答:a b c ,,三者关系不唯一,有两种可能情况:(ⅰ)a b c ,,三者存在的关系是222a b c +=.证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=.在ABE △中,90A ∠=,222AE AB BE ∴+=. AE a =,AB b =,222a b c ∴+=.(ⅱ)a b c ,,三者存在的关系是a b c +>.证:连结BE ,则BE B E '=.由(1)知B E BF c '==,BE c ∴=.在ABE △中,AE AB BE +>, a b c ∴+>.4.【解析】圆与斜边AB 只有一个公共点有两种情况,1、圆与AB 相切,此时r =2.4;2、圆与线段相交,点A 在圆的内部,点B 在圆的外部或在圆上,此时3<r≤4。

【答案】 3<r≤4或r =2.4 5.【解析】本题考察了等腰三角形的性质、垂径定理以及分类讨论思想。

由AB=AC=5,3cos 5B =,可得BC 边上的高AD 为4,圆O 经过点B 、C 则O 必在直线AD 上,若O 在BC 上方,则AO=3,若O 在BC 下方,则AO=5。

【答案】3或5.6.【解析】在两圆相切的时候,可能是外切,也可能是内切,所以需要对两圆相切进行讨论.【答案】解:(1)当0≤t≤5.5时,函数表达式为d =11-2t ;当t >5.5时,函数表达式为d =2t -11.(2)两圆相切可分为如下四种情况:①当两圆第一次外切,由题意,可得11-2t =1+1+t ,t =3;②当两圆第一次内切,由题意,可得11-2t =1+t -1,t =311; ③当两圆第二次内切,由题意,可得2t -11=1+t -1,t =11;④当两圆第二次外切,由题意,可得2t -11=1+t +1,t =13.所以,点A 出发后3秒、311秒、11秒、13秒两圆相切. 7.【解析】建立函数关系实质就是把函数y 用含自变量x 的代数式表示。

要求线段的长,可假设线段的长,找到等量关系,列出方程求解。

题中遇到“如果以A N D ,,为顶点的三角形与BME △相似”,一定要注意分类讨论。

【答案】(1)取AB 中点H ,联结MH , M 为DE 的中点,MH BE ∴∥,1()2MH BE AD =+. 又AB BE ⊥,MH AB ∴⊥. 12ABM S AB MH ∴=△,得12(0)2y x x =+>;(2)由已知得DE =以线段AB 为直径的圆与以线段DE 为直径的圆外切, 1122MH AB DE ∴=+,即11(4)222x ⎡+=+⎣. 解得43x =,即线段BE 的长为43; (3)由已知,以A N D ,,为顶点的三角形与BME △相似,又易证得DAM EBM ∠=∠.由此可知,另一对对应角相等有两种情况:①ADN BEM ∠=∠;②ADB BME ∠=∠.①当ADN BEM ∠=∠时,AD BE ∥, ADN DBE ∴∠=∠.DBE BEM ∴∠=∠.DB DE ∴=,易得2BE AD =.得8BE =;②当ADB BME ∠=∠时,AD BE ∥, ADB DBE ∴∠=∠.DBE BME ∴∠=∠.又BED MEB ∠=∠, BED MEB ∴△∽△. DE BE BE EM ∴=,即2BE EM DE =,得2222(x x =+-.解得12x =,210x =-(舍去).即线段BE 的长为2.综上所述,所求线段BE 的长为8或2.8.【解析】①解决翻折类问题,首先应注意翻折前后的两个图形是全等图,找出相等的边和角.其次要注意对应点的连线被对称轴(折痕)垂直平分.结合这两个性质来解决.在运用分类讨论的方法解决问题时,关键在于正确的分类,因而应有一定的分类标准,如E 为顶点、P 为顶点、F 为顶点.在分析题意时,也应注意一些关键的点或线段,借助这些关键点和线段来准确分类.这样才能做到不重不漏.③解决和最短之类的问题,常构建水泵站模型解决.【答案】(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=++= 设点P 的坐标为(0)n ,,其中0n >, 顶点(12)F ,,∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =, 221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,. 24(01)2a ∴=-+.解得2a =.∴抛物线的解析式为22(1)2y x =-+②如图②,当EP FP =时,22EP FP =, 22(2)1(1)9n n ∴-+=-+.解得52n =-(舍去). ③当EF EP =时,53EP =<,这种情况不存在.综上所述,符合条件的抛物线解析式是22(1)2y x =-+.(3)存在点M N ,,使得四边形MNFE 的周长最小.如图③,作点E 关于x 轴的对称点E ',作点F 关于y 轴的对称点F ',连接E F '',分别与x 轴、y 轴交于点M N ,,则点M N ,就是所求点. (31)E '∴-,,(12)F NF NF ME ME '''-==,,,.43BF BE ''∴==,. FN NM ME F N NM ME F E ''''∴++=++=22345=+=. 又5EF = ∴55FN NM ME EF +++=+MNFE 的周长最小值是55。

相关文档
最新文档