地层漏失钻井处理技术在沙特KHURAIS地区的应用
沙尔湖煤田第四系地层漏失堵漏的应用实践

在钻探施 工中泥浆起着关键作用 , 是保护孔壁稳 定, 预 防渗漏 的主要 手段 。在砂 岩 、 砾 石层 轻 微漏 失 地
百 米不 等 。钻探 施 工 中漏失层 位 多 、 裂隙大, 遇 到砂 土 、 砾 石 层孔 隙率 大 、 裂隙多, 易造成 严 重 漏失 , 故 在施 工 中是 常要 解 决的 问题 。
关 键词 : 砂砾 石 层 ; 钻孔 漏 失 ; 泥 浆溶 蚀 ; 堵漏
中 图分类 号 : T E 2 4 9 文 献标 识码 : B 文章 编 号 : 1 0 0 4 — 5 7 1 6 ( 2 0 1 4 ) 0 4 — 0 0 3 3 — 0 3 1 矿 区工程地 质 条件 矿 区第 四 系地 层 分 布 于本 区 中北 部 的 地表 一浅 表 层 处 。 上部 为松 散 胶 结 的砾 石 、 砂、 黄 土层 ; 下 部 为 一
西部探矿 工程
2 0 1 4 年第 4 期
Na - C M C要 提 前 按 配 方 浓 度 侵 泡 成 溶 液 。 泥 浆 主 要 性 能 为失 水 量 8 mI / 3 0 mi n, 泥 饼 厚度 0 . 8 mm, 粘度 2 3 s , 比重在 0 . 9 8 , p H值 l 3 。 4 . 1 . 2 泥 浆材 料 的选 用 及作 用
3 . 1 渗 透性 漏 失
4 . 1 . 1 渗透性漏失地层泥浆配制及性能 沙尔湖矿区渗透性漏失层 主要 出现在砂岩 、 砾石 层, 矿 区 泥浆 配 置 方 法 是 7 0 0  ̄8 0 0 k g 清 水 中加 入 纯碱 4 k g , 膨润土4 0  ̄5 0 k g , 腐植 酸钾 4 0  ̄5 0 k g , 聚丙稀酸钾
地质钻探堵漏新技术的应用岳盈括

地质钻探堵漏新技术的应用岳盈括发布时间:2021-11-03T07:17:38.812Z 来源:《建筑学研究前沿》2021年16期作者:岳盈括[导读] 地质钻探是一项重要的工作。
此项工作的复杂性高、专业性强,因而在地质钻探工作中,地层漏失的出现频次相对较高。
这一问题如若得不到及时有效的处理,将会打乱钻井液的循环作业,孔内压力的平衡状态被打破,所引起的钻井事故更会引起严重的人员伤亡和经济损失。
山东省地质矿产勘查开发局第五地质大队山东省泰安市 271000摘要:地质钻探是一项重要的工作。
此项工作的复杂性高、专业性强,因而在地质钻探工作中,地层漏失的出现频次相对较高。
这一问题如若得不到及时有效的处理,将会打乱钻井液的循环作业,孔内压力的平衡状态被打破,所引起的钻井事故更会引起严重的人员伤亡和经济损失。
现阶段,随着地质钻探方面的技术越发成熟,市场上出现了越来越多的堵漏新技术。
这些新技术的出现,对预防地层漏失现象有着重要的作用,未来有着巨大的发展潜力。
关键词:地质钻探;堵漏;新技术;应用1钻孔漏失问题产生的原因 1.1客观原因地质钻探工作中的钻孔漏失问题较为常见,这一问题所引起的地质钻探问题非常突出。
相关研究表明,引发钻孔漏失现象的原因非常多,但总体上包含了客观因素和主观因素。
从客观性角度出发,钻孔漏失问题在很大程度上是地质钻探现场的地质水文条件所引起的,再进一步细分,岩层内孔隙环境、溶隙性环境、裂隙环境或者上覆岩层含水等,都会在一定程度上引发钻孔漏失问题。
因此,在地质钻探工作推进的过程中,为了提升工作成效,应在前期的工作中全面做好调查,详细了解地质钻探现场的地质水文条件,制订切实可行的地质钻探方案。
比如,以某煤田为研究对象,此煤田现场属于奥陶统峰峰组,地层厚度在245m左右,包含了石灰岩、白云质灰岩、局部泥质灰岩、石膏层;下二叠统山西组地层厚度约为70m,其中,分布有泥质岩、石灰岩、砂岩与煤层;中二同上石盒子组厚度达520m,包含砂岩、泥岩与砂质岩,在地质钻孔作业中,岩石孔隙和裂隙发育明显,加剧了钻井液漏失。
沙特高温高压钻井难点与技术应用研究

质情 况, 深入分析该 区块复杂地质情 况, 相应地制定合理 井身结构 、 选用配套钻井工艺技术 , 配套 固 井技 术 , 提 高该地 区钻 井 速度 与效 率 、 低 钻 井作 业成 本 , 提 高勘 探 开发 效 率 。沙特 区块 的勘 探 难 点与 技 术 应 用研 究对其 他 项 目有极 其 重要 的借 鉴 意 义。
高温 高压增 加井控 风 险 。在 下部 地层 钻井 过程 中 ,
将钻遇多个高压气层 , 井底温度超过 1 6 0  ̄ ( 2 , 井底压力超 过7 0 MP a U n — a y z a h 地层和 S a r a h 等高压地层 易发生气侵 、 井涌 , 对井
钻 井液 性 能 的维 护处 理 较 为 困难 , 若 维护 处 理不 当 , 易 造成 井 下复 杂 、 损害储 层 并增 大钻 井 液 的成 本 费用 。 高 温 高压 增 加井 下 工具 选 择难 度 。高 温高 压 对入 井 的井 下 工 具 仪 器 也 是 一项 严 峻考 验 , 特 别 是像 井下 马达 、 尾管 悬挂 器 、 MW D等这 类 专用 工具 仪 器 , 给钻 井
西部 探矿 工程
2 0 1 4 年第4 期
沙特 高温 高压钻 井难点 与技 术应 用研 究
王 学杰
伸 石化 集 团 国际石 油勘探 开发 有 限公 司, 北京 1 0 0 0 2 9 ) 摘 要 : 沙特 B 区块 是 中石 化 国际勘 探 公 司与 沙特 阿 美公 司合 作 的一 个 勘探 区块 , 也是 国 际勘探 公
度大 、 钻 井周 期 长 。已完 钻 井 的井 深 接 近 6 0 0 0 m, 井 眼
新的滑行钻进技术在沙特阿拉伯的水平井钻井中成功应用

新的滑⾏钻进技术在沙特阿拉伯的⽔平井钻井中成功应⽤ABSTRACTWith the focus on continuous drilling optimization, a collaborative effort was implemented to analyze and assess drilling challenges encountered while drilling extended horizontal wells in the Khurais field in Saudi Arabia. The primary goal was to enhance the efficiency of conventional downhole motor systems for directional drilling in the challenging horizontal reservoir section.Khurais field is located in a remote area in the central part of Saudi Arabia, approximately 200 km from the Saudi capital, Riyadh, and 300 km from the Eastern Province port city of Dammam. The producer wells are drilled in the middle of the field and the water injector wells are drilled close to the field boundaries.An average of 12 rigs worked simultaneously throughout the duration of the project to drill and complete the required increment wells. The horizontal wells comprise the producers, trilateral producers and power water injectors. The wells are drilled to an average measured depth (MD) of 14,000 ft, with an average of 6,500 ft of open hole section across the reservoir. The 6?” horizontal open hole section is particularly challenging. It is drilled with steerable mud motors with the assistance of real time geosteering and logging while drilling tools to maintain the horizontal open hole section of the well close to the top of the reservoir within a window of 3 ft.The fracture intervals, coupled with high permeability, make the drilling of this section particularly challenging, as mud losses are frequently encountered in this section. The main difficulties to surmount to improve the efficiency of the directional drilling process are high drag and differential sticking.To overcome these challenges, the drilling team utilized a new sliding technology that interacts with the drilling rig top drive to break the static friction, improving the weight transfer to the bit and thereby increasing the rate of penetration (ROP). Through its virtual elimination of differential sticking and its reduction of buckling problems, this system helps to deliver weight smoothly down to the bit. Additional benefits of this innovative technology are the prevention of mud motor stalling, a steady orientation of the tool face and easier steering.This article describes the innovative system utilized to improve the ROP during the sliding process by almost 50% and presents real cases supported by field data. It also underscores the importance of post-action reviews and rig crew training in the achievement of record ROP in the sliding mode. Historical cases are presented, and the benefits of the application of this technology in these wells are explained.INTRODUCTIONAn innovative slider system was trial tested in the 6?”horizontal section of Khurais’ power water injector wells across the reservoir. This section was drilled through the Arab formation, consisting of four members composed of porous layers of carbonates separated by anhydrite. Because special equipment was to be run across the open hole section, it was very important to drill a smooth well path with minimum tortuosity and to avoid abrupt changes in well direction (high doglegs). The equipment that subsequently was run in this well consisted of an open hole completion with up to six open hole packers and 35 inflow control devices to isolate fractures and improve injection distribution. In addition, acid stimu-lation jobs were conducted with coiled tubing were usually done across this interval. Figure 1 shows a schematic of a typical power water injector well.This section was drilled with roller cone bits and steerable motors with an outer diameter of 5” and a rotor stator lobe ratio of 6/7 — this configuration represents a low revolution, high torque motor. The motor included a bend at the motorbearing housing at approximately 7 ft from the bit. TheFig. 1. Design of a typical power water injector well.Successful Application of New Sliding Technology for Horizontal Drilling inSaudi ArabiaAuthors: Roberto H. Tello Kragjcek, Abdullah S. Al-Dossary, Waleed G. Kotb and Abdelsattar H. El-Gamaldistance from the bent housing of the motor to the bit determines the maximum angle change that can be reached. The typical adjustable bent housing angle utilized was 1.5°. In some cases, the required dogleg rate in the horizontal section could reach up to 6°/100 ft; this occurred when adjustmentsin the well profile were required to maintain the horizontal open hole section of the well close to the top of the reservoir, within a window of 3 ft.The horizontal sections were drilled using real-time data transmission, geosteering and logging while drilling technology. This collective approach required support from a dedicated team of geologists that was in permanent contact with directional drillers and drilling engineers through a special online platform. The geosteering team requested adjustments to the well trajectory based on real-time logging data transmitted from the rigs.Directional wells drilled with motors are drilled with drillstring rotation (rotating mode) are not required when corrections in well trajectory, and without drillstring rotation (sliding mode) when a change or adjustment to the well trajectory is needed. Conventional drilling in sliding mode is much less efficient than drilling in the rotating mode. In the sliding mode, the motor must be oriented before a slide can begin; orienting the motor involves two steps. First, the drillstring must be oriented in the required direction; it is rotated gradually to place the motor bend in the desired direction. Second, as the bit direction is being established, the torque has to be released from the drillstring so the bit orientation will stay relatively constant. If the torque is not worked out of the drillstring, it may cause the tool face orientation to change as the drillstring is advanced for drilling. The bit is initially pointed in a direction clockwise from the desired drilling direction, thereby counteracting the reactive torque of the motor. This process is often difficult and inefficient to implement1.Based on an analysis of approximately 280 horizontal wells drilled with steerable motors in Khurais field, it was found that approximately 30% of the drilling time was spent in the sliding drilling mode. In a sliding mode, hole cleaning is less efficient because there is no pipe rotation and cuttings accumulate on the low side of the hole and produce excessive friction that makes it progressively more difficult for the drillstring to slide smoothly. This friction also makes it difficult to keep a constant weight on the bit (WOB); consequently, the stalling of the steerable motor becomes an issue. Maintaining an acceptable rate of penetration (ROP) while preventing the motor from stalling requires that the motor be operated in a narrow load range. To minimize the problems with maintaining WOB and preventing motor stalling, roller cone bits were used in the Khurais project. Rotary steerable systems (RSSs) with point-the-bit technology were also utilized in the Khurais project. This technology was only used to drill the last part of the extended horizontal sections, when it was difficult to continue drilling with steerable motors due to the high friction that made the sliding process very difficult. The cost of RSS tools is much higher than that of the conventional steerable motors; the new technology presented in this article allows the drilling of higher horizontal displacements with conventional steerable motors, thereby minimizing the overall directional drilling costs.BRIEF DESCRIPTION OF THE STANDARD DRILLING PROCESSThe directional drilling plan for a typical Khurais well requires landing the 7” liner on top of the reservoir at 88°. The 6?”horizontal section is drilled to 89° at a 2°/100 ft buildup rate, and the angle is held to total depth (TD) at approximately14,000 ft measured depth (MD). To maintain the well trajectory in a window of 3 ft close to the top of the reservoir, a series of rotating and sliding intervals is required, following the instructions of the specialized geosteering center.Tool face orientation can shift with changes in WOB and torque; as weight is applied to the bit, torque at the bit increases. Therefore, the overall gross ROP is much less during sliding mode with a steerable motor than during rotating mode. It is not unusual to have the sliding ROP be as much as 70% less than the rotating ROP2.To execute a slide, the driller normally stops drilling, picks up the drill bit off the bottom and reciprocates the drillstring to release trapped torque. The downhole motor, with its bent housing approximately 7 ft above the bit, experiences an equal force in the opposite direction (left) of the bit rotation, called reactive torque. To compensate for the effect of the reactive torque on the bit, the driller then must reorient the tool face (clockwise) and control the slack off at the surface to achieve the desired tool face angle. The average clockwise direction compensation required was about 40° in the wells drilled in Khurais field.Weight is transferred to the bit by slacking off at the surface. The difference between the weight that the bit actually receives and the amount slacked off at the surface is the drag force that opposes pipe movement. Controlling bit weight in the sliding mode is difficult because of the friction (drag) in extended sections, which can cause the WOB to be released suddenly. If asudden transfer of weight to the bit exceeds what the downhole motor can handle, the motor will stall and the bit rotation will come to a sudden halt. Such stalling conditions can damage the rubber of the steerable motor stator; the amount of damage depends on the amount of the weight transferred to the bit and the number of times the motor stalls. Sudden transfers of weight to the bit are often difficult to prevent1, 2.In conventional sliding mode, achieving the proper orientation of the tool face becomes more challenging the more that the horizontal departure increases because of the increased difficulty in eliminating torque from the system during initial reciprocations. Once a proper tool face orientation is achieved, maintaining that orientation alsobecomes more difficult with increasing horizontal departuresstatic friction above the section influenced by the motor torque. This static zone provides rotational stability for the motor tool face in much the way that a keel stabilizes a ship.In practice, the optimal oscillating torque applied to the drillstring is determined dynamically at the rig rather than through calculations.DESCRIPTIONThe sliding automation technology consists of software and hardware components. The software component receives three main inputs; information from a manual input screen, surface torque from the top drive and standpipe pressure (as an indication of reactive torque). During the rocking cycle, the system permanently fine-tunes the amount of surface torque applied to the right and left to correct for the change inreactive torque. To orient the tool face during a rocking cycle,the directional driller can change the direction of the tool face by applying toque pulses to the right or to the left. Thehardware component is a robotic control system that can be installed in any type of top drive. This surface control system interfaces with the top drive control system and works by rocking the top of the drillstring alternately clockwise and counterclockwise, so the upper part of the drillstring always experiences tangential motion.BENEFITS OF THE AUTOMATED TORQUE CONTROL SYSTEMUsing the rocking action applied with this system, the drillstring behaves as if it were rotating, and the slidingprocess is much more effective. The automated slide drilling allows substantial increases in both the daily footage drilled and the length of a horizontal section that can be drilled with a conventional steerable motor. The system adjusts the amount of surface torque needed to transfer the proper amount of weight to the bit and eliminates the need to pick up the drillstring off the bottom of the hole to make tool face corrections. Corrections in the tool face angle are easily achievedthrough additional torque pulses (bumping) during therocking cycles. The left-and-right torque rocking initiated by the top drive reduces longitudinal drag in the wellbore,allowing the drillpipe to rotate from the surface down to a point where torque from rotational friction against the side of the hole stops the drillpipe from turning.To commence slide drilling from the rotary drilling mode,the driller simply initiates an automatic rocking action by applying torque to the right and then to the left enough toallow appropriate weight transfer to the bit. The transfer of weight is controlled through automatic adjustments of rocking depth, which compensate for changes in reactive torque 1.FIELD TEST RESULTSFigure 3 shows the directional path of a typical well drilled in the Khurais field. The 6?” horizontal section had anbecause the weight transfer to the bit becomes more erratic,thereby affecting the reactive torque, and consequently changing the tool face angle 1. The solution to this problem,Fig. 2, describes a sequence of steps to illustrate how the new slider system works.NEW STEERABLE MOTOR CONTROL SYSTEMSaudi Aramco’s drilling team and the protect team selected candidate wells for testing the new sliding technology, which consists of a surface control system that interfaces with the top drive control system to overcome many of the friction related problems of steerable motors.The system works by rotating the top of the drillstring,alternately clockwise and counterclockwise until predetermined surface torque values are achieved; in this way, the upper part of the drillstring always experiences tangential motion. The amount of cyclical torque applied at the surface depends on the particular frictional characteristics of the well. This method keeps drillstring friction in the dynamic mode and significantly reduces axial friction. The amount of cyclical torque applied at the surface depends on the particular frictional charac-teristics of the well. By sensing the amount of surface torque needed to transfer the proper amount of weight to the bit, and eliminating the need to bring the drillstring off the bottom to make tool face corrections, automated slide drilling allows substantial increases in both the daily footage drilled and the length of horizontal sections that can be achieved 1, 2.Subsequently, there is no time lost in orienting the tool face,as compared to the conventional method of changing modes.Through manipulation of the surface torque oscillations,the driller can move the point of rocking depth as deep along the drillstring as desired. The slider control system uses this principle to improve the performance of drilling with steerable motors. The system drives the point of influence deep enough to significantly reduce the axial friction that causes stick/slip during sliding.The depth to which the point of influence is driven islimited by the fact such that a section of drillstring remains in Fig. 2. Illustration of how the new slider technology works. extension of 8,460 ft from a 7” liner shoe: 5,889 ft to 14,350ft. The liner shoe was set to an inclination of 85°. The section was drilled with a steerable motor and without slider tech-nology from the liner shoe to 8,828 ft MD. When the well reached 7,000 ft, a severe loss of circulation zones was encountered, and mud returns were only 20%. Under this situation, due to the poor hole cleaning of conventionalsliding mode, cuttings began to accumulate in the low side of the lateral. The drilling process continued with water and gel sweeps, but at 8,828 ft MD, the conventional sliding drilling process became extremely difficult due to severe drillstring friction. The operator decided to install the new slider system afterwards to address the excessive friction issue. The slider system was utilized to drill almost 4,000 ft of the horizontal section from 8,828 ft MD to 12,888 ft MD with only 20%mud return. Despite these severe hole conditions, the sliding drilling was carried out successfully.Figure 4 shows the overall ROP (sliding and rotating) for both sections drilled with the same bottom-hole assembly (BHA) and a similar type of tricone roller bit. The overall ROP in the section where the slider system was used is higher in spite of the additional horizontal departure.At 12,888 ft MD, after a vertical departure of almost 8,800ft, the drilling team decided to utilize a RSS due to the extremely high frictions.The slider system was also utilized to drill the multilateral Well B. In this well, the 7” liner was set at 7,850 ft with 85°inclination, and the 6?” horizontal motherbore section was then drilled to 9,536 ft, where it became very difficult to slide with an acceptable ROP; at that point it was decided to install the slider control system. The drilling continued with the utilization of the slider control system until the TD of the motherbore at 12,070 ft was reached.A section that was drilled without the assistance of theslider system where the tool face was unsteady and difficult to control due to reactive torque and stalling of the steerable motor is shown in Fig. 5. A plot from a section drilled with the slider, Fig. 6, shows a steadier tool face as a result of the elimination of motor stalling and achievement of smooth WOB due to the slider’s rocking action.Figure 7 shows the ROP while sliding with the slidersystem vs. the ROP while rotating; both are in a comparable range. If the slider had not been used, the sliding ROP would have been approximately 30% of the rotating ROP . A greater sliding ROP is another benefit of this technology.From the information tracked in drilling morning reports and on the directional driller parameter sheet, the teamdetermined that the distribution of the drilling time when the slider system wasn’t used was 60% sliding and 40% rotating,but with the utilization of the slider system, the ratio changedFig. 3. Interval drilled with slider shows severe mud losses and higher ROPcompared to interval drilled without slider.Fig. 4. Comparison of ROP under similar conditions with slider (green bar) andwithout it.Fig. 5. Section drilled without slider where tool face was difficult to control.Fig. 6. Section drilled with the slider where tool face was controlled.required to orient the tool face, and the bottom chart shows that drillstring pickups were not necessary when the slider was used.CONCLUSIONSThis new technology proved that it is possible to overcome the friction related problems of steerable motors by rotating the drillstring alternately clockwise and counterclockwise, so the upper part of the drillstring always experiences tangential motion. This technology allows the transfer of weight smoothly to the bit, thereby eliminating motor stall. The sliding ROP was increased by 70% in some cases. The slider system ensured a very steady tool face and showed anexcellent capability to correct the tool face angle wheneverto 25% sliding and 75% rotating. This reduction in percent-age of sliding time is mainly due to the increase in the ROP achieved during sliding mode while using this new technology. In Well C, the drilling team decided to drill intervals alternately with and without the slider, with the objective of comparing the benefits of this new technology under the same hole conditions and using the same BHA design. The 7” liner was set at 6,200 ft MD and at an inclination of 84°; after drilling the 6?” section to 7,737 ft, the driller started utilizing the slider system.Comparable sliding ROPs are shown in Fig. 8. With the use of the slider, the average improvement in the sliding ROP was approximately 60%.In Fig. 9, a comparison of drilling parameters (blockposition and pump pressure) in two sections drilled in sliding mode with and without the slider is shown. The top chart shows motor stalling and drillstring pickups due toinefficient transfer of weight to the bit, the bottom chart shows that with the assistance of the slider system, no drillstringpickup was required and no pump pressure spikes were experienced.In Well D, the slider was used to drill the whole horizontal interval from 6,200 ft MD to 11,213 ft MD. At 9,500 ft, the drag reached 45,000 lbs, but rocking the drillstring with the slider was effective in overcoming the friction and minimizing pipe buckling to effectively transfer weight to the bit.Figure 10 shows two charts. The top chart represents themanual sliding section, showing the drillstring pickupsFig. 7. Sliding ROP using the slider compared to rotating ROP.Fig. 8. Sliding ROP in different sections drilled alternately with and without the slider.Fig. 10. The top chart shows drillstring pickups during manual slide drillingwithout the slider. The bottom chart shows that no drillstring pickups were needed when the slider was used.Fig. 9. Comparable performance during sliding drilling without the slider and with it.required, and it provides a means to correct the tool face orientation while sliding.The success of the slider depends on the proper training of the directional drillers and ensuring they use it in the way it was designed to be used. The training usually takes 3? hours, and it is recommended that training occur away from the rig. Nothing goes downhole, so there are virtually no failures.ACKNOWLEDGMENTSThe authors would like to thank the management of Saudi Aramco for their support and permission to publish this article.This article was presented at the SPE Saudi Arabia Section Technical Symposium and Exhibition, al-Khobar, Saudi Arabia, May 15-18, 2011.REFERENCES1.Maidla, E. and Haci, M.: “Understanding Torque: TheKey to Slide Drilling Directional Wells,” IADC/SPE paper 87162, presented at the IADC/SPE Drilling Conference, Dallas, Texas, March 2-4, 2004.2.Maidla, E., Haci, M., Jones, S., Cluchey, M., Alexander,M. and Warren, T.: “Field Proof of the New SlidingTechnology for Directional Drilling,” IADC/SPE paper 92558, presented at the IADC/SPE Drilling Conference, Amsterdam, the Netherlands, February 23-25, 2005.Abdullah has worked on various fields and increments. Currently, he is handling the Ghawar Lump Sum Turn Key Waleed G. Kotbwith the Wildcat Oilfield Services. Hehas 9 years of experience in the oil andgas industry on both land and offshoredrilling rigs. Waleed joined Wildcat in2005 as a Senior Service Engineer andprogressed on to become the Saudi Arabian area Service Supervisor before moving to hisAbdelsattar H. El-GamalWildcat Oilfield Services in 2006 as aSenior Engineer and then became theCorporate Service Manager in 2007.He is responsible for managing ahighly evolving service teamcomprising junior and senior engineers, team leaders and coordinators who work in a diverse number of highly innovative equipment andRoberto H. Tello Kragjcek joinedSaudi Aramco in 2006. Since then, hehas worked in Ghawar field and onthe Khurais project. Roberto has 16years of drilling and completionengineering experience in major oilcompanies. Before joining Saudi Aramco, he worked for Chevron-Texaco as a DrillingEngineer Supervisor. Roberto has been involved in drilling projects in Venezuela, the United States, Trinidad and Tobago and Argentina. Recently he was also involved inthe preparation of lump sum drilling contracts for Ghawar field, drilling technical limit, bit design optimization and mud plant facility installation, among others.In 1994, Roberto received his B.S. degree in Mechanical Engineering from San Juan University, San Juan, Argentina. Currently he is completing his M.S. degree in PetroleumEngineering in Heriot-Watt University, Edinburgh, U.K. BIOGRAPHIES。
沙特KHRS307井钻井技术应用

KHR S地 区是 沙特 阿拉 伯东南 部油气 田中储量 较为 丰富 的区块 。 自 2 0 下半 年 ,所 属 中石化 的 0 7年
中国钻 井队开始在该 区块施工 生产井 。经过不 断吸取 经验和研究分 析 ,总结 出一套 包括边 漏边钻 、柴油 乳化泥 浆体 系 、双级 固井等相关 钻井 技术 ,较 好地解 决 了施 工 中存在 的风 险 。KHR 3 7 是 阿美石油 ・ S0 井 公 司在 KHR S地 区部署 的一 口重要 生产 水 平井 ,设 计井 深 3 5 m,设 计周 期 2 d 30 1 。在施 工 过 程 中,由
沙 特 KHR 3 7井 钻 井 技 术 应 用 S0
张 忠 涛 ,何 成 刚 ( 南石油勘探局 河 钻井 工程公司, 河南南阳133) 712
王惠 卫 ( 油田分公司 河南 第一采油厂, 河南 南阳43 2 71 ) 3
张海 潮 , 陈 浩 ,朱 强 ( 河南石 油勘探局钻井 工程公司, 河南南阳433) 7 12
压力小 ,地层 被压漏 ,一 般情况 下 ,这个 薄弱 点都靠 近钻头 处 。在发 生突然 全部 漏失 后 ,如果 保持钻具
不动 或是继续 钻进 ,上部 岩屑 随着 钻井 液下 落 ,在扶 正器 、钻头上 部会滞 留一 部分 岩屑 ,随着时间 的推 移 ,滞 留量会 越来越 多 ,形成砂 桥 ,而泵 入 的钻井 液又无法 到达这 个部 位 ,最 终造成 沉砂 卡钻 。随着井 眼 内的钻井 液漏失 ,上部 较松 软地 层 因为泥饼 胶结 不好 ,在重力 的作用 下 ,可 能导致 岩石 脱落或是大 面 积垮 塌 ,这种 现象 表现 为上 提扭矩 增大 ,悬 重增加 ,下 放钻具扭 矩变 小 。 ]
石 油 天 然 气 学报 ( 汉 石 油 学 院 学报 ) 江
沙特HRML地区钻井工艺技术

32 在三 开 阶段 , 井 中基 本 都 会 遇到 溢 流 , 流 . 钻 溢 量很 大 , 是关 井 求 压 时关 井 立 压 和 套 压 读 数都 为 但
零 , 加 了 压 井 困难 和 成 本 。 增
2 2 井 身 结 构 ( 表 2 . 见 ) 3 H RM L 地 区 钻 井 难 点
号 钻 井 队 在 本 区 块 共 完 成 了 4 口井 的 钻 井 作 业 , 通 过 对 钻 井 过 程 中 出 现 的 问 题 进 行 不 断 的 研 究 和 总 结 , 决 了本 区块 钻井 过 程 中产生 的技 术难 题 , 握 解 掌 了 应 对 工 艺 技 术 措 施 。为 我 公 司 和 沙 特 阿 美 公 司 今 后 在 HRM L 油 田 的 钻 井 作 业 提 供 了 宝 贵 的 技 术 资 料 和经 验 。 2 沙 特 HRM L 地 区 的 地 层 岩 性 和 井 身 结 构 2 1 H RM L 地 区 的 地 质 分 层 及 岩 性 ( 表 1 . 见 ) 表 1 沙 特 HRML 区 块 地 层 分 层 与 地 层 岩 性
1 概述 沙 特 阿 拉 伯 是 世 界 上原 油 储 量 最 丰 富 , 量 最 产 多 的 国家 , 年 的原 油 产 量约 占世 界 原 油产 量 的 1 每 / 4 近 年来 随 着世 界石 油 价格 的持 续上 涨 , 特 阿美 沙
公 司 为 了 保 证 原 油 产 量 , 老 油 田持 续 开 采 的 基 础 在 上 , 始 开 发 新 的 区 块 。HRM L 油 田是 阿 美 公 司 2 开 O 多 年前 勘探 存 放 , 目前 重 新 投 入 开 发 的 油 田 。 程 中 产 生 的 技 术 难 题 , 握 了应 对 工 艺技 术 措 施 。 为 我 公 司 和 沙 特 阿 美 公 司4 后 在 掌 -
沙特阿拉伯UTMN油田水平井钻井技术!!!

沙特阿拉伯UTMN油田水平井钻井技术提要:本文从水平井的轨迹控制技术、钻井液技术、井控及H2S防护、井下安全等到几方面,论述了沙特阿拉伯UTMN油田水平井钻井技术,并从中得出了一些认识。
对今后在该地区及中东其他地区钻井都具有一定的参考价值。
关键词:水平井钻井、钻井液、井控、H2S防护、井下安全、沙特阿拉伯UTMN 油田一.概述:沙特阿拉伯UTMN油田位于沙特阿拉伯的中部,属于热带沙漠气候。
近年来的开发井型为基本为水平井(包括新钻水平井和套管开窗分支水平井)其基本井身结构为:开窗井:井身结构同上,7”套管开窗钻6 1/8”或5 7/8”井眼裸眼完井或7 “套管开窗,造斜段6 1/8”或5 7/8”井眼裸眼完井;二.地质特性该地区是一个海相沉积的油田,地层为中生代和新生代,以石灰岩和硬石膏地层为主,主力油层在阿拉伯“C”和阿拉伯“D”地层。
从岩性特证上看,上部地层多为松软的白云岩和少量的页岩以及少量的石灰岩,下部地层多为石灰岩、硬石膏和砂岩。
但由于地层压力梯度各层厚不等。
井漏上、井涌时有发生,并且某些区块产层含有H2S气体,因此对井控及防H2S的要求非常严格。
三.水平井钻井技术(一)技术1.设计内容极为复杂。
如:地流产数的计算,井口经纬度的计算,井口坐标采用网格坐标等;某些井为多靶点绕障水平井,由于地层层位客观要求,耙点垂深和方位均是变化的,需考虑的因素较多,给设计和施工造成了很大的困难。
2.水平段轨迹控制要求十分严格。
要求轨迹控制在上下2英尺的范围。
对于水平段超过千米,控制范围精度如此苛刻的井眼的安全施工是一个巨大的挑战。
3.长水平段钻进,由于钻具与井壁之间摩阻力,扭矩较大,造成控制过程中摆放工具装置角十分困难。
4.多层位产层对井身轨迹造成不利的影响。
UTMN油田主力油层为阿拉伯C和阿拉伯D地层,其中阿拉伯C又细分为多个层位,各层位之间夹杂有较硬地层。
某些水平井需穿越多个层位,由于层位之间的岩性不一样,软硬交错,使钻头在钻进过程中受力不均,给轨迹控制带来了相当的难度。
探索沙特阿拉伯恶劣自然环境下的钻修井设备管理方法及应用

探索沙特阿拉伯恶劣自然环境下的钻修井设备管理方法及应用作者:王英杰焦天津来源:《中国科技博览》2016年第08期中图分类号:TE935 文献标识码:A 文章编号:1009-914X(2016)08-0290-01一、项目提出的背景及主要原因中东沙特阿拉伯钻修井项目多位于是沙漠地区,为热带沙漠性气候,气候干燥,降水集中在冬春季,其余季节几乎无降水,日夜温差大,夏季气温高(气温最高时地表温度达到70℃)风沙大,冬季气温最低达到1℃左右。
当地水质为富含矿物的咸水,多硫化氢。
面对这样的气候我们在两年多的施工过程中摸索出一套适应该地区该区块的设备管理方法,确保了设备的正常运转。
二、项目主要内容及实施情况面对这样的气候我们在两年多的施工过程中摸索出一套适应该地区的设备管理方法,确保了设备的正常运转。
这套管理方法可以总结为防、查、改、换四个字。
一、防:我们在执行各项设备管理规定的前提下,根据沙特的实际情况我们重点提出了防风沙、防高温、防水垢等四防措施。
1、防风沙:沙特地区夏秋季节风大沙大,而地面都是细沙,一起风眼耳口鼻到处进沙,设备的缝隙、呼吸器进入的沙尘很多。
我们提出风季重点防风沙,每天不定时检查、清理、疏通空气滤芯散热水箱呼吸器设备缝隙。
加装绞车风机防沙槽,柴油机防沙房,空调防沙滤网,尽最大的可能清理沙尘,保证设备的正常运转。
2、防高温:沙特地区夏季温度高,空气中水分少,使设备散热困难,液压油和润滑油变质快,盘刹等设备液压密封件由于环境温度经常超过60℃使用寿命大幅缩短,柴油机水温居高不下等问题成为困扰施工的难题。
我们采用为钻机、柴油机、SCR房、钻井泵搭建防照棚减少直射降温,钻井泵、柴油机强制水循环降温,加密检查缩短检修保养时间等措施保证了设备在高温下的正常运转。
3、防水垢:沙特当地水质富含矿物质,使用中管线内、设备内容易结水垢,我们对水源进行分类使用,选用百里之外矿物质含量低的水源,并对使用的水进行药物处理,防止水垢的形成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
维普资讯
杨 鹏 . 层 漏 失 钻 井 处 理 技 术 在 沙 特 KHUR S地 区 的 应 用 地 AL
・9 ・ 3
3 漏 失 问题 的 解 决 方 案
3 1 表 层 裂 缝 性 漏 失 的 处 理 .
c 3的柴油乳化泥浆钻进 ( 4 表 5 , m 表 、 )在钻进过 程 中按 照约 2 0袋/ h的量 往泥浆 中补 充堵漏 剂 ( 锯末 粉 、 ]如
关 键 词 : 漏 边钻 ; 透 性 和 裂 缝 性 漏 失 ; 粘 泥 浆 扫 井 ; 油 乳化 泥 浆 边 渗 高 柴
中 图分 类 号 : E 4 T 22 特 阿 拉 伯 东 部 GHA— S
WAR油 气 田 中油气 储量 较 为丰 富的 区块 。 自 2 0 07
维普资讯
20 0 8年 7月
石 油 地 质 与 工 程 PT OE E R L UM O G D E G NE RI G GE [ ) Y AN N I E N (
第2 2卷
第 4期
文 章 编 号 : 6 3—8 1 2 0 0 17 2 7( 0 8)4—0 9 0 2—0 3
乳 化 泥浆 、 级 固 井 等 技 术 及 相 关 的 配 套 技 术 措 施 。 这 些 钻 井 技 术 及 相 关 的 配 套 措 施 的 成 功 实 施 , 快 了 双 加
KHURAI S地 区 的 钻 井 施 工 速 度 , 降低 了钻 井 成 本 . 得 了较 好 的 钻 井 效果 。 取
地 层 漏 失 钻 井处 理技 术在 沙 特 KHUR S地 区 的应 用 AI
杨 鹏
( 国石 化 胜 利石 油 管 理 局 海 外 工 程 管 理 中 心 , 中 山东 东 营 2 7 0 ) 5 0 1
摘 要 : 井过 程 中常 规 地 层 漏 失 的 处理 是 采 取 先 堵 漏 后 钻 进 的 办 法 , 存 在 处理 漏 失 时 间 长 、 种 药 品 和 堵 漏 材 料 钻 但 各 耗 费大 等 问题 。针 对 沙 特 KHURAI S地 区不 同层 位 漏 失 的 具 体 难 题 , 析 并 研 究 出边 漏 边 钻 、 粘 泥 浆 扫 井 、 油 分 高 柴
实践 和研 究分 析 , 总结 并 成功运 用 了边漏 边 钻_ 高 _ 】 、
粘泥 浆 扫井 、 用柴 油乳 化泥 浆钻进 、 级 固井 等相 使 双 关钻 井 技术 , 较好 地 解决 了施 工 中存 在 的漏 失 问题 。
井偶 尔 也会 出现 裂缝 性 漏失 , 致 钻 进 施 工 中的 泥 导
2 钻 井 过 程 中 的 漏 失 问题
2 1 表 层 裂 缝 性 漏 失 .
KHUR S区块 距地 表 约 3 处普 遍存 在 裂 AI 0m
缝 性 地层 , 钻至 该 深 度 后 泥 浆 只进 不 出 。由 于漏 失
量大 , 取常规 的填井堵 漏 的办法 并 不见 效 。 采
2 2 W A I 地 层 和 S AI A 地 层 的 漏 失 . SA HU B
表 1 施 工 井 的 井 身 结 构 和 泥 浆 密 度
塌 的页 岩 和易被 冲蚀 的流 沙 构 成 , 生井 下 复 杂 情 发 况和井 下事 故 的概率 非 常高 。另外 在 WAS A地 层 I
还有 一水 层 , 旦 发生 漏失 便 有可 能 出现 井涌 。 一
2 3 目 的 层 的 漏 失 .
况 。
2 4 固 井 时 的地 层 漏 失 .
除 目的层外 ( 眼 完井 ) 其 它 各 层 位 出现 的漏 裸 ,
失 都会 直接 影 响到 固井 质量 和水泥 的返高 。
四开 ‘ 1 / 2 14 58 /
.
0 2 ̄
4
K  ̄ g tt - 斜井段
水 平 段
收 稿 日期 : 0 8—0 20 2—2 改 回 日期 : 0 8—0 7; 20 5—3 1
浆 只进 不 出 。WAS A 地 层 主 要 由极 易 吸水 膨 胀 垮 I
1 施 工 井 井 身 结 构 和 泥 浆 密 度
KHuR S区块在 地 层 特征 、 AI 油藏 埋 深 和 地 层 压 力等 方 面具 有一 致 性 , 施工 井 的井 身 结 构 和 泥 其
浆 密度 可参 见 表 1 。
浪 费 以及 钻井 周期 的大 大延长 。针 对该 区块 地层 存
在渗 透性 和裂 缝 性 漏 失 的 特 点 , 通过 多 口井 的施 工
WAS A 和 S I HUAI A 地层 的 漏 失通 常 为渗 透 B
性漏 失 , 泥浆 漏 失 量一 般 为 1 ~ 1 / 。但 个 别 3 6 m3 h
年 1月 中 国钻 井 队伍 进 入 该 区块 施 工 以来 , 井 过 钻
程 中遇 到 了不 同程 度 的 地 层 漏失 问题 。施 工 初 期 , 由于对 该 区块 的地 层 漏 失 特 点 认 识 不 足 , 取 的 常 采 规 地层 漏 失处 理 办法 造 成 了钻 井 液 、 泥 浆 的大 量 水
五开 ‘
8 1 2 裸 跟 /
o
.
9 9
作者简介 : 鹏 , 杨 工程 师 ,9 3年 出 生 ,9 5年 毕 业 于 江 汉 石 油 17 19
学 院钻 井 工程 专 业 , 从 事 于 钻 井 项 目管 理 和 技 术 服 务 工 作 。 现
电 话 : 5 6—8 2 0 5 04 7 8 6
目的层所 处 的 ARAB地层 由钙 质石 灰 岩 、 酸 碳
岩 构成 , 该地 层孔 隙度 、 透性 较 好 , 进 施 工 中会 渗 钻 出现轻 微 的渗透 性 漏失 , 失 量 一般 为 5 3 h 漏 ~7 m / 。
极 个别 的 井也 出现 过 泥 浆 只进 不 出 的严 重 漏 失 情