山东省临清三中高中数学 2.3.1 平面向量基本定理教学案 必修4
山东省临清市高中数学全套教案必修4:2.1 平面向量的实际背景及基本概念

2.1平面向量的实际背景及基本概念教材分析:向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题。
向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用。
因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等。
之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法。
本章共分五大节。
第一节是“平面向量的实际背景及基本概念”,内容包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量。
本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。
在“向量的物理背景与概念”中介绍向量的定义;在“向量的几何表示”中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等。
教学目标:1、了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力. 教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念. 教 具:多媒体或实物投影仪,尺规授课类型:新授课教学过程:一、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了. A B C D分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:(一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?这时各向量的终点之间有什么关系?(三)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. A(起点) B (终点)a说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关.........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)......说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固:例1 书本86页例1.例2判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)例3下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.例4 如图,设O 是正六边形ABCDEF 的中心,分别写出图中与向量OA 、OB 、OC 相等的向量. 变式一:与向量长度相等的向量有多少个?(11个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(FE DO CB ,,)课堂练习:1.判断下列命题是否正确,若不正确,请简述理由.①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形当且仅当AB =DC⑤一个向量方向不确定当且仅当模为0;⑥共线的向量,若起点不同,则终点一定不同.解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB 、AC 在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图AC 与BC 共线,虽起点不同,但其终点却相同.2.书本88页练习三、小结 :1、 描述向量的两个指标:模和方向.2、 平行向量不是平面几何中的平行线段的简单类比.3、 向量的图示,要标上箭头和始点、终点.四、课后作业:书本88页习题2.1第3、5题。
山东省临清市高中数学全套教案必修4:2.3.1 平面向量的基本定理

2.3.1 平面向量基本定理教学目标:(1)了解平面向量基本定理;(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量 解决实际问题的重要思想方法;(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.教学重点:平面向量基本定理.教学难点:平面向量基本定理的理解与应用.教学过程:一、 复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量三、讲解范例:例1 已知向量1e ,2e 求作向量 2.51e +32e . 例2 如图 ABCD 的两条对角线交于点M ,且AB =a,AD =b ,用a ,b 表示MA ,MB ,MC 和MD 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:OA +OB +OC +OD =4OE例4(1)如图,OA ,OB 不共线,AP =t AB (t R)用OA ,OB 表示OP .(2)设OA u u u r u u r 、OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R u u u r u u u r u u u r .求证:A 、B 、P 三点共线.例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b u r r r 、使与c 共线.四、课堂练习:见教材五、小结(略)六、课后作业(略):七、板书设计(略)八、教学反思。
人教版高中数学必修4第二章平面向量-《2.3.1平面向量基本定理》教案(4)

《平面向量基本定理》的教学设计一 教学目的:1 了解平面向量基本定理及其意义;2 理解平面上任意一个向量都可以由这个平面内两个不共线的向量21,e e 线性表示,初步掌握应用向量解决实际问题的重要思想方法;3 通过作图体会基底的不唯一性;二 教学重点与难点1 重点:平面内的任意向量可以由两个不共线的向量表示2 难点:平面向量基本定理的理解3 教学方法:教师主要引导、学生主体思维为主线,学生动手操作。
4 教学手段:使用多媒体辅助教学,使书本的图形“动”起来,加强了教学的直观性。
使用方格纸让学生画图,使学生能更加直观的理解平面向量的基本定理。
三 教学过程1 复习以提问的方式复习旧知:求向量和的方法,向量的数乘运算;设计意图:让学生思考并回答这两个问题,为这节课的内容做准备。
2 新课引入在学生复述了上述知识之后,让学生在方格纸上画出212,3e e ,并画出2123e e +; 设计意图:让学生通过自己动手做图,再对向量的求和和数乘进行复习,加强学生对旧知的巩固;教师活动:动画演示刚刚所做的图,设计意图:从动画演示上可以让学生从直观上对利用平行四边形法则来求向量的和有了更加直观的印象和理解,同时,利用平行四边形法则来求两个向量的和向量也是这节课在解决问题的主要方法之一。
教师活动:提出问题:“既然我们给定了212,3e e,那么很容易就可以画出1232e e a +=,如果我们给出a ,能否用21,e e 表示a 呢?”3 新课讲解教师活动:让学生在所给的方格上画出,a b ,,c d ,,f g ,并分别用21,e e 来表示,为了方便起见21,e e 是两个互相垂直的向量。
学生活动:分小组来讨论并画出所给向量。
设计意图:让学生初步体会到平面内的任意向量都可以分解成两个向量的和向量。
教师活动:在幻灯片上打出两个不共线的向量21,e e ,和第三个向量a,让学生讨论怎样由21,e e 来表示向量a 。
高中数学 第2章 平面向量 2.3.1 平面向量基本定理教案(含解析)新人教A版必修4-新人教A版高

2.3.1 平面向量基本定理学 习 目 标核 心 素 养1.了解基底的含义,理解并掌握平面向量基本定理,会用基底表示平面内任一向量.(重点)2.掌握两个向量共线的定义以及两向量垂直的定义.(难点)3.两个向量的夹角与两条直线所成的角.(易混点) 1.通过作图教学引导学生自主得出平面向量基本定理,培养学生直观想象和数据分析的核心素养.2.通过向量夹角和基底的学习,培养了学生直观想象和逻辑推理的核心素养.1.平面向量基本定理条件 e 1,e 2是同一平面内的两个不共线向量 结论对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2基底 不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底 思考:0能与另外一个向量a 构成基底吗? [提示] 不能,0不能作为基向量.已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角. (1)X 围:向量a 与b 的夹角的X 围是0°≤θ≤180°. (2)当θ=0°时,a 与b 同向. (3)当θ=180°时,a 与b 反向. 3.垂直如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .1.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) A .e 1-e 2,e 2-e 1B .2e 1-e 2,e 1-12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1-e 2D [A 、B 、C 中两个向量都满足a =λb ,故选D.] 2.给出下列三种说法:①一个平面内只有一组不共线的向量可作为表示该平面内所有向量的基底;②一个平面内有无数组不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量.其中,说法正确的为( )A .①②B.②③ C .①③ D .①②③B [根据基底的概念,可知②③正确.]3.若△ABC 是等边三角形,则AB →与BC →的夹角的大小为.120° [由向量夹角的定义知AB →与BC →的夹角与∠B 互补,大小为120°.] 4.如图所示,向量OA →可用向量e 1,e 2表示为.4e 1+3e 2 [由图可知,OA →=4e 1+3e 2.]用基底表示向量【例1】 (1)D ,E ,F 分别为△ABC 的边BC ,CA ,AB 上的中点,且BC →=a ,CA →=b ,给出下列结论:①AD →=-12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④EF →=12a .其中正确的结论的序号为.(2)如图所示,▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.思路点拨:用基底表示平面向量,要充分利用向量加减法的三角形法则和平行四边形法则.(1)①②③ [如图,AD →=AC →+CD →=-b +12CB →=-b -12a ,①正确;BE →=BC →+CE →=a +12b ,②正确;AB →=AC →+CB →=-b -a ,CF →=CA →+12AB →=b +12(-b -a )=12b -12a ,③正确; ④EF →=12CB →=-12a ,④不正确.](2)DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .1.若本例(2)中条件不变,试用a ,b 表示AG →. [解] 由平面几何的知识可知BG →=23BF →,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a=a +23b -13a=23a +23b . 2.若本例(2)中的基向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.[解]DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示向量的三个依据和两个“模型”(1)依据:①向量加法的三角形法则和平行四边形法则; ②向量减法的几何意义; ③数乘向量的几何意义. (2)模型:向量的夹角【例2】 (1)已知向量a ,b ,c 满足|a|=1,|b|=2,c =a +b ,c ⊥a ,则a ,b 的夹角等于.(2)若a≠0,b ≠0,且|a |=|b |=|a -b |,求a 与a +b 的夹角. 思路点拨:可作出平面图形利用向量夹角定义及平面几何知识来解决.(1)120° [作BC →=a ,CA →=b ,则c =a +b =BA →(如图所示), 则a ,b 夹角为180°-∠C . ∵|a|=1,|b|=2,c ⊥a ,∴∠C =60°,∴a ,b 的夹角为120°.](2)[解] 由向量运算的几何意义知a +b ,a -b 是以a ,b 为邻边的平行四边形两条对角线.如图,∵|a |=|b |=|a -b |,∴∠BOA =60°.又∵OC →=a +b ,且在菱形OACB 中,对角线OC 平分∠BOA , ∴a 与a +b 的夹角是30°.两向量夹角的实质与求解方法:(1)两向量夹角的实质:从同一起点出发的两个非零向量构成的不大于平角的角,结合平面几何知识加以解决.(2)求解方法:利用平移的方法使两个向量起点重合,作出两个向量的夹角,按照“一作二证三算”的步骤求出.提醒:寻找两个向量的夹角时要紧扣定义中“共起点”这一特征,避免出现错误.在△ABC 中,若∠A =120°,AB =AC ,则AB →与BC →夹角的大小为.150° [如图所示,因为∠A =120°,AB =AC ,所以∠B =30°,所以AB →与BC →的夹角为180°-∠B =150°.]平面向量基本定理的唯一性及其应用若存在实数λ1,λ2,μ1,μ2及不共线的向量e 1,e 2,使向量a =λ1e 1+λ2e 2,a =μ1e 1+μ2e 2,则λ1,λ2,μ1,μ2有怎样的大小关系?提示:由题意λ1e 1+λ2e 2=μ1e 1+μ2e 2,即(λ1-μ1)e 1=(μ2-λ2)e 2,由于e 1,e 2不共线,故λ1=μ1,λ2=μ2.【例3】 如图所示,在△OAB 中,OA →=a ,OB →=b ,点M 是AB 上靠近B 的一个三等分点,点N 是OA 上靠近A 的一个四等分点.若OM 与B N 相交于点P ,求OP →.思路点拨:可利用OP →=tOM →及OP →=O N →+N P →=O N →+s N B →两种形式来表示OP →,并都转化为以a ,b 为基底的表达式.根据任一向量基底表示的唯一性求得s ,t ,进而得OP →.[解]OM →=OA →+AM →=OA →+23AB →=OA →+23(OB →-OA →)=13a +23b .因为OP →与OM →共线, 故可设OP →=tOM →=t 3a +2t 3b .又N P →与N B →共线,可设N P →=s N B →,OP →=O N →+s N B →=34OA →+s (OB →-O N →)=34(1-s )a +s b ,所以⎩⎪⎨⎪⎧34(1-s )=t 3,s =23t ,解得⎩⎪⎨⎪⎧t =910,s =35,所以OP →=310a +35b .1.将本例中“点M 是AB 上靠近B 的一个三等分点”改为“点M 是AB 上靠近A 的一个三等分点”,“点N 是OA 上靠近A 的一个四分点”改为“点N 为OA 的中点”,求BP ∶P N 的值.[解]B N →=O N →-OB →=12a -b ,OM →=OA →+AM →=OA →+13AB →=OA →+13(OB →-OA →)=23OA →+13OB →=23a +13b .因为O ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使BP →=λB N →=λ2a -λb ,OP →=μOM →=2μ3a +μ3b , 所以OB →=OP →+PB →=OP →-BP →=⎝ ⎛⎭⎪⎫2μ3-λ2a +⎝ ⎛⎭⎪⎫μ3+λb ,又OB →=b ,所以⎩⎪⎨⎪⎧2μ3-λ2=0,μ3+λ=1,解得⎩⎪⎨⎪⎧λ=45,μ=35,所以BP →=45B N →,即BP ∶P N =4∶1.2.将本例中点M ,N 的位置改为“OM →=12MB →,N 为OA 的中点”,其他条件不变,试用a ,b 表示OP →.[解]AM →=OM →-OA →=13OB →-OA →=13b -a ,B N →=O N →-OB →=12OA →-OB →=12a -b .因为A ,P ,M 三点共线,所以存在实数λ使得AP →=λAM →=λ3b -λa ,所以OP →=OA →+AP →=(1-λ)a +λ3b .因为B ,P ,N 三点共线,所以存在实数μ使得BP →=μB N →=μ2a -μb ,所以OP →=OB →+BP →=μ2a +(1-μ)b .即⎩⎪⎨⎪⎧1-λ=μ2,λ3=1-μ,解得⎩⎪⎨⎪⎧λ=35,μ=45,所以OP →=25a +15b .1.任意一向量基底表示的唯一性的理解: 条件一平面内任一向量a 和同一平面内两个不共线向量e 1,e 2条件二 a =λ1e 1+μ1e 2且a =λ2e 1+μ2e 2结论⎩⎪⎨⎪⎧λ1=λ2,μ1=μ2 2.任意一向量基底表示的唯一性的应用:平面向量基本定理指出了平面内任一向量都可以表示为同一平面内两个不共线向量e 1,e 2的线性组合λ1e 1+λ2e 2.在具体求λ1,λ2时有两种方法:(1)直接利用三角形法则、平行四边形法则及向量共线定理. (2)利用待定系数法,即利用定理中λ1,λ2的唯一性列方程组求解.1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.(2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.1.下列四种说法正确的个数为( )①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的; ④e 1,e 2是平面α内两个不共线向量,若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0.( )A .1B .2C .3D .4C [零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,根据平面向量基本定理可知①③④正确.]2.已知平行四边形ABCD ,则下列各组向量中,是该平面内所有向量基底的是( ) A .AB →,DC →B .AD →,BC → C .BC →,CB →D .AB →,DA →D [由于AB →,DA →不共线,所以是一组基底.]3.若a 与b 的夹角为45°,那么2a 与-3b 的夹角是.135° [2a 与a 方向相同,-3b 与b 方向相反,所以2a 与-3b 的夹角为45°的补角135°.]4.如图,已知△ABC 中,D 为BC 的中点,E ,F 为BC 的三等分点,若AB →=a ,AC →=b ,用a ,b 表示AD →,AE →,AF →.[解]AD →=AB →+BD →=AB →+12BC →=a +12(b -a )=12a +12b ;AE →=AB →+BE →=AB →+13BC →=a +13(b -a )=23a +13b ;AF →=AB →+BF →=AB →+23BC →=a +23(b -a )=13a +23b .。
高中数学必修四《平面向量基本定理》教学设计

2.3.1 平面向量基本定理一、教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因。
二、教学目标1、知识与技能了解平面向量的基本定理及其意义;理解平面里的任何一个向量都可以用两个不共线的向量来表示.2、过程与方法初步掌握应用向量解决问题的重要思想方法;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3、情感态度与价值观通过平面向量基本定理的探求过程,培养学生的观察能力、抽象概括能力、合作交流能力.三、重点难点教学重点: 平面向量基本定理.教学难点: 平面向量基本定理的运用.四、教学设计(一)导入新课引入1:已知向量12,e e 为两个已知向量,向量121242,2a e e b e e =+=+, 则a与b 什么位置关系?因为2a b =,由向量共线定理知a 与b 共线.引入2:在∆ABC 中,点D,E,F 分别为边AB,BC,CA 的中点,直线BF 与CD 交于点O, 求证:直线AE 过点O.(二)探究新知如下图,向量12,e e 为已知向量思考:(1) 向量,b c 怎样用向量12,e e 来表示?(2) 任意向量a 怎样用向量12,e e 来表示? (3) 任意向量a 能用向量b,d 来表示吗?活动: 教师引导学生作图,根据向量的加减法运算及向量三角形、平OD BEF行四边形法则可得(1)12-32b e e =+,12c -2-e e =+(6); (2)对于向量a 又该如何用12,e e 表示呢?向量12,e e 前的系数该是多少呢?设OC =a ,过向量a 的终点C 分别作平行于向量12,e e 的直线,与格线分别交于点M 、N ;由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ11e ,ON =λ22e .由于ONOMOC +=,所以a =λ11e +λ22e .也就是说,任一向量a 都可以表示成a =λ11e +λ22e 的形式,任意向量a 都可以转化为向量12,e e 的线性组合形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量12,e e 表示出来.当12,e e 确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.(3)引导学生发现向量b,d 共线,若向量a 能用向量b,d 来表示,则向量a 与向量b,d 共线,而图中向量a 与向量b,d 不共线,故向量a 不能用向量b,d 来表示.由以上探究我们得到:平面向量基本定理 如果12,e e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e我们把不共线的向量12,e e 叫做表示这一平面内所有向量的一个基底(base).定理探究:(1) 向量12,e e 可以共线吗?唯一吗?(2) 若a与e或2e平行的非零向量,怎样表示?若a是零向量呢?1(3) 实数λ1,λ2的值唯一吗?探究结果:(1)向量,e e不可以共线(由两个向量共线的条件可知12,e e不可以12为零向量),向量,e e不唯一,即同一平面内基底由无数多组;12(2) 若a与e平行,则λ2为零,若a与2e平行,则λ1为零,若a为1零向量,则λ1=λ2=0;(3) 实数λ1,λ2的值唯一。
人教版高中数学必修4第二章平面向量-《2.3.1平面向量基本定理》教案(2)

《平面向量基本定理》的教学设计(新)一、教学课题:普通高中课程标准实验教科书必修4、§2.3.1平面向量基本定理、第一课时。
二、教学目标:1知识与技能(1) 了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题; (2) 培养学生分析、抽象、概括的推理能力。
2过程与方法(1) 通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法; (2) 通过本节学习,体会用基底表示平面内任一向量的方法。
3情感.态度与价值观(1)通过本节学习,培养学生的理性思维,培养学生独立思考及勇于探求、敢于创新的精神、培养主动学习的意识;(2)通过平面向量基本定理的探求过程,培养学生观察能力、抽象概括能力、独立思考的能力,激发学生学习数学的兴趣。
三、教学重点、难点重点:平面向量基本定理的应用难点:对平面向量基本定理的发现和形成过程,数学思想的渗透。
四、教学方法与手段探求式教学法、多媒体手段 五、教学过程 1、创设情景以媒体展示常娥一号的成功升空,引出火箭的发射运动过程中,始终能分解为两个方向上的运动(两个不共线向量的线性组合)切入主题 2、数学探究探究一 给定一个向量是否一定可以用“一个”已知非零向量表示? (复习向量共线定理)探究二 平面内给定一个向量是否一定可以用“两个”已知不共线向量表示??aB NCOA =1e OM =1a 1eOB =2e ON =2a 2eOC =a =OM +ON =1a 1e +2a 2e 再问::一对实数1a 、2a 是否惟一?(学生讨论并回答)点评:由作图中分解结果的惟一,决定了两个分解向量的惟一。
由平行向量基本定理,有且只有一个实数1a ,使得OM =1a 1e 成立,同理2a 也惟一,即一组数1a 、2a 惟一确定。
学生进一步尝试概括定理:如果1e 和2e 是平面内的两个不平行的向量,那么对于该平面内的给定向量a 存在惟一的一对实数1a 、2a ,使a =1a 1e +2a 2e平面向量基本定理:如果1e 和2e 是一平面内的两个不共线的向量,那么该平面内的任一向量a ,存在惟一的一对实数1a 、2a ,使a =1a 1e +2a 2e说明:1、我们把不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底。
人教B版高中数学必修4精品2.3.1《平面向量基本定理》教学设计

《2.3.1 平面向量基本定理》教学设计一、教学内容解析:本节内容“平面向量基本定理”是人教版B版必修4第二章内容,本节内容在该章中起到承上启下的作用,既是对前面向量知识的综合运用,又是下一节“向量的正交分解与直线坐标运算”的理论基础,还是平面向量线性运算过渡的桥梁,更是运用向量知识解决几何问题的关键。
本节内容在高考中一般以选择题,填空题形式考查,试题难度不高。
二、教学目标设置:知识与技能1.理解平面向量的基底的意义与作用,学会选择恰当的基底,将简单图形中的任一向量表示为一组基底的线性组合;2.了解平面向量的基本定理,初步利用定理解决问题。
过程与方法1.通过平面向量基本定理,认识平面向量的“二维”性,并由此进一步体会“某一方向上的向量的一维性”,培养“维数”的基本观念;2.通过对平面向量基本定理的探究过程,让学生体会数学定理的产生、形成过程,体验定理所蕴含的转化思想。
情感态度价值观1.培养学生主动探求知识、合作交流的意识,感受数学思维的全过程;2. 改善数学学习信念,提高学生学习数学的兴趣。
三、学生学习情况分析:知识储备:对向量的加法,数乘向量已有认识。
技能储备:已经初步掌握向量加法的三角形法则和平行四边形法则的作图过程。
心理储备:在向量的加法,数乘向量的学习过程中,已经初步接触了数形结合的思想。
但是学生对向量加、减法及数乘等运算的意义与作用认识不够,容易将向量的运算与数的运算混淆。
如果不加启发与引导,学生是不会从“基底”、“元”、“维数”这些角度去理解平面向量基本定理的深刻内涵,也难以认识这个定理在今后用向量方法解决问题中的重要作用。
四、教学策略分析:数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
教师在教学过程中是指导者和合作者,基于本节课的特点,为了更好的互动,创设合理的情境,引出新概念,本节采用启发式教学,讲练结合,多媒体辅助教学,在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、思考、交流、反思、学会学习,发展能力。
高中数学必修四2.3.1平面向量基本定理导学案

高中数学必修四2.3.1平面向量基本定理导学案2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理【学习目标】1.了解平面向量基本定理;2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;3.能够在具体问题中适当选取基底,使其他向量都能够用基底来表达. 【新知自学】知识回顾:1、实数与向量的积:实数λ与向量的积是一个,记作;规定:(1)|λ|=(2)λ>0时,λ与方向;λλ=0时,λ=2.运算定律:结合律:λ(μ)=;分配律:(λ+μ)=,λ(+)=3.向量共线定理:向量与非零向量共线,则有且只有一个非零实数λ,使=λ.新知梳理:1.给定平面内两个向量,,请你作出向量3+2,-2,2.由上,同一平面内的任一向量是否都可以用形如λ1+λ2的向量表示?平面向量基本定理:如果,是同一平面内的两个向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使不共线的向量,叫做这一平面内表示所有向量的一组基底。
思考感悟:(1)基底不惟一,关键是;不同基底下,一个向量可有不同形式表示;(2)基底给定时,分解形式惟一.λ1,λ2是被,,唯一确定的数.3.向量的夹角:平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?已知两个非零向量、,作,,则∠AOB=,叫向量、的夹角。
当=,、同向;当=,、反向;统称为向量平行,记作如果=,与垂直,记作⊥。
对点练习:1.设、是同一平面内的两个向量,则有()A.、一定平行B.、的模相等C.同一平面内的任一向量都有=λ+μ(λ、μ∈R)D.若、不共线,则同一平面内的任一向量都有=λ+u(λ、u∈R)2.已知向量=-2,=2+,其中、不共线,则+与=6-2的关系()A.不共线B.共线C.相等D.无法确定3.已知λ1>0,λ2>0,、是一组基底,且=λ1+λ2,则与,与.(填共线或不共线).【合作探究】典例精析:例1:已知向量,求作向量 2.5+3变式1:已知向量、(如图),求作向量:(1)+2. (2)-+3例2:如图,,不共线,且,用,来表示变式2:已知G为△ABC的重心,设=,=,试用、表示向量.【课堂小结】知识、方法、思想【当堂达标】1.设是已知的平面向量且,关于向量的分解,其中所列述命题中的向量,和在同一平面内且两两不共线,有如下四个命题:①给定向量,总存在向量,使;②给定向量和,总存在实数和,使;③给定单位向量和正数,总存在单位向量和实数,使;④给定正数和,总存在单位向量和单位向量,使;上述命题中的则真命题的个数是()()A.1B.2C.3D2.如图,正六边形ABCDEF中,=A.B.C.D.3.在中,,,,为的中点,则____________.(用表示)【课时作业】1、若、不共线,且λ+μ=(λ、μ),则()A.=,=B.=0,=0C.=0,=D.=,=02.在△ABC中,AD→=14AB→,DE∥BC,且DE与AC相交于点E,M 是BC的中点,AM与DE相交于点N,若AN→=xAB→+yAC→(x,y∈R),则x+y等于()A.1B.12C.14D.183.在如图所示的平行四边形ABCD中,AB→=a,AD→=b,AN=3NC,M为BC的中点,则MN→=________.(用a,b表示).4.如图ABCD的两条对角线交于点M,且=,=,用,表示,,和5.设与是两个不共线向量,=3+4,=-2+5,若实数λ、μ满足λ+μ=5-,求λ、μ的值.6如图,在△ABC中,AN→=13NC→,P是BN上一点,若AP→=mAB→+211AC→,求实数m的值.7.如图所示,P是△ABC内一点,且满足条件AP→+2BP→+3CP→=0,设Q为CP延长线与AB的交点,令CP→=p,用p表示CQ→.【延伸探究】已知ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1 平面向量基本定理
教学目标:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量
解决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用.
教学过程:
一、 复习引入:
1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa
(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0
时λa =
2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb
3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,
使b =λa .
二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内
的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .
探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2) 基底不惟一,关键是不共线;
(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量
三、讲解范例:
例1 已知向量1e ,2e 求作向量-2.51e +32e .
例 2 如图 ABCD 的两条对角线交于点M ,且=a
,=b ,用a ,b 表示,,和
例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是
任意一点,求证:+++=4
例4(1)如图,,不共线,=t (t ∈R)
用,表示.
(2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且
(1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线.
例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样
的实数,d a b λμλμ=+、使与c 共线.
四、课堂练习:见教材
五、小结(略)
六、课后作业(略):
七、板书设计(略)
八、教学反思
2.3.1平面向量的基本定理
课前预习学案
一、预习目标:通过回顾复习向量的线性运算,提出新的疑惑.为新授内容做好铺垫.
二、预习内容
(一)复习回顾
1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa
(1)|λa |= ;(2)λ>0时λa 与a 方向 ;λ<0时λa 与a 方向 ;λ=0时λa =
2.运算定律 结合律:λ(μa )= ;分配律:(λ+μ)a = , λ(a +b )= .
3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,
使 .
(二)阅读教材,提出疑惑:
如何通过向量的线性运算来表示出平面内的任意向量?
课内探究学案
一、学习目标 1、知道平面向量基本定理;
2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步应用向量解决实际问题;
3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示.
学习重难点:
1. 教学重点:平面向量基本定理
2. 教学难点:平面向量基本定理的理解与应用
二、学习过程
(一)定理探究:
平面向量基本定理: 探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的 ;
(2) 基底不惟一,关键是 ;
(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式 . 即λ1,λ2是被a ,1e ,2e 唯一确定的数量
(二)例题讲解
例1 已知向量1e ,2e 求作向量-2.51e +32e .
例2、如图 ABCD 的两条对角线交于点M ,且=a ,=b ,用a ,b 表示,,
和
例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4
例4(1)如图,,不共线,=t (t ∈R)用,表示.
(2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线.
例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线.
(三)反思总结
课后练习与提高
1.设e 1、e 2是同一平面内的两个向量,则有( )
A.e 1、e 2一定平行
B .e 1、e 2的模相等
C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )
D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R )
2.已知向量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系
A.不共线
B.共线
C.相等
D.无法确定
3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于( )
A.3
B.-3
C.0
D.2
4.已知a、b不共线,且c =λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1= .
5.已知λ1>0,λ2>0,e1、e2是一组基底,且a =λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).
参考答案
1、D
2、B
3、A
4、0
5、不共线不共线。