选择题训练及填空
大学物理选择填空训练及解答

牛顿力学一、选择题1.(本题3分)0586一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a =,则一秒钟后质点的速度: [ ](A )等于零; (B )等于s m /2;(C )等于s m /2 ; (D )不能确定。
2.(本题3分)0587如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动,设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是:[ ](A )匀加速运动; (B )匀减速运动;(C )变加速运动; (D )变减速运动;(E )匀速直线运动;3.本题3分)0519 对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A )切向加速度必不为零;(B )法向加速度必不为零(拐点处除外);(C )由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零;(D )若物体作匀速率运动,其总加速度必为零。
(E)若物体的加速度a 为恒矢量,它一定作匀变速率运动。
[ ]4.(本题3 分)0518 以下五种运动形式中,a 保持不变的运动是:(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动;(E )圆锥摆运动。
[ ]5.(本题3分)0001 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有: (A)v v v v ==, ; (B )v v v v = ,≠; (C )v v v v ≠,≠; (D )v v v v ≠,= 。
[ ] 6.(本题3分)0604某物体的运动规律为t kv dt dv 2/-=,式中的K 为大于零的常数,当t = 0时,初速为0v,则速度v 与时间t 的函数关系是:(A )0221v kt v += ; (B )0221v kt v +-= ; (C )02121v kt v += ; (D )02121v kt v +-= 。
语文部编版五年级下册《选词填空》专项练习(基础必考附答案)

语文部编版五年级下册《选词填空》专项练习(基础必考附
答案)
一、词语选择题
1.请根据句意选择最合适的词语填空。
(1)他被一群小狗_______得晕头转向。
A. 咬住 B. 围攻 C. 盯着 D. 叫唤
答案:B. 围攻
(2)这背包真是太_______了,我觉得自己要扛死了。
A. 错误 B. 舒适 C. 沉重 D.
轻巧
答案:C. 沉重
(3)昨夜的_______,给我留下了深刻的印象。
A. 冷漠 B. 温暖 C. 安静 D. 吵闹
答案:D. 吵闹
(4)孩子们以_______的态度听老师讲故事。
A. 浓重 B. 虔诚 C. 轻松 D. 悲伤
答案:B. 虔诚
二、短文填空
请根据短文内容选择适当的词语填空,使短文意思完整。
每个空只能填一个词。
今天,学生们在校园里进行了一次“快乐运动会”。
早晨,校长致辞,_______了
同学们。
校长说:“运动会不仅能锻炼身体,也能锻炼团结合作的精神。
”同学们听
了校长的话,_______地欢呼起来。
比赛开始,同学们在场地上_______着。
最后,颁
奖仪式上,校长为优胜者颁发奖杯,同学们高兴地_______着。
以上就是本次《选词填空》专项练习内容,希未学生们能够通过练习不断提升
自己的语文水平。
祝愿每位同学在考试中取得优异的成绩!
附答案:1. 鼓励、兴奋、欢跃、笑容。
感谢阅读。
本文内容仅供参考,如有不当之处请谅解。
2022年人教版数学中考复习:选择、填空综合训练2及答案

选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.412的倒数是( )A.412B.-29C.-412D.292.已知a-b=3,a-c=1,则(b-c)2-2(b-c)+94的值为( )A.274B.412C.272D.4143.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a-b)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( )第4题图5.如图所示,△ABC的各个顶点都在正方形的格点上,则sin A的值为( )第5题图A.55B.255C.225D.1056.若实数a使关于x的一元二次方程(a+1)x2-3x+1=0有两个不相等的实数根,则实数a的取值范围是( )A.a<54B.a<54且a≠-1 C.a>54D.a>54且a≠-17.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( )A.70°B.35°C.40°D.50°第7题图8.如图,△ABC是⊙O的内接三角形,连接OA,OB,OC.若∠AOB=40°,∠OBC=50°,AC=4,则⊙O的直径为( )第8题图A.433B.4 C.833D.89.如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处,点B恰好落在边CD上的点B′处,A′B′交AD于点G,若CB′=3,则四边形EFB′G的面积等于( )第9题图A.353B.553C.352D.145610.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x =1,下列结论:①abc >0;②4a +2b +c >0;③13<a <23;④b >c.其中含所有正确结论的选项是( )第10题图A .①②③B .①③④C .②③④D .①②④二、填空题:本大题共8小题,每小题3分,共24分.11.在平面直角坐标系内,把点P 先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(-5,3),则点P 的坐标是 .12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数不大于4的概率是 .13.若14的小数部分为a ,整数部分为b ,则a ·(14+b)的值为 .14.函数y =2-m x的图象与直线y =x 没有交点,那么m 的取值范围是 . 15.如图,在平行四边形ABCD 中,AB =8,BC =10,∠ABC =60°,BE 平分∠ABC 交AD 于点E ,AF 平分∠BAD 交BC 于点F ,交BE 于点G ,连接DG ,则DG 的长为 .第15题图16.如图,在△ABC 中,∠A =70°,BC =4,以BC 的中点D 为圆心,2为半径作弧,分别交边AB ,AC 于E ,F ,则EF ︵的长为 .第16题图17.如图,在△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为.第17题图18.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S 的式子表示这组数据的和是.选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.412的倒数是( D )A.412B.-29C.-412D.292.已知a-b=3,a-c=1,则(b-c)2-2(b-c)+94的值为( D )A.274B.412C.272D.4143.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a-b)在( A )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( C )第4题图5.如图所示,△ABC的各个顶点都在正方形的格点上,则sin A的值为( A )第5题图A.55B.255C.225D.1056.若实数a使关于x的一元二次方程(a+1)x2-3x+1=0有两个不相等的实数根,则实数a的取值范围是( B )A.a<54B.a<54且a≠-1 C.a>54D.a>54且a≠-17.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( C )A.70°B.35°C.40°D.50°第7题图8.如图,△ABC是⊙O的内接三角形,连接OA,OB,OC.若∠AOB=40°,∠OBC=50°,AC=4,则⊙O的直径为( C )第8题图A.433B.4 C.833D.89.如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处,点B恰好落在边CD上的点B′处,A′B′交AD于点G,若CB′=3,则四边形EFB′G的面积等于( D )第9题图A.353B.553C.352D.145610.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是( B )第10题图A.①②③B.①③④C.②③④D.①②④二、填空题:本大题共8小题,每小题3分,共24分.11.在平面直角坐标系内,把点P 先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(-5,3),则点P 的坐标是 (-3,-1) .12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数不大于4的概率是 23. 13.若14的小数部分为a ,整数部分为b ,则a ·(14+b)的值为 5 .14.函数y =2-m x的图象与直线y =x 没有交点,那么m 的取值范围是 m >2 . 15.如图,在平行四边形ABCD 中,AB =8,BC =10,∠ABC =60°,BE 平分∠ABC 交AD 于点E ,AF 平分∠BAD 交BC 于点F ,交BE 于点G ,连接DG ,则DG 的长为 219 .第15题图16.如图,在△ABC 中,∠A =70°,BC =4,以BC 的中点D 为圆心,2为半径作弧,分别交边AB ,AC 于E ,F ,则EF ︵的长为 49π .第16题图17.如图,在△ABC 中,AB =AC =12厘米,∠B =∠C ,BC =9厘米,点D 为AB 的中点.如果点P 在线段BC 上以v 厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为3厘米/秒,则当△BPD 与△CQP 全等时,v 的值为 2.25或3 .第17题图18.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S 的式子表示这组数据的和是 2S2-S .。
(完整版)九年级数学选择、填空压轴题训练(含答案),推荐文档

九年级数学综合训练一、选择题(本大题共9 小题,共27.0 分)1.如图,在平面直角坐标系中2 条直线为l1:y=-3x+3,l2:y=-3x+9,直线l1交x 轴于点A,交y 轴于点B,直线l2交x 轴于点D,过点B 作x 轴的平行线交l2于点C,点A、E 关于y 轴对称,抛物线y=ax2+bx+c 过E、B、C 三点,下列判断中:①a-b+c=0;②2a+b+c=5;③抛物线关于直线x=1 对称;④抛物线过点(b,c);⑤S 四边形ABCD=5,其中正确的个数有()A. 5B. 4C. 3D. 22.如图,10 个不同的正偶数按下图排列,箭头上方的每个数都等于其下方两数的和,如,表示a1=a2+a3,则a1的最小值为()A.32B.36C.38D.403.如图,直线y= ��x -6 分别交x 轴,y 轴于A,B,M 是反比例函数y=�(x>0)的图象上位于直线上方的一点,MC∥x 轴交AB 于C,MD⊥MC 交AB 于D,AC•BD=43,则k 的值为()A. ‒ 3B. ‒ 4C. ‒ 5D. ‒ 64.在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在第一象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()(3,0) (2,0) (5,0) (3,0)A. 2B.C. 2D.5.如图,在矩形ABCD 中,AB<BC,E 为CD 边的中点,将△ADE 绕点E 顺时针旋转180°,点D 的对应点为C,点A 的对应点为F,过点E 作ME⊥AF 交BC 于点M,连接AM、BD 交于点N,现有下列结论:35 ①AM =AD +MC ;②AM =DE +BM ;③DE 2=AD •CM ;④点 N 为△ABM 的外心. 其中正确的个数为()A. 1 个B. 2 个C. 3 个D. 4 个6. 规定:如果关于 x 的一元二次方程 ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根是另一个根的 2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程 x 2+2x -8=0 是倍根方程;②若关于 x 的方程 x 2+ax +2=0 是倍根方程,则 a =±3;③若关于 x 的方程 ax 2-6ax +c =0(a ≠0)是倍根方程,则抛物线 y =ax 2-6ax +c 与 x 轴的公共点的坐标是 (2,0)和(4,0); 4 ④若点(m ,n )在反比例函数 y =x 的图象上,则关于 x 的方程 mx 2+5x +n =0 是倍根方程. 上述结论中正确的有( )A. ①②B. ③④C. ②③D. ②④7. 如图,六边形 ABCDEF 的内角都相等,∠DAB =60°,AB =DE ,则下列结论成立的个数是() ①AB ∥DE ;②EF ∥AD ∥BC ;③AF =CD ;④四边形 ACDF 是平行四边形;⑤六边形 ABCDEF 既是中心对称图形,又是轴对称图形.A. 2B. 3C. 4D. 58. 如图,在 Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A. 4B. 5C. 6D. 79. 如图,矩形 ABCD 中,AE ⊥BD 于点 E ,CF 平分∠BCD ,交 EA 的延长线于点 F ,且 BC =4,CD =2,给出下列结论:①∠BAE =∠CAD ;4②∠DBC =30°;③AE =5 5;④AF =2 ,其中正确结论的个数有( )A. 1 个B. 2 个C. 3 个D. 4 个二、填空题(本大题共 10 小题,共 30.0 分)10.如图,在Rt△ABC 中,∠BAC=30°,以直角边AB 为直径作半圆交AC 于点D,以AD 为边作等边△ADE,延长ED 交BC 于点F,BC=2 3,则图中阴影部分的面积为.(结果不取近似值)11.如图,在6×6 的网格内填入1 至6 的数字后,使每行、每列、每个小粗线宫中的数字不重复,则a×c=.12.如图,正方形ABCD 中,BE=EF=FC,CG=2GD,BG 分别交AE,AF 于M,N.下列结论:4 �M 3 1①AF⊥BG;②BN=3NF;③M G=8;④S 四边形CGNF=2S 四边形ANGD.其中正确的结论的序号是.13.已知:如图,在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB 的交点D 恰好为AB 的中点,则线段B1D= cm.14.如图,边长为4 的正六边形ABCDEF 的中心与坐标原点O 重合,AF∥x 轴,将正六边形ABCDEF 绕原点O 顺时针旋转n 次,每次旋转60°.当n=2017 时,顶点A 的坐标为.15.如图,在Rt△ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM、ON 上滑动,下列结论:①若C、O 两点关于AB 对称,则OA=2 3;②C、O 两点距离的最大值为4;③若AB 平分CO,则AB⊥CO;�④斜边AB 的中点D 运动路径的长为2;其中正确的是(把你认为正确结论的序号都填上).16.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N(3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB=30°,要使PM+PN 最小,则点P 的坐标为.17.在一条笔直的公路上有A、B、C 三地,C 地位于A、B 两地之间,甲车从A地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地,在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km;③乙车出5发27h 时,两车相遇;④甲车到达C 地时,两车相距40km.其中正确的是(填写所有正确结论的序号).�18.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=x(x>0)的图象经过A,B 两点.若点A 的坐标为(n,1),则k 的值为.19.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(-1,1),B(0,-2),C(1,0),点P(0,2)绕点A 旋转180°得到点P1,点P1绕点B 旋转180°得到点P2,点P2绕点C 旋转180°得到点P3,点P3绕点A 旋转180°得到点P4,…,按此作法进行下去,则点P2017的坐标为.答案和解析1.【答案】C【解析】解:∵直线l1:y=-3x+3 交x 轴于点A,交y 轴于点B,∴A(1,0),B(0,3),∵点A、E 关于y 轴对称,∴E(-1,0).∵直线l2:y=-3x+9 交x 轴于点D,过点B 作x 轴的平行线交l2 于点C,∴D(3,0),C 点纵坐标与B 点纵坐标相同都是3,把y=3 代入y=-3x+9,得3=-3x+9,解得x=2,∴C(2,3).∵抛物线y=ax2+bx+c 过E、B、C 三点,∴,解得,∴y=-x2+2x+3.①∵抛物线y=ax2+bx+c 过E(-1,0),∴a-b+c=0,故①正确;②∵a=-1,b=2,c=3,∴2a+b+c=-2+2+3=3≠5,故②错误;③∵抛物线过B(0,3),C(2,3)两点,∴对称轴是直线x=1,∴抛物线关于直线x=1 对称,故③正确;④∵b=2,c=3,抛物线过C(2,3)点,∴抛物线过点(b,c),故④正确;⑤∵直线l1∥l2,即AB∥CD,又BC∥AD,∴四边形ABCD 是平行四边形,∴S 四边形ABCD=BC•OB=2×3=6≠5,故⑤错误.综上可知,正确的结论有3个.故选:C.根据直线l1的解析式求出A(1,0),B(0,3),根据关于y 轴对称的两点坐标特征求出E(- 1,0).根据平行于x 轴的直线上任意两点纵坐标相同得出C 点纵坐标与B 点纵坐标相同都是3,再根据二次函数图象上点的坐标特征求出C(2,3).利用待定系数法求出抛物线的解析式为y=-x2+2x+3,进而判断各选项即可.本题考查了抛物线与x 轴的交点,一次函数、二次函数图象上点的坐标特征,关于y 轴对称的两点坐标特征,平行于x 轴的直线上任意两点坐标特征,待定系数法求抛物线的解析式,平行四边形的判定及面积公式,综合性较强,求出抛物线的解析式是解题的关键.2.【答案】D【解析】解:∵a1=a2+a3=a4+a5+a5+a6=a7+a8+a8+a9+a8+a9+a9+a10=a7+3(a8+a9)+a10,∴要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,∵a5=a8+a9=6,则a7、a10 中不能有6,若a7=8、a10=10,则a4=10=a10,不符合题意,舍去;若a7=10、a10=8,则a4=12、a6=4+8=12,不符合题意,舍去;若a7=10、a10=12,则a4=10+2=12、a6=4+12=16、a2=12+6=18、a3=6+16=22、a1=18+22=40,符合题意;综上,a1的最小值为40,故选:D.由a1=a7+3(a8+a9)+a10 知要使a1 取得最小值,则a8+a9 应尽可能的小,取a8=2、a9=4,根据a5=a8+a9=6,则a7、a10 中不能有6,据此对于a7、a8,分别取8、10、12 检验可得,从而得出答案.本题主要考查数字的变化类,根据题目要求得出a1取得最小值的切入点是解题的关键.3.【答案】A【解析】解:过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,令x=0 代入y= x-6,∴y=-6,∴B(0,-6),∴OB=6,令y=0 代入y= x-6,∴x=2 ,∴(2 ,0),∴OA=2 ,∴勾股定理可知:AB=4 ,∴sin∠OAB= = ,cos∠OAB= =设M(x,y),∴CF=-y,ED=x,∴sin∠OAB= ,∴AC=- y,∵cos∠OAB=cos∠EDB= ,∴BD=2x,∵AC•BD=4,∴- y×2x=4 ,∴xy=-3,∵M 在反比例函数的图象上,∴k=xy=-3,故选(A)过点D 作DE⊥y 轴于点E,过点C 作CF⊥x 轴于点F,然后求出OA 与OB 的长度,即可求出∠OAB 的正弦值与余弦值,再设M(x,y),从而可表示出BD 与AC 的长度,根据AC•BD=4列出即可求出k 的值.本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB 的锐角三角函数值求出BD、AC,本题属于中等题型.4.【答案】C【解析】解:过点B 作BD⊥x 轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO 与△BCD 中,∴△ACO➴△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y= ,将B(3,1)代入y= ,∴k=3,∴y= ,∴把y=2 代入y= ,∴x= ,当顶点A 恰好落在该双曲线上时,此时点A 移动了个单位长度,∴C 也移动了个单位长度,此时点C 的对应点C′的坐标为(,0)故选:C.过点B 作BD⊥x 轴于点D,易证△ACO➴△BCD(AAS),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与 A 的坐标即可得知平移的单位长度,从而求出 C 的对应点.本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5.【答案】B【解析】解:∵E 为CD 边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE➴△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME 垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB 至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得= ,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM 不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM 是△ABM 的❧➓圆的直径,∵BM<AD,∴当BM∥AD 时,= <1,∴N 不是AM 的中点,∴点N 不是△ABM 的❧心,故④错误.综上所述,正确的结论有2 个,故选:B.根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM 不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM 成立;根据N 不是AM 的中点,可得点N 不是△ABM 的❧心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形❧➓圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的❧心,故❧心到三角形三个顶点的距离相等.6.【答案】C【解析】解:①由x2-2x-8=0,得(x-4)(x+2)=0,解得x1=4,x2=-2,∵x1≠2x2,或x2≠2x1,1 1 ∴方程 x 2-2x-8=0 不是倍根方程. 故①错误;②关于 x 的方程 x 2+ax+2=0 是倍根方程,∴设 x 2=2x 1,∴x 1•x 2=2x 2=2,∴x 1=±1,当 x 1=1 时 ,x 2=2,当 x 1=-1 时 ,x 2=-2,∴x 1+x 2=-a=±3,∴a=±3,故②正确;③关于 x 的方程 ax 2-6ax+c=0(a≠0)是倍根方程,∴x 2=2x 1,∵抛物线 y=ax 2-6ax+c 的对称轴是直线 x=3,∴抛物线 y=ax 2-6ax+c 与 x 轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m ,n )在反比例函数 y= 的图象上,∴mn=4,解 mx 2+5x+n=0 得 x 1=- ,x 2=- ,∴x 2=4x 1,∴关于 x 的方程 mx 2+5x+n=0 不是倍根方程;故选:C .①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设 x 2=2x 1,得到 x 1•x 2=2x 2=2,得到当 x 1=1 时,x 2=2,当 x 1=-1 时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y= 的图象上,得到mn=4,然后解方程mx2+5x+n=0 即可得到正确的结论;本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.【答案】D【解析】解:∵六边形ABCDEF 的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA 是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连➓CF 与AD 交于点O,连➓DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC 是平行四边形,故④正确,同法可证四边形AEDB 是平行四边形,∴AD 与CF,AD 与BE 互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF 既是中心对称图形,故⑤正确,故选D.根据六边形ABCDEF 的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】D【解析】解:如图:故选:D.①以B 为圆心,BC 长为半径画弧,交AB 于点D,△BCD 就是等腰三角形;②以A 为圆心,AC 长为半径画弧,交AB 于点E,△ACE 就是等腰三角形;③以C 为圆心,BC 长为半径画弧,交AC 于点F,△BCF 就是等腰三角形;④以C 为圆心,BC 长为半径画弧,交AB 于点K,△BCK 就是等腰三角形;⑤作AB 的垂直平分线交AC 于G,则△AGB 是等腰三角形;➅作BC 的垂直平分线交AB 于I,则△BCI 和△ACI 是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.9.【答案】C【解析】解:在矩形ABCD 中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC= = ,∴∠DBC≠30°,故②错误;∵BD= =2 ,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴,即,∴AE= ;故③正确;∵CF 平分∠BCD,∴∠BCF=45°,∴∠ACF=45°-∠ACB,∵AD∥BC,∴∠DAC=∠BAE=∠ACB,∴∠EAC=90°-2∠ACB,∴∠EAC=2∠ACF,∵∠EAC=∠ACF+∠F,∴∠ACF=∠F,∴AF=AC,∵AC=BD=2 ,∴AF=2 ,故④正确;故选C.根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC= = ,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD==2 ,根据相似三角形的性质得到AE= ;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°-∠ACB,推出∠EAC=2∠ACF,根据❧角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2 ,故④正确.本题考查了矩形的性质,相似三角形的判定和性质,三角形的❧角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.10.【答案】3【解析】3 3-2π解:如图所示:设半圆的圆心为O,连➓DO,过D 作DG⊥AB 于点G,过D 作DN⊥CB 于点N,∵在Rt△ABC 中,∠BAC=30°,∴∠ACB=60°,∠ABC=90°,∵以AD 为边作等边△ADE,∴∠EAD=60°,∴∠EAB=60°+30°=90°,可得:AE∥BC,则△ADE∽△CDF,∴△CDF 是等边三角形,∵在Rt△ABC 中,∠BAC=30°,BC=2 ,∴AC=4 ,AB=6,∠DOG=60°,则AO=BO=3,故DG=DO•sin60°=,则AD=3 ,DC=AC-AD= ,故DN=DC•sin60°=×= ,则S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF= ×2 ×6- ×3×- - × ×=3 - π.故答案为:3 - π.根据题意结合等边三角形的性质分别得出AB,AC,AD,DC 的长,进而利用S 阴影=S△ABC-S△AOD-S 扇形DOB-S△DCF 求出答案.此题主要考查了扇形面积求法以及等边三角形的性质和锐角三角函数关系等知识,正确分割图形是解题关键.11.【答案】2【解析】解:对各个小宫格编号如下:先看己:已经有了数字3、5、6,缺少1、2、4;观察发现:4 不能在第四列,2 不能在第五列,而2 不能在第六列;所以2 只能在第六行第四列,即a=2;则b 和c 有一个是1,有一个是4,不确定,如下:观察上图发现:第四列已经有数字2、3、4、6,缺少1 和5,由于5 不能在第二行,所以5 在第四行,那么1 在第二行;如下:再看乙部分:已经有了数字1、2、3,缺少数字4、5、6,观察上图发现:5 不能在第六列,所以5在第五列的第一行;4 和6 在第六列的第一行和第二行,不确定,分两种情况:①当4 在第一行时,6 在第二行;那么第二行第二列就是4,如下:再看甲部分:已经有了数字1、3、4、5,缺少数字2、6,观察上图发现:2 不能在第三列,所以2 在第二列,则6 在第三列的第一行,如下:观察上图可知:第三列少1 和4,4 不能在第三行,所以4 在第五行,则1 在第三行,如下:观察上图可知:第五行缺少1 和2,1 不能在第1 列,所以1 在第五列,则2 在第一列,即c=1,所以b=4,如下:观察上图可知:第六列缺少1 和2,1 不能在第三行,则在第四行,所以2 在第三行,如下:再看戊部分:已经有了数字2、3、4、5,缺少数字1、6,观察上图发现:1 不能在第一列,所以1 在第二列,则6 在第一列,如下:观察上图可知:第一列缺少3 和4,4 不能在第三行,所以4 在第四行,则3 在第三行,如下:观察上图可知:第二列缺少5 和6,5 不能在第四行,所以5 在第三行,则6 在第四行,如下:观察上图可知:第三行第五列少6,第四行第五列少3,如下:所以,a=2,c=1,ac=2;②当6 在第一行,4 在第二行时,那么第二行第二列就是6,如下:再看甲部分:已经有了数字1、3、5、6,缺少数字2、4,观察上图发现:2 不能在第三列,所以2 在第2 列,4 在第三列,如下:观察上图可知:第三列缺少数字1 和6,6 不能在第五行,所以6 在第三行,则1 在第五行,所以c=4,b=1,如下:观察上图可知:第五列缺少数字3 和6,6 不能在第三行,所以6 在第四行,则3 在第三行,如下:观察上图可知:第六列缺少数字1 和2,2 不能在第四行,所以2 在第三行,则1 在第四行,如下:观察上图可知:第三行缺少数字1 和5,1 和5 都不能在第一列,所以此种情况不成立;综上所述:a=2,c=1,a×c=2;故答案为:2.粗线把这个数独分成了6 块,为了便于解答,对各部分进行编号:甲、乙、丙、丁、戊、己,先从各部分中数字最多的己出发,找出其各个小方格里面的数,再根据每行、每列、每小宫格都不出现重复的数字进行推算.本题是六阶数独,比较复杂,关键是找出突破口,先推算出一个区域或者一行、一列,再逐步的进行推算.12.【答案】①③【解析】解:①∵四边形ABCD 为正方形,∴AB=BC=CD,∵BE=EF=FC,CG=2GD,∴BF=CG,∵在△ABF 和△BCG 中,,∴△ABF➴△BCG,∴∠BAF=∠CBG,∵∠BAF+∠BFA=90°,∴∠CBG+∠BFA=90°,即AF⊥BG;①正确;②∵在△BNF 和△BCG 中,,∴△BNF∽△BCG,∴ = = ,∴BN= NF;②错误;③作EH⊥AF,令AB=3,则BF=2,BE=EF=CF=1,AF= = ,∵S△ABF= AF•BN=AB•BF,∴BN= ,NF= BN= ,∴AN=AF-NF= ,∵E 是BF 中点,∴EH 是△BFN 的中位线,∴EH= ,NH= ,BN∥EH,∴AH= , = ,解得:MN= ,∴BM=BN-MN= ,MG=BG-BM= ,∴ = ;③正确;④连➓AG,FG,根据③中结论,则NG=BG-BN= ,∵S 四边形CGNF=S△CFG+S△GNF= CG•CF+NF•NG=1+= ,S 四边形ANGD=S△ANG+S△ADG= AN•GN+AD•DG= + = ,∴S 四边形CGNF≠S 四边形ANGD,④错误;故答案为①③.①易证△ABF➴△BCG,即可解题;②易证△BNF∽△BCG,即可求得的值,即可解题;③作EH⊥AF,令AB=3,即可求得MN,BM 的值,即可解题;④连➓AG,FG,根据③中结论即可求得S 四边形CGNF 和S 四边形ANGD,即可解题.本题考查了全等三角形的判定和性质,考查了相似三角形的判定和对应边成比例的性质,本题中令AB=3 求得AN,BN,NG,NF 的值是解题的关键.13.【答案】1.5【解析】解:∵在△AOB 中,∠AOB=90°,AO=3cm,BO=4cm,∴AB= =5cm,∵点D 为AB 的中点,∴OD= AB=2.5cm.∵将△AOB 绕顶点O,按顺时针方向旋转到△A1OB1 处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.故答案为1.5.先在直角△AOB 中利用勾股定理求出AB= =5cm,再利用直角三角形斜边上的中线等于斜边的一半得出OD= AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1-OD=1.5cm.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理.14.【答案】(2,2 3)【解析】解:2017×60°÷360°=336…1,即与正六边形ABCDEF 绕原点O 顺时针旋转1 次时点A 的坐标是一样的.当点A 按顺时针旋转60°时,与原F 点重合.连➓OF,过点F 作FH⊥x 轴,垂足为H;由已知EF=4,∠FOE=60°(正六边形的性质),∴△OEF 是等边三角形,∴OF=EF=4,∴F(2,2 ),即旋转2017 后点A 的坐标是(2,2 ),故答案是:(2,2 ).将正六边形ABCDEF 绕原点O 顺时针旋转2017 次时,点A 所在的位置就是原F 点所在的位置.此题主要考查了正六边形的性质,坐标与图形的性质-旋转.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.15.【答案】①②③【解析】解:在Rt△ABC 中,∵BC=2,∠BAC=30°,∴AB=4,AC= =2 ,①若C、O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则OA=AC=2 ;所以①正确;②如图1,取AB 的中点为E,连➓OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE= AB=2,当OC 经过点E 时,OC 最大,则C、O 两点距离的最大值为4;所以②正确;③如图2,同理取AB 的中点E,则OE=CE,∵AB 平分CO,∴OF=CF,∴AB⊥OC,所以③正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2 为半径的圆周的,则:=π.所以④不正确;综上所述,本题正确的有:①②③;故答案为:①②③.①先根据直角三角形30°的性质和勾股定理分别求AC 和AB,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC;②当OC 经过AB 的中点E 时,OC 最大,则C、O 两点距离的最大值为4;③如图2,根据等腰三角形三线合一可知:AB⊥OC;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.本题是三角形的综合题,考查了直角三角形30°的性质、直角三角形斜边中线的性质、等腰三角形的性质、轴对称的性质、线段垂直平分线的性质、动点运动路径问题、弧长公式,熟练掌握直角三角形斜边中线等于斜边一半是本题的关键,难度适中.3 316.【答案】(2, 2 )【解析】解:作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM= ,∴P(,).故答案为:(,).作N 关于OA 的对称点N′,连➓N′M 交OA 于P,则此时,PM+PN 最小,由作图得到ON=ON′,∠N′ON=2∠AON=60°,求得△NON′是等边三角形,根据等边三角形的性质得到N′M⊥ON,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P 的位置.17.【答案】②③④【解析】解:①观察函数图象可知,当t=2 时,两函数图象相交,∵C 地位于A、B 两地之间,∴交点代表了两车离C 地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5-1)=80(km/h),∵(240+200-60-170)÷(60+80)=1.5(h),∴乙车出发1.5h 时,两车相距170km,结论②正确;③∵(240+200-60)÷(60+80)=2 (h),∴乙车出发2 h 时,两车相遇,结论③正确;④∵80×(4-3.5)=40(km),∴甲车到达C 地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.①观察函数图象可知,当t=2 时,两函数图象相交,结合交点代表的意义,即可得出结论①错误;②根据速度=路程÷时间分别求出甲、乙两车的速度,再根据时间=路程÷速度和可求出乙车出发1.5h 时,两车相距170km,结论②正确;③根据时间=路程÷速度和可求出乙车出发2 h 时,两车相遇,结论③正确;④结合函数图象可知当甲到C 地时,乙车离开C 地0.5 小时,根据路程=速度×时间,即可得出结论④正确.综上即可得出结论.本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.18.【答案】【解析】5 ‒ 1 2解:作AE⊥x 轴于E,BF⊥x 轴于F,过B 点作BC⊥y 轴于C,交AE 于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB ,在△AOE 和△BAG 中,,∴△AOE ➴△BAG (AAS ),∴OE=AG ,AE=BG ,∵点 A (n ,1),∴AG=OE=n ,BG=AE=1,∴B (n+1,1-n ),∴k=n×1=(n+1)(1-n ),整理得:n 2+n-1=0,解得:n= ∴n=,(负值舍去), ∴k=故答案为: ;.作 AE ⊥x 轴于 E ,BF ⊥x 轴于 F ,过 B 点作 BC ⊥y 轴于 C ,交 AE 于 G ,则 AG ⊥BC ,先求得△ AOE ➴△BAG ,得出 AG=OE=n ,BG=AE=1,从而求得 B (n+1,1-n ),根据 k=n×1=(n+1)(1-n )得出方程,解方程即可.本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.19.【答案】(-2,0)【解析】解:如图所示,P 1(-2,0),P 2(2,-4),P 3(0,4),P 4(-2,-2),P 5(2,-2),P 6(0,2),发现 6 次一个循环,∵2017÷6=336…1,∴点 P 2017 的坐标与 P 1 的坐标相同,即 P 2017(-2,0),故答案为(-2,0).画出P1~P6,寻找规律后即可解决问题.本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
人教版九年级数学中考复习:选择、填空综合训练1

选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为.14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为.第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020=.第18题图选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( D )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( C )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( C )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( C )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( C )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( B )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( A )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( C )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( B )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3<-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为 x≥-3且x≠1且x≠2.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为 1 .14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为 18 .第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为 300 步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为16π3-4 3 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是 S1=32S2.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020= 1346+674 2 .第18题图。
高考数学选择、填空题专项训练(共40套)[附答案]
![高考数学选择、填空题专项训练(共40套)[附答案]](https://img.taocdn.com/s3/m/6e710a0f31126edb6f1a10b3.png)
三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
初一数学下学期中(选择、填空)压轴题训练(含解析)

七年级数学下学期中(选择、填空)压轴题训练一.选择题(共35小题)1.将一个直角三角板与两边平行的纸条按如图所示的方式放置,若∠2=40°,则∠1的大小是()A.40°B.50°C.60°D.70°2.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.450°C.540°D.720°3.已知一个多边形的外角和比它的内角和少540°,则该多边形的边数为()A.7B.8C.9D.104.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则以下∠A与∠C的关系正确的是()A.∠A=∠C+αB.∠A=∠C+2αC.∠A=2∠C+αD.∠A=2∠C+2α5.如图(1)所示为长方形纸带,将纸带第一次沿EF折叠成图(2),再第二次沿BF折叠成图(3),继续第三次沿EF折叠成图(4),按此操作,最后一次折叠后恰好完全盖住∠EFB,整个过程共折叠了11次,问图(1)中∠DEF的度数是()A.20°B.19°C.18°D.15°6.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°7.若两个角的两边分别平行,而其中一个角比另一个角的3倍少60°,那么这两个角的度数是()A.60°、120°B.都是30°C.30°、30°或60°、120°D.30°、120°或30°、60°8.如图,直尺经过一块三角板DCB的直角顶点B,若将边AB绕点B顺时针旋转,∠ABC =20°,∠C=30°,则∠DEF度数为()A.25°B.40°C.50°D.80°9.袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有10cm,15cm,20cm和25cm 四种规格,小朦同学已经取了10cm和15cm两根木棍,那么第三根木棍不可能取()A.10cm B.15cm C.20cm D.25cm10.如图,有一块直角三角板XYZ放置在△ABC上,三角板XYZ的两条直角边XY、XZ改变位置,但始终满足经过B、C两点.如果△ABC中∠A=52°,则∠ABX+∠ACX=()A.38°B.48°C.28°D.58°11.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.a2+a2=a4D.2a2﹣a2=a2 12.已知2n=a,3n=b,24n=c,那么a、b、c之间满足的等量关系是()A.c=ab B.c=ab3C.c=a3b D.c=a2b13.已知a=2﹣55,b=3﹣44,c=4﹣33,d=5﹣22,则这四个数从大到小排列顺序是()A.a<b<c<d B.d<a<c<b C.a<d<c<b D.b<c<a<d 14.已知32m=5,32n=10,则9m﹣n+1的值是()A.B.C.﹣2D.415.下列运算中,正确的是()A.b3•b3=2b3B.x4•x4=x16C.(a3)2•a4=a10D.(﹣2a)2=﹣4a216.连续4个﹣2相乘可表示为()A.4×(﹣2)B.(﹣2)4C.﹣24D.4﹣217.如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.﹣2B.(﹣1)﹣2C.0D.(﹣1)2019 18.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×101119.已知m、n均为正整数,且2m+3n=5,则4m•8n=()A.16B.25C.32D.6420.若2n+2n+2n+2n=26,则n=()A.2B.3C.4D.521.下列因式分解正确的是()A.m2﹣4n2=(m﹣2n)2B.﹣3x﹣6x2=﹣3x(1﹣2x)C.a2+2a+1=a(a+2)D.﹣2x2+2y2=﹣2(x+y)(x﹣y)22.已知x≠y并且满足:x2=2y+5,y2=2x+5,则x3﹣2x2y2+y3的值为()A.﹣16B.﹣12C.﹣10D.无法确定23.关于x的代数式(x+a)(x+b)(x+c)的化简结果为x3+mx+2,其中a,b,c,m都是整数,则m的值为()A.﹣3B.﹣2C.﹣1D.不确定24.要使﹣x3(x2+ax+1)+2x4中不含有x的四次项,则a等于()A.1B.2C.3D.425.已知a1,a2,…,a2020都是正数,如果M=(a1+a2+…+a2019)(a2+a3+…+a2020),N =(a1+a2+…+a2020)(a2+a3+…+a2019),那么M,N的大小关系是()A.M>N B.M=N C.M<N D.不确定26.有下列各式:①(﹣2ab+5x)(5x+2ab);②(ax﹣y)(﹣ax﹣y);③(﹣ab﹣c)(ab ﹣c);④(m+n)(﹣m﹣n).其中可以用平方差公式的有()A.4个B.3个C.2个D.1个27.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()A.30B.20C.60D.4028.已知20102021﹣20102019=2010x×2009×2011,那么x的值为()A.2018B.2019C.2020D.202129.若x2+2(m﹣3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m的值为()A.﹣4B.16C.﹣4或﹣16D.4或1630.下列多项式中可以用平方差公式进行因式分解的有()①﹣a2b2;②x2+x+﹣y2;③x2﹣4y2;④(﹣m)2﹣(﹣n)2;⑤﹣144a2+121b2;⑥m2+2mA.2个B.3个C.4个D.5个31.若m2+m﹣1=0,则m3+2m2+2019的值为()A.2020B.2019C.2021D.201832.如图所示,把60张形状、大小完全相同的小长方形(长是宽的2倍)卡片既不重叠又无空隙地放在一个底面为长方形(长与宽的比为6:5)的盒子底部边沿,则盒子底部末被卡片覆盖的长方形的长与宽的比为()A.5:4B.6:5C.10:9D.7:633.解方程组,你认为下列四种方法中,最简便的是()A.代入消元法B.①×27﹣②×13,先消去xC.①×4﹣②×6,先消去y D.②×3﹣①×2,先消去y34.若关于x,y的二元一次方程组的解也是二元一次方程2x﹣y=﹣7的解,则k 的值是()A.﹣1B.0C.1D.235.某班元旦晚会需要购买甲、乙、丙三种装饰品,若购买甲3件,乙5件,丙1件,共需62元,若购甲4件,乙7件,丙1件共需77元.现在购买甲、乙、丙各一件,共需()元.A.31B.32C.33D.34二.填空题(共5小题)36.已知三角形三边长为整数,其中两边的差为5,且周长为奇数,则第三边长的最小值为.37.观察下列等式:(1+x+x2)1=1+x+x2,(1+x+x2)2=1+2x+3x2+2x3+x4,(1+x+x2)3=1+3x+6x2+7x3+6x4+3x5+x6,(1+x+x2)4=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8,…由以上等式推测:对于正整数n,若(1+x+x2)n=a0+a1x+a2x2+…+a2n x2n,则a2=.(用n表示)38.已知:a=2012x+2013,b=2012x+2012,c=﹣2012x﹣2011.则a2+b2+c2﹣ab+bc+ca =.39.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有种.40.下面三个天平都保持平衡,左盘中“△”“口”分别表示两种质量不同的物体,1号和2号天平右盘中砝码的质量分别为8和13,则3号天平右盘中砝码的质量为.参考答案与试题解析一.选择题(共35小题)1.将一个直角三角板与两边平行的纸条按如图所示的方式放置,若∠2=40°,则∠1的大小是()A.40°B.50°C.60°D.70°【分析】由平角的性质,直角的定义,角的和差求出∠3=50°,根据平行线的性质和等量代换求了∠1的度数为50°.【解答】解:如图所示:∵∠2+∠3+∠4=180°,∠4=90°,∠2=40°,∴∠3=50°,又∵a∥b,∴∠1=∠3,∴∠1=50°,故选:B.2.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.450°C.540°D.720°【分析】由四边形ACEH中∠A+∠C+∠E+∠1=360°、四边形BDFP中∠B+∠D+∠F+∠2=360°,结合180°﹣∠1+180°﹣∠2+∠G=180°可得.【解答】解:如图,在四边形ACEH中,∠A+∠C+∠E+∠1=360°,在四边形BDFP中,∠B+∠D+∠F+∠2=360°,∵180°﹣∠1+180°﹣∠2+∠G=180°,∴∠A+∠C+∠E+∠1+∠B+∠D+∠F+∠2+180°﹣∠1+180°﹣∠2+∠G=360°+360°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=360°+180°=540°.故选:C.3.已知一个多边形的外角和比它的内角和少540°,则该多边形的边数为()A.7B.8C.9D.10【分析】根据多边形的内角和公式(n﹣2)•180°,外角和等于360°列出方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=540°,解得n=7.故选:A.4.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则以下∠A与∠C的关系正确的是()A.∠A=∠C+αB.∠A=∠C+2αC.∠A=2∠C+αD.∠A=2∠C+2α【分析】由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠C+2α,故答案选B.【解答】解:如图所示:∵BD为∠ABC的角平分线,∴∠ABC=2∠CBD,又∵AD∥BC,∴∠A+∠ABC=180°,∴∠A+2∠CBD=180°,又∵DF是∠∠ADC的角平分线,∴∠ADC=2∠ADF,又∵∠ADF=∠ADB+α∴∠ADC=2∠ADB+2α,又∵∠ADC+∠C=180°,∴2∠ADB+2α+∠C=180°,∴∠A+2∠CBD=2∠ADB+2α+∠C又∵∠CBD=∠ADB,∴∠A=∠C+2α,故选:B.5.如图(1)所示为长方形纸带,将纸带第一次沿EF折叠成图(2),再第二次沿BF折叠成图(3),继续第三次沿EF折叠成图(4),按此操作,最后一次折叠后恰好完全盖住∠EFB,整个过程共折叠了11次,问图(1)中∠DEF的度数是()A.20°B.19°C.18°D.15°【分析】根据最后一次折叠后恰好完全盖住∠EFG;整个过程共折叠了11次,可得CF 与GF重合,依据平行线的性质,即可得到∠DEF的度数.【解答】解:设∠DEF=α,则∠EFG=α,∵折叠11次后CF与GF重合,∴∠CFE=11∠EFG=11α,如图(2),∵CF∥DE,∴∠DEF+∠CFE=180°,∴α+11α=180°,∴α=15°,即∠DEF=15°.故选:D.6.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【分析】根据三角形内角和定理求出∠ACB,过C作CD∥直线m,求出CD∥直线m∥直线n,根据平行线的性质得出∠1=∠ACD,∠2=∠BCD,即可求出答案.【解答】解:∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,过C作CD∥直线m,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.7.若两个角的两边分别平行,而其中一个角比另一个角的3倍少60°,那么这两个角的度数是()A.60°、120°B.都是30°C.30°、30°或60°、120°D.30°、120°或30°、60°【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少60°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【解答】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣60,解得:x=30,∴这两个角的度数是30°和30°;若这两个角互补,则180﹣x=3x﹣60,解得:x=60,∴这两个角的度数是60°和120°.∴这两个角的度数是30°和30°或60°和120°.故选:C.8.如图,直尺经过一块三角板DCB的直角顶点B,若将边AB绕点B顺时针旋转,∠ABC =20°,∠C=30°,则∠DEF度数为()A.25°B.40°C.50°D.80°【分析】利用三角形的外角的性质求出∠DAB,再利用平行线的性质解决问题即可.【解答】解:∵∠DAB=∠C+∠ABC,∠C=30°,∠ABC=20°,∴∠DAB=20°+30°=50°,∵EF∥AB,∴∠DEF=∠DAB=50°,故选:C.9.袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有10cm,15cm,20cm和25cm 四种规格,小朦同学已经取了10cm和15cm两根木棍,那么第三根木棍不可能取()A.10cm B.15cm C.20cm D.25cm【分析】先设第三根木棒的长为xcm,再根据三角形的三边关系求出x的取值范围,找出不符合条件的x的值即可.【解答】解:设第三根木棒的长为xcm,∵已经取了10cm和15cm两根木棍,∴15﹣10<x<15+10,即5<x<25.∴四个选项中只有D不在其范围内,符合题意.故选:D.10.如图,有一块直角三角板XYZ放置在△ABC上,三角板XYZ的两条直角边XY、XZ改变位置,但始终满足经过B、C两点.如果△ABC中∠A=52°,则∠ABX+∠ACX=()A.38°B.48°C.28°D.58°【分析】根据题意作出合适的辅助线,再根据三角新内角和定理即可求得∠ABX+∠ACX 的度数,本题得以解决.【解答】解:连接AX,∵∠BXC=90°,∴∠AXB+∠AXC=360°﹣∠BXC=270°,∵∠A=52°,∴∠BAX+∠CAX=52°,∵∠ABX+∠BAX+∠AXB=180°,∠ACX+∠CAX+∠AXC=180°,∴∠ABX+∠ACX=360°﹣270°﹣52°=38°,故选:A.11.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.a2+a2=a4D.2a2﹣a2=a2【分析】分别根据同底数幂的乘法法则,幂的乘方运算法则,合并同类项法则逐一判断即可.【解答】解:A.a2•a3=a5,故本选项不合题意;B.(a2)3=a6,故本选项不合题意;C.a2+a2=2a2,故本选项不合题意;D.2a2﹣a2=a2,正确.故选:D.12.已知2n=a,3n=b,24n=c,那么a、b、c之间满足的等量关系是()A.c=ab B.c=ab3C.c=a3b D.c=a2b【分析】直接利用积的乘方运算法则将原式变形得出答案.【解答】解:∵2n=a,3n=b,24n=c,∴c=24n=(8×3)n=(23×3)n=(23)n•3n=(2n)3•3n=a3b,即c=a3b.故选:C.13.已知a=2﹣55,b=3﹣44,c=4﹣33,d=5﹣22,则这四个数从大到小排列顺序是()A.a<b<c<d B.d<a<c<b C.a<d<c<b D.b<c<a<d 【分析】直接利用幂的乘方运算法则以及负指数幂的性质、分数的性质统一各数指数,进而比较即可.【解答】解:∵a=2﹣55=(2﹣5)11=,b=3﹣44=(3﹣4)11=,c=4﹣33=(4﹣3)11=,d=5﹣22=(5﹣2)11=∴b<c<a<d.故选:D.14.已知32m=5,32n=10,则9m﹣n+1的值是()A.B.C.﹣2D.4【分析】由于已知的底数是3,而要求的代数式的底数是9,所以把要求代数式的底数变为3,利用积的乘方法则、逆用同底数幂的乘除法法则,变形结果后代入求值.【解答】解:原式=[(3)2]m﹣n+1=32m﹣2n+2=32m÷32n×32∵32m=5,32n=10,∴原式=5÷10×9=.故选:A.15.下列运算中,正确的是()A.b3•b3=2b3B.x4•x4=x16C.(a3)2•a4=a10D.(﹣2a)2=﹣4a2【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则分别判断得出答案.【解答】解:A、b3•b3=b6,故此选项错误;B、x4•x4=x8,故此选项错误;C、(a3)2•a4=a10,正确;D、(﹣2a)2=4a2,故此选项错误;故选:C.16.连续4个﹣2相乘可表示为()A.4×(﹣2)B.(﹣2)4C.﹣24D.4﹣2【分析】根据有理数的运算法则即可求出答案.【解答】解:连续4个﹣2相乘可表示为(﹣2)4,故选:B.17.如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.﹣2B.(﹣1)﹣2C.0D.(﹣1)2019【分析】根据题意列出表达式即可求解.【解答】解:由题意得:a+|﹣2|=+20,即a+2=2+1,解得:a=1,其中(﹣1)﹣2=1,故选:B.18.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm=100×10﹣9m=1×10﹣7m.故选:C.19.已知m、n均为正整数,且2m+3n=5,则4m•8n=()A.16B.25C.32D.64【分析】根据幂的乘方以及同底数幂的乘法法则解答即可.【解答】解:∵m、n均为正整数,且2m+3n=5,∴4m•8n=22m•23n=22m+3n=25=32.故选:C.20.若2n+2n+2n+2n=26,则n=()A.2B.3C.4D.5【分析】根据乘法原理以及同底数幂的乘法法则解答即可.【解答】解:∵2n+2n+2n+2n=4×2n=22×2n=22+n=26,∴2+n=6,解得n=4.故选:C.21.下列因式分解正确的是()A.m2﹣4n2=(m﹣2n)2B.﹣3x﹣6x2=﹣3x(1﹣2x)C.a2+2a+1=a(a+2)D.﹣2x2+2y2=﹣2(x+y)(x﹣y)【分析】直接利用公式法以及提取公因式法分解因式进而判断即可.【解答】解:A、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;B、﹣3x﹣6x2=﹣3x(1+2x),故此选项错误;C、a2+2a+1=(a+1)2,故此选项错误;D、﹣2x2+2y2=﹣2(x2﹣y2)=﹣2(x+y)(x﹣y),正确.故选:D.22.已知x≠y并且满足:x2=2y+5,y2=2x+5,则x3﹣2x2y2+y3的值为()A.﹣16B.﹣12C.﹣10D.无法确定【分析】由已知得,x2﹣y2=2(y﹣x),所以x=y或x+y=﹣2,又因为x≠y,所以把所求式子因式分解后,将x+y=﹣2代入计算即可.【解答】解:∵x2=2y+5,y2=2x+5,∴x2﹣y2=2(y﹣x),即(x+y)(x﹣y)=2(y﹣x),∴x=y或x+y=﹣2.∵x≠y,∴当x+y=﹣2时,且xy=﹣1,x3﹣2x2y2+y3=(x+y)[[x+y)2﹣3xy]﹣2(xy)2=﹣16.故选:A.23.关于x的代数式(x+a)(x+b)(x+c)的化简结果为x3+mx+2,其中a,b,c,m都是整数,则m的值为()A.﹣3B.﹣2C.﹣1D.不确定【分析】直接利用多项式乘以多项式分析得出答案.【解答】解:∵(x+a)(x+b)(x+c),=[x2+(a+b)x+ab](x+c),=x3+(a+b)x2+abx+cx2+(a+b)cx+abc,=x3+(a+b+c)x2+(ab+ac+bc)x+abc,=x3+mx+2,∴x3+(a+b+c)x2+(ab+ac+bc)x+abc不合x2的项,∴,∴c=﹣a﹣b,∴ab(﹣a﹣b)=2,∴或或或,∵a、b、c、m都是整数,∴a=﹣1,b=﹣1,c=2,∴m=1﹣2﹣2=﹣3,故选:A.24.要使﹣x3(x2+ax+1)+2x4中不含有x的四次项,则a等于()A.1B.2C.3D.4【分析】先利用多项式乘以单项式法则及合并同类项法则进行运算,再根据不含x的四次项,确定x的值.【解答】解:原式=﹣x5﹣ax4﹣x3+2x4=﹣x5+(2﹣a)x4﹣x3∵﹣x3(x2+ax+1)+2x4中不含有x的四次项,∴2﹣a=0,解得,a=2.故选:B.25.已知a1,a2,…,a2020都是正数,如果M=(a1+a2+…+a2019)(a2+a3+…+a2020),N =(a1+a2+…+a2020)(a2+a3+…+a2019),那么M,N的大小关系是()A.M>N B.M=N C.M<N D.不确定【分析】设S=a1+a2+…+a2019,用S分别表示出M,N,再利用作差法比较大小即可.【解答】解:设S=a1+a2+…+a2019,则M=S(S﹣a1+a2020)=S2﹣a1S+a2020SN=(S+a2020)(S﹣a1)=S2﹣a1S+a2020S﹣a1a2020∴M﹣N=a1a2020>0(a1,a2,…,a2020都是正数)∴M>N故选:A.26.有下列各式:①(﹣2ab+5x)(5x+2ab);②(ax﹣y)(﹣ax﹣y);③(﹣ab﹣c)(ab ﹣c);④(m+n)(﹣m﹣n).其中可以用平方差公式的有()A.4个B.3个C.2个D.1个【分析】各式利用平方差公式判断即可.【解答】解:①(﹣2ab+5x)(5x+2ab)=25x2﹣4a2b2,能;②(ax﹣y)(﹣ax﹣y)=y2﹣a2x2,能;③(﹣ab﹣c)(ab﹣c)=c2﹣a2b2,能;④(m+n)(﹣m﹣n)=﹣(m+n)2=﹣m2﹣2mn﹣n2,不能,故选:B.27.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()A.30B.20C.60D.40【分析】设大正方形边长为x,小正方形边长为y,则AE=x﹣y,然后表示阴影部分面积,再计算整式的乘法和加减,进而可得答案.【解答】解:设大正方形边长为x,小正方形边长为y,则AE=x﹣y,阴影部分的面积是:AE•BC+AE•DB,=(x﹣y)•x+(x﹣y)•y,=(x﹣y)(x+y),=(x2﹣y2),=60,=30.故选:A.28.已知20102021﹣20102019=2010x×2009×2011,那么x的值为()A.2018B.2019C.2020D.2021【分析】将式子2010x×2009×2011化为2010x+2﹣2010x,则有20102021﹣20102019=2010x+2﹣2010x,即可求x.【解答】解:2010x×2009×2011=2010x×(2010+1)(2010﹣1)=2010x×(20102﹣1)=2010x+2﹣2010x,∵20102021﹣20102019=2010x+2﹣2010x,∴x=2019,故选:B.29.若x2+2(m﹣3)x+1是完全平方式,x+n与x+2的乘积中不含x的一次项,则n m的值为()A.﹣4B.16C.﹣4或﹣16D.4或16【分析】利用完全平方公式,以及多项式乘以多项式法则确定出m与n的值,代入原式计算即可求出值.【解答】解:∵x2+2(m﹣3)x+1是完全平方式,(x+n)(x+2)=x2+(n+2)x+2n不含x的一次项,∴m﹣3=±1,n+2=0,解得:m=4或m=2,n=﹣2,当m=4,n=﹣2时,n m=16;当m=2,n=﹣2时,n m=4,则n m=4或16,故选:D.30.下列多项式中可以用平方差公式进行因式分解的有()①﹣a2b2;②x2+x+﹣y2;③x2﹣4y2;④(﹣m)2﹣(﹣n)2;⑤﹣144a2+121b2;⑥m2+2mA.2个B.3个C.4个D.5个【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:①﹣a2b2,无法分解因式;②x2+x+﹣y2=(x+)2﹣y2=(x++y)(x+﹣y),符合题意;③x2﹣4y2=(x+2y)(x﹣2y),符合题意;④(﹣m)2﹣(﹣n)2=(﹣m﹣n)(﹣m+n),符合题意;⑤﹣144a2+121b2=(11b+12a)(11b﹣12a),符合题意;⑥m2+2m,无法运用平方差公式分解因式.故选:C.31.若m2+m﹣1=0,则m3+2m2+2019的值为()A.2020B.2019C.2021D.2018【分析】将所求式子提取公因式得到m3+2m2+2019=m(m2+m)+m2+2019,再将m2+m =1代入即可求解.【解答】解:m3+2m2+2019=m(m2+m)+m2+2019,∵m2+m﹣1=0,∴m2+m=1,∴m3+2m2+2019=m2+m+2019=2020,故选:A.32.如图所示,把60张形状、大小完全相同的小长方形(长是宽的2倍)卡片既不重叠又无空隙地放在一个底面为长方形(长与宽的比为6:5)的盒子底部边沿,则盒子底部末被卡片覆盖的长方形的长与宽的比为()A.5:4B.6:5C.10:9D.7:6【分析】设在长上放了x张小长方形卡片,在宽上放了y张小长方形卡片,根据四边共放了60张小长方形卡片且长与宽的比为6:5,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入中即可求出结论.【解答】解:设在长上放了x张小长方形卡片,在宽上放了y张小长方形卡片,依题意,得:,解得:,∴盒子底部末被卡片覆盖的长方形的长与宽的比===.故选:C.33.解方程组,你认为下列四种方法中,最简便的是()A.代入消元法B.①×27﹣②×13,先消去xC.①×4﹣②×6,先消去y D.②×3﹣①×2,先消去y【分析】利用加减消元法计算即可.【解答】解:解方程组,你认为下列四种方法中,最简便的是②×3﹣①×2,先消去y,故选:D.34.若关于x,y的二元一次方程组的解也是二元一次方程2x﹣y=﹣7的解,则k 的值是()A.﹣1B.0C.1D.2【分析】把k看做已知数表示出方程组的解,代入已知方程计算即可求出k的值.【解答】解:,①+②得:2x=6k,解得:x=3k,②﹣①得:2y=﹣2k,解得:y=﹣k,代入2x﹣y=﹣7得:6k+k=﹣7,解得:k=﹣1故选:A.35.某班元旦晚会需要购买甲、乙、丙三种装饰品,若购买甲3件,乙5件,丙1件,共需62元,若购甲4件,乙7件,丙1件共需77元.现在购买甲、乙、丙各一件,共需()元.A.31B.32C.33D.34【分析】设甲种装饰品x元/件,乙种装饰品y元/件,丙种装饰品z元/件,根据“若购买甲3件,乙5件,丙1件,共需62元,若购甲4件,乙7件,丙1件共需77元”,即可得出关于x,y,z的三元一次方程组,用(3×①﹣2×②)可求出x+y+z=32,此题得解.【解答】解:设甲种装饰品x元/件,乙种装饰品y元/件,丙种装饰品z元/件,依题意,得:,3×①﹣2×②,得:x+y+z=32.故选:B.二.填空题(共5小题)36.已知三角形三边长为整数,其中两边的差为5,且周长为奇数,则第三边长的最小值为6.【分析】根据已知可设其中一边为x,则另一边为x+5,第三边为y,又由此三角形周长为奇数,可得第三边的长为偶数,根据三角形三边关系,即可求得第三边长的最小值.【解答】解:∵三角形三边中某两条边长之差为5,∴设其中一边为x,则另一边为x+5,第三边为y,∴此三角形的周长为:x+x+5+y=2x+y+5,∵三角形周长为奇数,∴y是偶数,∵5<y<x+x+5,∴y的最小值为6.故答案为:6.37.观察下列等式:(1+x+x2)1=1+x+x2,(1+x+x2)2=1+2x+3x2+2x3+x4,(1+x+x2)3=1+3x+6x2+7x3+6x4+3x5+x6,(1+x+x2)4=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8,…由以上等式推测:对于正整数n,若(1+x+x2)n=a0+a1x+a2x2+…+a2n x2n,则a2=.(用n表示)【分析】本题考查的知识点是归纳推理,我们可以根据已知条件中的等式,分析等式两边的系数及指数部分与式子编号之间的关系,易得等式右边展开式中的第三项分别为:1,3,6,10,…,归纳后即可推断出a2的等式.【解答】解:由已知中的式了,我们观察后分析:等式右边展开式中的第三项分别为:1,3,6,10,…,即:1,1+2,1+2+3,1+2+3+4,…根据已知可以推断:第n(n∈N*)个等式中a2为:1+2+3+4+…+n=,故答案为:.38.已知:a=2012x+2013,b=2012x+2012,c=﹣2012x﹣2011.则a2+b2+c2﹣ab+bc+ca =3.【分析】由题意可知:a﹣b=1,b+c=1,a+c=2,再把多项式转化为完全平方形式,再代入值求解即可.【解答】解:∵a=2012x+2013,b=2012x+2012,c=﹣2012x﹣2011,∴a﹣b=1,b+c=1,a+c=2,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab+2bc+2ca)=[(a2﹣2ab+b2)+(b2+2bc+c2)+(a2+2ac+c2)]=[(a﹣b)2+(b+c)2+(a+c)2]=(12+12+22)=3.故答案为:339.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有4种.【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【解答】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20﹣x.∵x,y均为正整数,∴x是5的倍数,∴,,,,∴共有4种购买方案.故答案为:4.40.下面三个天平都保持平衡,左盘中“△”“口”分别表示两种质量不同的物体,1号和2号天平右盘中砝码的质量分别为8和13,则3号天平右盘中砝码的质量为11.【分析】设左盘中“△”“口”的质量分别用x、y表示,根据题意可列出方程组求出x、y的值,再将x、y的值代入2x+y中即可求解.【解答】解:设左盘中“△”“口”的质量分别用x、y表示,根据题意,得解得∴2x+y=6+5=11,答:3号天平右盘中砝码的质量为11.故答案为:11.。
全国高中数学联赛选择填空训练题(2)

全国高中数学联赛选择填空训练题(2)一、选择题:(每小题6分,共36分)1.设集合A={a 1,a 2,a 3,a 4,a 5},B={a 12,a 22,a 32,a 42,a 52},a i (i=1,2,3,4,5)为正整数,且a 1<a 2<a 3<a 4<a 5,若A ∩B={a 1,a 4}, a 1+a 4=10,A ∪B 的元素之和为224,则a 5的值为( )A.8 B.9 C.10 D.112.一直线平分三角形的周长和面积,则该直线必通过三角形的( )A.外心B.内心C.重心D.垂心3.设四面体三组对棱分别相等,下面命题中正确的是( )A.四个面都是钝角三角形B. 四个面都是锐角三角形C.三个面是钝角三角形,另一面是锐角三角形D. 三个面是锐角三角形,另一面是钝角三角形4.已知实数x,y 满足4x 2-5xy+4y 2=5,w=x 2+y 2,则1w max +1w min的值为( ) A.45 B.85 C.16039 D.不存在5.某民航站有1到6个入口处,每个入口处每次只能进一个人,一小组9个人进站的方案数共有( ) A.C 514A 66 B.A 514A 66 C.C 514A 99 D.C 614A 996.连接凸五边形的每两个顶点总共可得到十条线段(包括边在内),现将其中的几条线段着上着颜色,为了使得心该五边形中任意三个顶点所构成的三角形都至少有一条边是有颜色的则n 的最小值是( )A.3 B.4 C.5 D.6二、填空题:(每小题9分,共54分)7.已知a<b<c<d<e 是连续的正整数,b+c+d 是完全平方数,a+b+c+d+e 是完全立方数,则c 的值是___________.8.已知x 0=2003,x n =x n-1+1x n-1(n>1,n ∈N),则x 2003的整数部分为___________ 9.已知x+2y+3z+4u+5v=30,则w=x 2+2y 2+3z 2+4u 2+5v 2的最小值为___________10.在棱长为a 的正方体内容纳9个等球,八个角各放一个,则这些等球最大半径是_______ 11.已知a,b,c 都不为0,并且有⎩⎪⎨⎪⎧sinx=asin(y-z)siny=bsin(z-x)sinz=csin(x-y),则有ab+bc+ca=__________. 12.已知a k ≥0,k=1,2,…,2003,且a 1+a 2+…+a 2003=1,则S=max{a 1+a 2+a 3, a 2+a 3+a 4,…, a 2001+a 2002+a 2003}的最小值为_________.(9提示:用柯西不等式:(a 2+b 2+c 2+d 2+e 2) (f 2+g 2+h 2+i 2+j 2)≥(af+bg+ch+di+ej)2. 答案:1.C.2.B.3.B.4.B.5.C.6.B.7.675.8.2003.9.60.10.0.5(23-3)a.11.-1.12.3/2007.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.生物膜将真核细胞分隔成不同的区室,使得细胞内能够同时进行多种化学反应,而不会相互干扰。
下列叙述正确的是()A.细胞核是mRNA合成和加工的场所B.高尔基体是肽链合成和加工的场所C.线粒体将葡萄糖氧化分解成CO2和H2OD.溶酶体合成和分泌多种酸性水解酶2.细胞代谢受酶的调节和控制。
下列叙述正确的是()A.激素都是通过影响细胞内酶活性来调节细胞代谢B.代谢的终产物可反馈调节相关酶活性,进而调节代谢速度C.同一个体各种体细胞酶的种类相同、数量不同,代谢不同D.对于一个细胞来说,酶的总类和数量不会发生变化3.右图为第10粒水稻种子在成熟过程中于物质和呼吸速率变化的示意图。
下列分析不正确...的是()A.种子干物质快速积累时期,呼吸作用旺盛B.种子成熟后期自由水减少,呼吸速率下降C.种子成熟后期脱落酸含量较高,呼吸速率下降D.种子呼吸速率下降有利于干物质合成4.下列现象中,与减数分裂同源染色体联会行为均有关的是( )①人类的47,XYY综合征个体的形成②线粒体DNA突变会导致在培养大菌落酵母菌时出现少数小菌落③三倍体西瓜植株的高度不育④一对等位基因杂合子的自交后代出现3:1的性状分离比⑤卵裂时个别细胞染色体异常分离,可形成人类的21三体综合征个体A.①② B..①⑤ C.③④ D.④⑤5.科学教温特做了如下实验:把切下的燕麦尖端放在琼脂块上,几小时后,移去胚芽鞘尖端,将琼脂块切成小块。
再将经处理过的琼脂块放在切去尖端的燕麦胚芽鞘一侧,结果胚芽鞘会朝对侧弯曲生长。
但是,如果放上的是没有接触过胚芽鞘尖端的琼脂块,胚芽鞘则既不生长也不弯曲。
该实验证明了( )A.生长素只能从形态学上端运输到形态学下端B.造成胚芽鞘弯曲的刺激是某种化学物质C.生长素的化学本质是吲哚乙酸D.胚芽鞘会弯向光源生长6.下图为通过DNA分子杂交鉴定含有某特定DNA的细菌克隆示意图。
下列叙述正确的是( )A.根据培养皿中菌落数可以准确计算样品中含有的活菌实际数目B.外源DNA必须位于重组质粒的启动子和终止子之间才能进行复制C.重组质粒与探针能进行分子杂交是因为DNA分子脱氧核糖和磷酸交替连接D.放射自显影结果可以显示原培养皿中含有特定DNA的细菌菌落位置1.关于蛋白质生物合成的叙述,正确的是()A.一种tRNA可以携带多种氨基酸 B.DNA聚合酶是在细胞核内合成的C.反密码子是位于mRNA上相邻的3个碱基D.线粒体中的DNA能控制某些蛋白质的合成2.关于同一个体中细胞有丝分裂和减数第一次分裂的叙述,正确的是()A.两者前期染色体数目相同,染色体行为和DNA分子数目不同B.两者中期染色体数目不同,染色体行为和DNA分子数目相同C.两者后期染色体行为和数目不同,DNA分子数目相同D.两者末期染色体行为和数目相同,DNA分子数目不同3.关于植物细胞主动运输方式吸收所需矿质元素离子的叙述,正确的是()A.吸收不同矿质元素离子的速率都相同B.低温不影响矿质元素离子的吸收速率C.主动运输矿质元素离子的过程只发生在活细胞中D.叶肉细胞不能以主动运输的方式吸收矿质元素离子4.示意图甲、乙、丙、丁为某实验动物感染HIV后的情况下列叙述错误的是()A.从图甲可以看出,HIV感染过程中存在逆转录现象B.从图乙可以看出,HIV侵入后机体能产生体液免疫C.从图丙可以推测,HIV可能对实验药物a敏感 D.从图丁可以看出,HIV对试验药物b敏感5.某农场面积为140hm2,农场丰富的植物资源为黑线姬鼠提供了良好的生存条件,鼠大量繁殖吸引鹰前来捕食,某研究小组采用标志重捕法调查该农场黑线姬鼠的种群密度,第一次捕获100只,标记后全部放掉,第二次捕获280只,发现其中有2只带有标记,下列叙述错误..的是()A.鹰的迁入率增加会影响黑线姬鼠的种群密度 B.该农场黑线姬鼠的种群密度约为100只/hm2 C.黑线姬鼠种群数量下降说明农场群落的丰富度下降D.植物→鼠→鹰这条食物链,第三营养级含能量少6.若用玉米为实验材料验证孟德尔分离定律,下列因素对得出正确实验结论影响最小的是()A.所选实验材料是否为纯合子 B.所选相对性状的显隐性是否易于区分C.所选相对性状是否受一对等位基因控制D.是否严格遵守实验操作流程和统计分析方法1.关于DNA和RNA的叙述,正确的是()A.DNA有氢键,RNA没有氢键B.一种病毒同时含有DNA和RNAC.原核细胞中既有DNA,也有RNAD.叶绿体、线粒体和核糖体都含有DNA2.关于叶绿素的叙述,错误的是()A.叶绿素a和叶绿素b都含有镁元素B.叶绿素吸收的光可能用于光合作用C.叶绿素a和叶绿素b在红光区的吸收峰值不同D.植物呈现绿色是由于叶绿素能有效地吸收绿光3.下列与微生物呼吸有关的叙述,错误的是()A.肺炎双球菌无线粒体,但能进行有氧呼吸B.与细菌呼吸有关的酶由拟核中的基因编码C.破伤风芽孢杆菌适宜生活在有氧的环境中D.有氧和无氧时,酵母菌呼吸作用产物不同4.关于免疫细胞的叙述,错误的是()A.淋巴细胞包括B细胞、T细胞和吞噬细胞B.血液和淋巴液中都含有T细胞和B细胞C.吞噬细胞和B细胞都属于免疫细胞D.浆细胞通过胞吐作用分泌抗体5. 在生命科学发展过程中,证明DNA是遗传物质的实脸是()①孟德尔的豌豆杂交实验②摩尔根的果蝇杂交实脸③肺炎双球菌转化实验④T2噬菌体侵染大肠杆菌实验⑤ DNA的X光衍射实脸A.①②B.②③C.③④D.④⑤6. 关于酶的叙述,错误的是()A. 同一种酶可存在于分化程度不同的活细胞中B.低温能降低酶活性的原因是其破坏了酶的空间结构C.酶通过降低化学反应的活化能来提高化学反应速度D.酶既可以作为催化剂,也可以作为另一个反应的底物1.真核细胞结构与成分,对应有误的是( )A.细胞膜:脂质、蛋白质、糖类B.染色体:核糖核酸、蛋白质C.核糖体:蛋白质、核糖核酸 D.细胞骨架:蛋白质2.在细胞生命活动中,不可能发生的过程是( )A.神经递质由突触小泡分泌到胞外 B.mRNA从细胞核进入细胞质C.老化受损的细胞器融入溶酶体中 D.O2通过主动运输进入线粒体3.有关生物体对刺激做出反应的表述,错误的是( )A.病毒感染→人体T细胞分泌特异性抗体→清除病毒B.外界温度降低→哺乳动物体温调节中枢兴奋→体温稳定C.摄入高糖食品→人体胰岛素分泌增加→血糖水平回落D.单侧光照→植物体生长素重新分布→向光弯曲4.安第斯山区有数十种蝙蝠以花蜜为食。
其中,长舌蝠的舌长为体长的1.5倍。
只有这种蝙蝠能从长筒花狭长的花冠筒底部取食花蜜,且为该植物的唯一传粉者。
由此无法推断出( )A.长舌有助于长舌蝠避开与其他蝙蝠的竞争B.长筒花可以在没有长舌蝠的地方繁衍后代C.长筒花狭长的花冠筒是自然选择的结果D.长舌蝠和长筒花相互适应,共同(协同)进化5.关于高中生物学实验的基本原理,叙述不正确的是( )A.噬菌体须在活菌中增殖培养是因其缺乏独立的代谢系统B.提取组织DNA是利用不同化合物在溶剂中溶解度的差异C.成熟植物细胞在高渗溶液中发生质壁分离是因为细胞壁具有选择透(过)性D.PCR呈指数扩增DNA片段是因为上一轮反应产物可作为下一轮反应模板二.非选题。
29.(11分)某油料作物种子中脂肪含量为种子干重的70%。
为探究该植物种子萌发过程中干重及脂肪的含量变化,某研究小组将种子置于温度、水分(蒸馏水)、通气等条件适宜的黑暗环境中培养,定期检查萌发种子(含幼苗)的脂肪含量和干重,结果表明:脂肪含量逐渐减少,到第11d时减少了90%,干重变化如图所示。
回答下列问题:(1)为了观察胚乳中的脂肪,常用染液对种子胚乳切片染色,然后在显微镜下观察,可见色的脂肪微粒。
(2)实验过程中,导致萌发种子干重增加的主要元素是(填“C”、“N”或“O”)。
(3)实验第11d后,如果使萌发种子(含幼苗)的干重增加,必须提供的条件是和。
答案:(1)苏丹Ⅲ(Ⅳ)橘黄色(红色)(2)O(3)适宜的光照所需的矿质元素30.(10分)胰岛素可使骨骼肌细胞和脂肪细胞膜上葡萄糖转运载体的数量增加,已知这些细胞膜上的载体转运葡萄糖的过程不消耗ATP。
回答下列问题:(1)胰岛素从胰岛B细胞释放到细胞外的运输方式是,葡萄糖进入骨骼肌细胞的运输方式是。
(2)当血糖浓度上升时,胰岛素分泌,引起骨骼肌细胞膜上葡萄糖转运载体的数量增加,其意义是。
(3)脂肪细胞(填“是”或“不是”)胰岛素作用的靶细胞。
(4)健康人进餐后,血糖浓度有小幅度增加。
然后恢复到餐前水平。
在此过程中,血液中胰岛素浓度的相应变化是。
答案:(1)胞吐协助扩散(2)增加促进葡萄糖运入骨骼肌细胞和被利用,降低血糖(3)是(4)先升高后降低31.(12分)一对相对性状可受多对等位基因控制,如某种植物花的紫色(显性)和白色(隐性)。
这对相对性状就受多对等位基因控制。
科学家已从该种植物的一个紫花品系中选育出了5个基因型不同的白花品系,且这5个白花品系与该紫花品系都只有一对等位基因存在差异。
某同学在大量种植该紫花品系时,偶然发现了1株白花植株,将其自交,后代均表现为白花。
回答下列问题:(1)假设上述植物花的紫色(显性)和白色(隐性)这对相对性状受8对等位基因控制,显性基因分别用A、B、C、D、E、F、G、H表示,则紫花品系的基因型为;上述5个白花品系之一的基因型可能为(写出其中一种基因型即可)(2)假设该白花植株与紫花品系也只有一对等位基因存在差异,若要通过杂交实验来确定该白花植株是一个新等位基因突变造成的,还是属于上述5个白花品系中的一个,则:该实验的思路;预期的实验结果及结论。
答案:(1)AABBCCDDEEFFGGHH aaBBCCDDEEFFGGHH(写出其中一种即可)(2)用该白花植株的后代分别与5个白花品系杂交,观察子代花色如果子代全部为紫花,说明该白花植株是新等位基因突变造成的;在5各杂交组合中如果4个组合的子代为紫花1个组合的子代为白花说明该白花植株属于这5个白花品系之一32.(6分)南方某地的常绿阔叶林等因过度砍伐而遭到破坏。
停止砍伐一段时间后,该地常绿阔叶林逐步得以恢复。
下表为恢复过程依次更替的群落类型及其植物组成。
回答下列问题:(1)该地常绿阔叶林恢复过程中群落演替的类型为演替。
常绿阔叶林遭到破坏后又得以恢复的原因,除了植物的种子或者繁殖体课得到保留外,还可能是原有的条件也得到基本保留。
(2)在由上述群落构成的生态系统中,恢复力稳定性最强的是生态系统,抵抗力稳定性最强的是生态系统。
(3)与草丛相比,针叶林中的动物分层现象较为(填“简单”或“复杂”),原因是。
答案:(1)次生土壤(2)草丛常绿阔叶林(3)复杂针叶林中植物群落的垂直结构更复杂39.【生物——选修1 生物技术实践】(15分)回答下列有关泡菜制作的习题:(1)制作泡菜是,所用盐水煮沸,其目的是。