2017年黑龙江省哈尔滨市中考数学试卷

合集下载

黑龙江省哈尔滨2017年中考数学一模试卷(有答案)

黑龙江省哈尔滨2017年中考数学一模试卷(有答案)

黑龙江省哈尔滨2017年中考数学一模试卷一、选择题1.我市4月份某天的最高气温是22℃,最低气温是8℃,那么这天的温差是()A.30℃B.14℃C.﹣14℃D.12℃【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:22﹣8=14(℃)故这天的温差是14℃.故选B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.2.下列运算正确的是()A.a+a=a2B.a2•a=a2C.a3÷a2=a (a≠0)D.(a2)3=a5【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,不符合题意;B、原式=a3,不符合题意;C、原式=a,符合题意;D、原式=a6,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.下面四个图形中,不是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的概念和各图特点作答.【解答】解:A、是中心对称图形,不符合题意;B、不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与它本身重合,即不满足中心对称图形的定义.符合题意;C、是中心对称图形,不符合题意;D、是中心对称图形,不符合题意;故选B.【点评】本题考查了中心对称图形的概念,掌握中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做中心对称点.4.如图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是( )A .B .C .D .【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从正面看易得第一层有1个正方形,第二层有1个正方形.故选B .【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.若反比例函数y=的图象经过点(2,﹣1),则该反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限【分析】根据反比例函数图象在第一、三象限或在第二、四象限,根据(2,﹣1)所在象限即可作出判断.【解答】解:点(2,﹣1)在第四象限,则该反比例函数的图象的两个分支在第二、四象限.故选D .【点评】本题考查了反比例函数的性质,对于反比例函数y=(k ≠0),(1)k >0,反比例函数图象在第一、三象限;(2)k <0,反比例函数图象在第二、四象限内.6.如图,四边形ABCD 内接于⊙O ,若∠BOD=138°,则它的一个外角∠DCE 等于( )A .69°B .42°C .48°D .38°【分析】由∠BOD=138°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠A 的度数,又由圆的内接四边四边形的性质,求得∠BCD 的度数,继而求得∠DCE 的度数.【解答】解:∵∠BOD=138°,∴∠A=∠BOD=69°,∴∠BCD=180°﹣∠A=111°,∴∠DCE=180°﹣∠BCD=69°.故选A .【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题比较简单,解题的关键是注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半与圆内接四边形的对角互补定理的应用.7.如图,在△ABC中,∠CAB=70°,将△ABC绕点A按逆时针方向旋转一个锐角α到△AB′C′的位置,连接CC′,若CC′∥AB,则旋转角α的度数为()A.40°B.50°C.30°D.35°【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转得性质得AC=AC′,∠CAC′等于旋转角,然后利用等腰三角形的性质和三角形内角和计算出∠CAC′的度数即可.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A按逆时针方向旋转一个锐角α到△AB′C′的位置,∴AC=AC′,∠CAC′等于旋转角,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴旋转角α的度数为40°.故选A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD,进而利用锐角三角函数关系得出答案.【解答】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD===,只有选项C错误,符合题意.故选:C.【点评】此题主要考查了锐角三角函数的定义,得出∠α=∠ACD是解题关键.9.下列说法中正确的是()A.不在同一条直线上的三个点确定一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.在同圆或等圆中,相等的弦所对的圆周角相等【分析】根据确定圆的条件、垂径定理、圆周角定理判断即可.【解答】解:不在同一条直线上的三个点确定一个圆,A正确;在同圆或等圆中,相等的圆心角所对的弧相等,B错误;平分弦(不是直径)的直径垂直于弦,C错误;在同圆或等圆中,相等的弦所对的圆周角相等或互补,D错误,故选:A.【点评】本题考查的是命题的真假判断,掌握确定圆的条件、垂径定理、圆周角定理是解题的关键.10.已知A、B两地相距4km,上午8:00时,亮亮从A地步行到B地,8:20时芳芳从B地出发骑自行车到A地,亮亮和芳芳两人离A地的距离S(km)与亮亮所用时间t(min)之间的函数关系如图所示,芳芳到达A地时间为()A.8:30 B.8:35 C.8:40 D.8:45【分析】根据题意可知:亮亮距离A地的距离随着时间的增大而增大,芳芳8点至8点20分由于没出发,故S=4米,8点20分后芳芳往A地走,故S随着时间的增大而减小.然后根据条件分别求出亮亮与芳芳S与t的函数关系式.【解答】解:由题意可知:设亮亮S与t的函数关系式为:S=mt(0≤t≤60),把t=60,S=4代入S=mt,∴4=60m,∴m=,∴S=t,当S=2时,此时t=30,设芳芳S与t的函数关系式为:S=at+b(t≥20),把t=30,S=2和t=20,S=4代入S=at+b,,解得:,∴S=﹣t+8,令S=0代入S=﹣t+8,∴t=40,故芳芳到达A地的时间为8点40分故选(C)【点评】本题考查函数的图象,涉及待定系数法求一次函数的解析式,求函数值等知识.二、填空题:11.长城某段长约为690 000米,690 000用科学记数法表示为 6.9×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:690 000用科学记数法表示为6.9×105,故答案为:6.9×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是x≠6.【分析】根据分式的意义即分母不等于0,可以求出x的范围.【解答】解:依题意得x﹣6≠0,∴x≠6.故答案为:x≠6.【点评】此题主要考查了确定函数自变量的取值范围,确定函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.不等式组的解集是2<x<5.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式<2,得:x<5,解不等式1﹣(x﹣1)<0,得:x>2,则不等式组的解集为2<x<5,故答案为:2<x<5.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.代数式ax2﹣4ax+4a分解因式,结果是a(x﹣2)2.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(x2﹣4x+4)=a(x﹣2)2,故答案为:a(x﹣2)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=,故答案为:.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.已知扇形的半径为5cm,圆心角等于120°,则该扇形的弧长等于.【分析】代入弧长公式计算即可.【解答】解:扇形的弧长是=.故答案是:.【点评】本题主要考查了弧长的计算公式,是需要熟记的内容.17.某商品经过两次连续的降价,由原来的每件25元降为每件16元,则该商品平均每次降价的百分率为20%.【分析】此题可设平均每次降价的百分率为x,那么第一次降价后的单价是原来的(1﹣x),那么第二次降价后的单价是原来的(1﹣x)2,根据题意列方程解答即可.【解答】解:设平均每次降价的百分率为x,根据题意列方程得25×(1﹣x)2=16,解得x1=0.,2,x2=1.8(不符合题意,舍去),即该商品平均每次降价的百分率为20%.故答案是:20%.【点评】本题考查了一元二次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.18.如图,已知P为⊙O内一点,且OP=2cm,如果⊙O的半径是3cm,那么过P点的最短的弦等于2cm.【分析】过点P作弦AB⊥OP,此时AB为过P点的最短弦,如图,根据垂径定理得AP=BP,然后在Rt△APO中利用勾股定理计算出AP=,则AB=2AP=2.【解答】解:过点P作弦AB⊥OP,此时AB为过P点的最短弦,如图,∵OP⊥AB,∴AP=BP,在Rt△APO中,∵OP=2,OA=3,∴AP==,∴AB=2AP=2.故答案为2【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.19.已知△ABC,O为AC中点,点P在AC上,若OP=,tan∠A=,∠B=120°,BC=2,则AP=2或.【分析】作CD⊥AB的延长线于D,求得∠CBD=60°,解直角三角形求得DC=3,进而求得AD=6,根据勾股定理求得AC=3,即可求得AO=,然后求得AP=2或.【解答】解:作CD⊥AB的延长线于D,∵∠ABC=120°,∴∠CBD=60°,∵BC=2,∴DC=BC•sin60°=2•=3,∵tan∠A=,∴AD=6,∴AC==3,∴AO=,∵OP=,∴AP=2或.故答案为2或.【点评】本题考查了三角函数的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20.已知正方形ABCD的边长为4,点E,F分别在边BC、CD上,∠EAF=45°,若AE•AF=,则EF的长为.【分析】如图将△ABE绕点A顺时针旋转90°得到△ADM,作FH⊥AE于H.首先证明△FAE≌△FAM,推出EF=FM,S△FAE=S△FAM,由FH⊥AE,∠FAH=45°,推出FH=AF•sin45°=AF,由S△AEF=•AE•FH=•AE•AF=•AE•AF=,由•EF•AD=,即可推出EF=.【解答】解:如图将△ABE绕点A顺时针旋转90°得到△ADM,作FH⊥AE于H.∵四边形ABCD是正方形,∴∠DAB=90°,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAF+∠MAD=45°,∴∠FAE=∠FAM,在△FAE和△FAM中,,∴△FAE≌△FAM,∴EF=FM,S△FAE=S△FAM,∵FH⊥AE,∠FAH=45°,∴FH=AF•sin45°=AF,∵S△AEF=•AE•FH=•AE•AF=•AE•AF=,∴•EF•AD=,∴EF=故答案为.【点评】本题考查正方形的性质、全等三角形的判定和性质、三角形的面积、等腰直角三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、解答题(21、22题各7分,23、24题各8分,25-27题各10分,共计60分)21.(7分)化简求值:(﹣1)÷,其中x=tan60°﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=﹣,当x=tan60°﹣1=﹣1时,原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(7分)图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)在图a中画出△ABC(点C在小正方形的顶点上),使△ABC是等腰三角形且△ABC为钝角三角形;(2)在图b中画出△ABD(点D在小正方形的顶点上),使△ABD是等腰三角形,且tan∠ABD=1.【分析】(1)在网格上取AC=AB的点C即可;(2)作以AB为直角边的等腰直角三角形即可.【解答】解:(1)△ABC如图a所示;(2)△ABD如图b所示.AB=AD,∠BAD=90°,∴∠ABD=45°,∴tan∠ABD=1.【点评】本题考查了等腰三角形的判定、三角函数,等腰直角三角形的判定与性质,熟练掌握网格结构以及45°角的三角函数值是解题的关键.23.(8分)某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数并直接写出被抽查学生课外阅读量的中位数;(2)将条形统计图补充完整;(3)若规定:假期阅读3本及3本以上课外书者为完成假期作业,据此估计该校1500名学生中,完成假期作业的有多少名学生?【分析】(1)根据阅读2本的学生有10人,占20%即可求得总人数;(2)利用总人数50减去其它各组的人数就是读4本的学生数,据此即可作出统计图;(3)求得样本中3本及3本以上课外书者所占的比例,然后乘以总人数1500即可求解.【解答】解:(1)被抽查学生人数为:10÷20%=50(人),中位数是3本;(2)阅读量为4本的人数为:50﹣4﹣10﹣15﹣6=15(人),补全条形统计图如图:(3)×1500=1080(本),答:估计该校1500名学生中,完成假期作业的有1080名学生.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.同时考查了总体与样本的关系.24.(8分)已知菱形ABCD的对角线相交于O,点E、F分别在边AB、BC上,且BE=BF,射线EO、FO分别交边CD、AD于G、H.(1)求证:四边形EFGH为矩形;(2)若OA=4,OB=3,求EG的最小值.【分析】(1)先根据对角线互相平分证明四边形EFGH是平行四边形,再证明△EBO≌△FBO,得EG=FH,所以四边形EFGH是矩形;(2)根据垂线段最短,可知:当OE⊥AB时,OE最小,先利用面积法求OE的长,EG=2OE,可得结论.【解答】证明:(1)∵四边形ABCD是菱形,∴OA=OC,OB=OD,AB∥CD,AD∥BC,∴∠BAO=∠DCO,∠AOE=∠GOC,∴△AOE≌△COG(ASA),∴OE=OG,同理得:OH=OF,∴四边形EFGH是平行四边形,∵BE=BF,∠ABD=∠CBD,OB=OB,∴△EBO≌△FBO,∴OE=OF,∴EG=FH,∴四边形EFGH是矩形;(2)∵垂线段最短,∴当OE⊥AB时,OE最小,∵OA=4,OB=3,∠AOB=90°,∴AB2=OA2+OB2=25,∴AB=5,∴OA×OB=AB×OE,3×4=5×OE,OE=,∵OE=OG,∴EG=.答:EG的最小值是.【点评】本题考查了菱形的性质、矩形的性质和判定、三角形全等的性质和判定、勾股定理,熟练掌握矩形的判定是关键,同时还运用了面积法求线段OE的长.25.(10分)某商品经销店欲购进A、B两种纪念品,用160元购进的A种纪念品与用240元购进的B种纪念品的数量相同,每件B种纪念品的进价比A种纪念品的进价贵10元.(1)求A、B两种纪念品每件的进价分别为多少元?(2)若该商店A种纪念品每件售价24元,B种纪念品每件售价35元,这两种纪念品共购进1 000件,这两种纪念品全部售出后总获利不低于4 900元,求A种纪念品最多购进多少件.【分析】(1)设A种纪念品每件的进价为x元,则B种纪念品每件的进价(x+10)元,根据用160元购进的A种纪念品与用240元购进的B种纪念品的数量相同列出方程,再解即可;(2)设A种纪念品购进a件,由题意得不等关系:A种纪念品的总利润+B种纪念品的总利润≥4 900元,根据不等关系列出不等式,再解即可.【解答】解:(1)设A种纪念品每件的进价为x元,则B种纪念品每件的进价(x+10)元,由题意得:=,解得:x=20,经检验:x=20是原分式方程的解,x+10=30,答:A种纪念品每件的进价为20元,则B种纪念品每件的进价30元;(2)设A种纪念品购进a件,由题意得:(24﹣20)a+(35﹣30)(1000﹣a)≥4900,解得:a≤100,∵a为整数,∴a的最大值为100.答:A种纪念品最多购进100件.【点评】此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系或不等关系,再列出不等式或方程组即可.26.(10分)已知AB为⊙O的直径,CD为⊙O的弦,CD∥AB,过点B的切线与射线AD交于点M,连接AC、BD.(1)如图l,求证:AC=BD;(2)如图2,延长AC、BD交于点F,作直径DE,连接AE、CE,CE与AB交于点N,求证:∠AFB=2∠AEN;(3)如图3,在(2)的条件下,过点M作MQ⊥AF于点Q,若MQ:QC=3:2,NE=2,求QF的长.【分析】(1)连接OC,OD,根据平行线的性质得到∠DAB=∠ADC根据已知条件得到∠COA=∠DOB,于是得到结论;(2)连接OC,推出△FBA是等腰三角形,由DE是⊙O的直径,得到∠ECD=90°,根据平行线的性质得到AB⊥CE,得到AC=AE,根据等腰三角形的性质得到∠CAN=∠EAN=∠ABF,∠ACE=∠AEN,根据三角形的内角和即可得到结论;(3)解:连接BC交AD于P,根据圆周角定理得到∠PAB=∠PBA,求得PA=PB,推出P为AM的中点,根据平行线的判定定理得到BC∥MQ,于是得到=,求得AC=CQ,设DF=3k,AD=4k,由勾股定理得,AF=5k=BF,求得BD=2k,根据平行线的性质得到∠EAN=∠ABD,求得tan∠EAN=2,即可得到结论.【解答】(1)证明:连接OC,OD,∵CD∥AB,∴∠DAB=∠ADC,∵∠DOB=2∠DAB,∠COA=2∠CDA,∴∠COA=∠DOB,∴AC=BD;(2)连接OC,∵∠COA=∠DOB,OA=OB=OC=OD,∴∠CAB=∠DBA,∴△FBA是等腰三角形,∵DE是⊙O的直径,∴∠ECD=90°,∵CD∥AB,∴∠ANC=90°,∴AB⊥CE,∴AC=AE,∴∠CAN=∠EAN=∠ABF,∠ACE=∠AEN,∵∠FAB+∠FBA+∠F=180°,∠CAE+∠AEC+∠ACE=180°,∴∠F=∠ACE+∠AEC,∴∠AFB=2∠AEN;(3)解:连接BC交AD于P,∵AC=BD,∴=,∴∠PAB=∠PBA,∴PA=PB,∠PBM=∠PMB,∴PB=PM,∴P为AM的中点,∵MQ⊥AF,BC⊥AF,∴BC∥MQ,∴=,∴AC=CQ,∵=,∴=,∴tan∠MAQ=,∴tan∠F=,设DF=3k,AD=4k,由勾股定理得,AF=5k=BF,∴BD=2k,∴tan∠ABD=2,∴DE为直径,∴∠EAD=90=∠BDM,∴AE∥BD,∴∠EAN=∠ABD,∴tan∠EAN=2,∵NE=2,∴AN=1,CN=2,∴BN=4,AE=BD=,∴DF=,AC=BD==CQ,∴QF=【点评】本题考查了平行线的性质,圆周角定理,勾股定理,三角函数的定义,等腰三角形的判定和性质,平行线分线段成比例定理,正确的作出辅助线是解题的关键.27.(10分)已知:如图,抛物线y=﹣(x﹣h)2+k与x轴交于A、B,与y轴交于C,抛物线的顶点为D,对称轴交x轴于H,直线y=x+经过点A与对称轴交于E,点E的纵坐标为3.(1)求h、k的值;(2)点P为第四象限抛物线上一点,连接PH,点Q为PH的中点,连接AQ、AP,设点P的横坐标为t,△AQP的面积为S,求S与t的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,过点Q作y轴的平行线QK,过点D作y轴的垂直DK,直线QK、DK交于点K,连接PK、EK,若2∠DKE+∠HPK=90°,求点P的横坐标.【分析】(1)根据已知条件得到D点的横坐标是2,求得h=2把A(﹣2,0)代入y=﹣(x﹣h)2+k得,即可得到结论;(2)设P的横坐标为t,则纵坐标为﹣t2+t+3,根据三角形的面积公式列方程即可得到结论;(3)如图2,过P作x轴、y轴的平行线分别交DH,KQ于M,N,交直线DK于R,则四边形DKNM,四边形KNPR是矩形,设MN=m,得到DK=KR=m,求得P点的横坐标为2m+2,代入y=﹣(x﹣2)2+4中得到P点的纵坐标为﹣m2+4根据三角函数的定义列方程即可得到结论.【解答】解:(1)∵点E的纵坐标为3,∴3=x+,解得:x=2,∴D点的横坐标是2,∴h=2,∵直线y=x+经过点A,∴A(﹣2,0)代入y=﹣(x﹣h)2+k得,0=﹣(﹣2﹣h)2+k,∴k=4;(2)如图1,设P的横坐标为t,则纵坐标为﹣t2+t+3,∵点Q为PH的中点,∴S△APQ=S△AQH,∴S△APQ=S△AHP,∵S△AHP=AH(t2﹣t﹣3),∵AH=4,∴S=×4×((t2﹣t﹣3)=t2﹣t﹣3(t>6);(3)如图2,过P作x轴、y轴的平行线分别交DH,KQ于M,N,交直线DK于R,则四边形DKNM,四边形KNPR是矩形,设MN=m,∴DK=KR=m,∴P点的横坐标为2m+2,代入y=﹣(x﹣2)2+4中,得到P点的纵坐标为:﹣m2+4,∴DM=RP=m2,∴tan∠DKE==,∴∠DKE=∠KPR,∴EK⊥PK,∵2∠DKE+∠HPK=90°,∠DKE=∠KPR,∠BHP+∠HPK+∠KPR=90°,∴∠DKE=∠PHB,∴tan∠DKE=tan∠PHB,∴=,∴m=±(m=﹣舍去),∴m=,∴点P的横坐标为2+2.【点评】本题考查了一次函数和二次函数图象上点的坐标特征,三角形面积的计算,矩形的性质,解直角三角形,正确的作出辅助线是解题的关键.。

2017哈尔滨市中考数学解析

2017哈尔滨市中考数学解析

2017年黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.4.抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C. D.6.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣57.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min- -⊙ - -装 - - ⊙ -订⊙线-⊙-内 - ⊙ -不 -⊙ -许- ⊙ -答-⊙-题 -⊙-二、填空题(本大题共10小题,每小题3分,共30分) 11.将57600000用科学记数法表示为 . 12.函数y=中,自变量x 的取值范围是 .13.把多项式4ax 2﹣9ay 2分解因式的结果是 . 14.计算﹣6的结果是 .15.已知反比例函数y=的图象经过点(1,2),则k 的值为 .16.不等式组的解集是 .17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 .18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为 .19.四边形ABCD 是菱形,∠BAD=60°,AB=6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE=,则CE 的长为 .20.如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE ⊥AM ,垂足为E .若DE=DC=1,AE=2EM ,则BM 的长为 .三、解答题(本大题共60分) 21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1)在图中画出以AB 为底、面积为12的等腰△ABC ,且点C 在小正方形的顶点上;(2)在图中画出平行四边形ABDE ,且点D 和点E 均在小正方形的顶点上,tan ∠EAB=,连接CD ,请直接写出线段CD 的长.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.已知:△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N . (1)如图1,求证:AE=BD ;(2)如图2,若AC=DC ,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.- -⊙ - -装 - - ⊙ -订⊙线- ⊙ -内- ⊙ -不- ⊙ -许- ⊙ -答- ⊙ -题-⊙ -2017年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分) 1.﹣7的倒数是( ) A .7B .﹣7C .D .﹣【考点】17:倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数. 【解答】解:﹣7的倒数是﹣, 故选:D .2.下列运算正确的是( ) A .a 6÷a 3=a 2B .2a 3+3a 3=5a 6C .(﹣a 3)2=a 6D .(a +b )2=a 2+b 2【考点】4I :整式的混合运算.【分析】各项计算得到结果,即可作出判断. 【解答】解:A 、原式=a 3,不符合题意; B 、原式=5a 3,不符合题意; C 、原式=a 6,符合题意;D 、原式=a 2+2ab +b 2,不符合题意, 故选C3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【考点】R5:中心对称图形;P3:轴对称图形. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形,不是中心对称图形,不合题意; B 、是轴对称图形,不是中心对称图形,不合题意; C 、不是轴对称图形,是中心对称图形,不合题意; D 、是轴对称图形,也是中心对称图形,符合题意. 故选:D .4.抛物线y=﹣(x +)2﹣3的顶点坐标是( ) A .(,﹣3)B .(﹣,﹣3)C .(,3)D .(﹣,3)【考点】H3:二次函数的性质.【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标. 【解答】解:y=﹣(x +)2﹣3是抛物线的顶点式, 根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3). 故选B .5.五个大小相同的正方体搭成的几何体如图所示,其左视图是( )A.B.C. D.【考点】U2:简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:C.6.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣5【考点】B3:解分式方程.【分析】根据分式方程的解法即可求出答案.【解答】解:2(x﹣1)=x+3,2x﹣2=x+3,x=5,令x=5代入(x+3)(x﹣1)≠0,故选(C)7.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°【考点】M5:圆周角定理.【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】利用锐角三角函数定义求出cosB的值即可.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【考点】S9:相似三角形的判定与性质.【分析】根据相似三角形的判定与性质即可求出答案.- -⊙- -装--⊙-订⊙线- ⊙ -内-⊙-不-⊙-许-⊙ -答- ⊙ -题-⊙ - 【解答】解:(A )∵DE ∥BC , ∴△ADE ∽△ABC , ∴,故A 错误;(B )∵DE ∥BC , ∴,故B 错误;(C )∵DE ∥BC ,,故C 正确;(D ))∵DE ∥BC , ∴△AGE ∽△AFC , ∴=,故D 错误;故选(C )10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y (单位:m )与他所用的时间t (单位:min )之间的函数关系如图所示,下列说法中正确的是( )A .小涛家离报亭的距离是900mB .小涛从家去报亭的平均速度是60m/minC .小涛从报亭返回家中的平均速度是80m/minD .小涛在报亭看报用了15min【考点】E6:函数的图象.【分析】根据特殊点的实际意义即可求出答案.【解答】解:A 、由纵坐标看出小涛家离报亭的距离是1200m ,故A 不符合题意;B 、由纵坐标看出小涛家离报亭的距离是1200m ,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min ,故B 不符合题意;C 、返回时的解析式为y=﹣60x +3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min ,返回时的速度是1200÷20=60m/min ,故C 不符合题意;D 、由横坐标看出小涛在报亭看报用了30﹣15=15min ,故D 符合题意; 故选:D .二、填空题(本大题共10小题,每小题3分,共30分) 11.将57600000用科学记数法表示为 5.67×107. 【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:57600000用科学记数法表示为5.67×107, 故答案为:5.67×107.12.函数y=中,自变量x 的取值范围是 x ≠2 .【考点】E4:函数自变量的取值范围.【分析】根据分式有意义的条件:分母不为0进行解答即可. 【解答】解:由x ﹣2≠0得,x ≠2, 故答案为x ≠2.13.把多项式4ax 2﹣9ay 2分解因式的结果是 a (2x +3y )(2x ﹣3y ) .【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y),故答案为:a(2x+3y)(2x﹣3y)14.计算﹣6的结果是.【考点】78:二次根式的加减法.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:15.已知反比例函数y=的图象经过点(1,2),则k的值为1.【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点(1,2)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,2),∴2=3k﹣1,解得k=1.故答案为:1.16.不等式组的解集是2≤x<3.【考点】CB:解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.故答案为2≤x<3.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为;故答案为:.18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为90°.【考点】MN:弧长的计算.【分析】利用扇形的弧长公式计算即可.【解答】解:设扇形的圆心角为n°,则=4π,解得,n=90,故答案为:90°.19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为4或2.- -⊙ --装--⊙-订⊙线- ⊙ -内- ⊙ -不- ⊙ -许- ⊙ -答- ⊙ -题-⊙ - 【考点】L8:菱形的性质.【分析】由菱形的性质证出△ABD 是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD 是菱形, ∴AB=AD=6,AC ⊥BD ,OB=OD ,OA=OC , ∵∠BAD=60°,∴△ABD 是等边三角形, ∴BD=AB=6, ∴OB=BD=3, ∴OC=OA==3,∴AC=2OA=6,∵点E 在AC 上,OE=,∴CE=OC +或CE=OC ﹣,∴CE=4或CE=2; 故答案为:4或2.20.如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE ⊥AM ,垂足为E .若DE=DC=1,AE=2EM ,则BM 的长为.【考点】LB :矩形的性质;KD :全等三角形的判定与性质.【分析】由AAS 证明△ABM ≌△DEA ,得出AM=AD ,证出BC=AD=3EM ,连接DM ,由HL 证明Rt △DEM ≌Rt △DCM ,得出EM=CM ,因此BC=3CM ,设EM=CM=x ,则BM=2x ,AM=BC=3x ,在Rt △ABM 中,由勾股定理得出方程,解方程即可. 【解答】解:∵四边形ABCD 是矩形,∴AB=DC=1,∠B=∠C=90°,AD ∥BC ,AD=BC , ∴∠AMB=∠DAE , ∵DE=DC , ∴AB=DE , ∵DE ⊥AM ,∴∠DEA=∠DEM=90°, 在△ABM 和△DEA 中,,∴△ABM ≌△DEA (AAS ),∴AM=AD , ∵AE=2EM , ∴BC=AD=3EM ,连接DM ,如图所示: 在Rt △DEM 和Rt △DCM 中,,∴Rt △DEM ≌Rt △DCM (HL ), ∴EM=CM , ∴BC=3CM ,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.三、解答题(本大题共60分)21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷﹣===,当x=4sin60°﹣2=4×=﹣2时,原式=.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.【考点】N4:作图—应用与设计作图;KQ:勾股定理;L6:平行四边形的判定;T7:解直角三角形.【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;(2)扇形根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;【解答】解:(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD==.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如- -⊙ - -装 - - ⊙-订⊙线 - ⊙ -内- ⊙ -不- ⊙ -许- ⊙ - 答- ⊙ -题-⊙ - 图所示的不完整的统计图,请你根据图中提供的信息回答下列问题: (1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.【考点】VC :条形统计图;V5:用样本估计总体;VB :扇形统计图. 【分析】(1)根据条形统计图与扇形统计图求出总人数即可; (2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果. 【解答】解:(1)10÷20%=50(名), 答:本次调查共抽取了50名学生; (2)50﹣10﹣20﹣12=8(名), 补全条形统计图如图所示, (3)1350×=540(名),答:估计最喜欢太阳岛风景区的学生有540名.24.已知:△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N . (1)如图1,求证:AE=BD ;(2)如图2,若AC=DC ,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD :全等三角形的判定与性质;KW :等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE ≌△BCD ,从而可知AE=BD ; (2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB 和△DCE 都是等腰直角三角形, ∠ACB=∠DCE=90°, ∴AC=BC ,DC=EC ,∴∠ACB +∠ACD=∠DCE +∠ACD , ∴∠BCD=∠ACE ,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y 元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.- -⊙ - -装 - - ⊙ -订⊙线-⊙ -内- ⊙ -不-⊙ -许- ⊙ -答- ⊙ -题-⊙ - 26.已知:AB 是⊙O 的弦,点C 是的中点,连接OB 、OC ,OC 交AB 于点D . (1)如图1,求证:AD=BD ;(2)如图2,过点B 作⊙O 的切线交OC 的延长线于点M ,点P 是上一点,连接AP 、BP ,求证:∠APB ﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP 、MP ,延长MP 交⊙O 于点Q ,若MQ=6DP ,sin ∠ABO=,求的值.【考点】MR :圆的综合题.【分析】(1)如图1,连接OA ,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO 交⊙O 于点T ,连接PT ,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB ﹣∠BPT=∠APB ﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB ,等量代换可得∠ABO=∠APT ,易得结论;(3)如图3,连接MA ,利用垂直平分线的性质可得MA=MB ,易得∠MAB=∠MBA ,作∠PMG=∠AMB ,在射线MG 上截取MN=MP ,连接PN ,BN ,易得△APM ≌△BNM ,由全等三角形的性质可得AP=BN ,∠MAP=∠MBN ,延长PD 至点K ,使DK=DP ,连接AK 、BK ,易得四边形APBK 是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK ,∠APB +∠PBK=180°,由(2)得∠APB ﹣(90°﹣∠MBA )=90°,易得∠NBP=∠KBP ,可得△PBN ≌△PBK ,PN=2PH ,利用三角函数的定义可得sin ∠PMH=,sin ∠ABO=,设DP=3a ,则PM=5a ,可得结果.【解答】(1)证明:如图1,连接OA , ∵C 是的中点, ∴,∴∠AOC=∠BOC , ∵OA=OB ,∴OD ⊥AB ,AD=BD ;(2)证明:如图2,延长BO 交⊙O 于点T ,连接PT ∵BT 是⊙O 的直径 ∴∠BPT=90°,∴∠APT=∠APB ﹣∠BPT=∠APB ﹣90°, ∵BM 是⊙O 的切线, ∴OB ⊥BM ,又∠OBA +∠MBA=90°,∴∠ABO=∠OMB 又∠ABO=∠APT∴∠APB ﹣90°=∠OMB , ∴∠APB ﹣∠OMB=90°;(3)解:如图3,连接MA , ∵MO 垂直平分AB , ∴MA=MB , ∴∠MAB=∠MBA , 作∠PMG=∠AMB ,在射线MG 上截取MN=MP , 连接PN ,BN ,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD 下方抛物线上- -⊙ - -装 - - ⊙ -订⊙线- ⊙ -内-⊙ -不-⊙ -许- ⊙ -答- ⊙ -题-⊙ - 的一个动点,且在抛物线对称轴的右侧,过点P 作PE ⊥x 轴于点E ,PE 交CD 于点F ,交BC 于点M ,连接AC ,过点M 作MN ⊥AC 于点N ,设点P 的横坐标为t ,线段MN 的长为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围); (3)在(2)的条件下,连接PC ,过点B 作BQ ⊥PC 于点Q (点Q 在线段PC 上),BQ 交CD 于点T ,连接OQ 交CD 于点S ,当ST=TD 时,求线段MN 的长.【考点】HF :二次函数综合题.【分析】(1)首先求出点B 、C 的坐标,然后利用待定系数法求出抛物线的解析式; (2)根据S △ABC =S △AMC +S △AMB ,由三角形面积公式可求y 与m 之间的函数关系式;(3)如图2,由抛物线对称性可得D (2,﹣3),过点B 作BK ⊥CD 交直线CD 于点K ,可得四边形OCKB 为正方形,过点O 作OH ⊥PC 交PC 延长线于点H ,OR ⊥BQ 交BQ 于点I 交BK 于点R ,可得四边形OHQI 为矩形,可证△OBQ ≌△OCH ,△OSR ≌△OGR ,得到tan ∠QCT=tan ∠TBK ,设ST=TD=m ,可得SK=2m +1,CS=2﹣2m ,TK=m +1=BR ,SR=3﹣m ,RK=2﹣m ,在Rt △SKR 中,根据勾股定理求得m ,可得tan ∠PCD=,过点P 作PE′⊥x 轴于E′交CD 于点F′,得到P (t ,﹣ t ﹣3),可得﹣t ﹣3=t 2﹣2t ﹣3,求得t ,再根据MN=d 求解即可. 【解答】解:(1)∵直线y=x ﹣3经过B 、C 两点, ∴B (3,0),C (0,﹣3), ∵y=x 2+bx +c 经过B 、C 两点,∴, 解得,故抛物线的解析式为y=x 2﹣2x ﹣3; (2)如图1,y=x 2﹣2x ﹣3, y=0时,x 2﹣2x ﹣3=0, 解得x 1=﹣1,x 2=3, ∴A (﹣1,0),∴OA=1,OB=OC=3, ∴∠ABC=45°,AC=,AB=4,∵PE ⊥x 轴,∴∠EMB=∠EBM=45°,∵点P 的横坐标为1, ∴EM=EB=3﹣t , 连结AM ,∵S △ABC =S △AMC +S △AMB ,∴AB•OC=AC•MN +AB•EM , ∴×4×3=×d +×4(3﹣t ),∴d=t ;(3)如图2,∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴对称轴为x=1,∴由抛物线对称性可得D (2,﹣3), ∴CD=2,过点B 作BK ⊥CD 交直线CD 于点K ,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBQ=∠OCH,∴△OBQ≌△OCH,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.。

2017年初中毕业升学考试(黑龙江哈尔滨卷)数学(带解析)

2017年初中毕业升学考试(黑龙江哈尔滨卷)数学(带解析)

绝密★启用前2017年初中毕业升学考试(黑龙江哈尔滨卷)数学(带解析)学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、的倒数是( )A .7B .C .D .2、下列运算正确的是( ) A .B .C .D .3、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4、抛物线的顶点坐标是( )A .B .C .D .5、五个大小相同的正方体搭成的几何体如图所示,其左视图是( )A .B .C .D .6、方程的解为( )A .B .C .D .7、如图,中,弦,相交于点,,,则的大小是( )A .B .C .D .8、在中,,,,则的值为( )A .B .C .D .9、如图,在中,分别为边上的点,,点为边上一点,连接交于点,则下列结论中一定正确的是( )A .B .C .D .10、周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离(单位:m)与他所用的时间(单位:min)之间的函数关系如图所示,下列说法中正确的是( ) A .小涛家离报亭的距离是900m B .小涛从家去报亭的平均速度是C .小涛从报亭返回家中的平均速度是D .小涛在报亭看报用了15min第II卷(非选择题)二、填空题(题型注释)11、将57 600 000用科学记数法表示为 .12、函数中,自变量的取值范围是 .13、把多项式分解因式的结果是.14、计算的结果是.15、已知反比例函数的图象经过点,则的值为.16、不等式组的解集是.17、一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 .18、已知扇形的弧长为,半径为8,则此扇形的圆心角为 .19、四边形是菱形,,,对角线与相交于点,点在上,若,则的长为 .20、如图,在矩形中,为边上一点,连接,过点作,垂足为,若,,则的长为 .三、解答题(题型注释)21、先化简,再求代数式的值,其中.22、如图,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上. (1)在图中画出以为底、面积为12的等腰,且点在小正方形的顶点上; (2)在图中画出平行四边形,且点和点均在小正方形的顶点上,,连接,请直接写出线段的长.23、随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题: (1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24、已知:和都是等腰直角三角形,,连接,交于点,与交于点,与交于点.(1)如图1,求证:;(2)如图2,若,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25、威丽商场销售A 、B 两种商品,售出1件A 种商品和4件B 种商品所得利润为600元;售出3件A 种商品和5件B 种商品所得利润为1100元. (1)求每件A 种商品和每件B 种商品售出后所得利润分别为多少元?(2)由于需求量大,A 、B 两种商品很快售完,威丽商场决定再一次购进A 、B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A 种商品?26、已知:是的弦,点是的中点,连接、,交于点.(1)如图1,求证:; (2)如图2,过点作的切线交的延长线于点,点是上一点,连接、,求证:. (3)如图3,在(2)的条件下,连接、,延长交于点,若,,求的值.27、如图,在平面直角坐标系中,点为坐标原点,抛物线交轴于、两点,交轴于点,直线经过、两点.(1)求抛物线的解析式; (2)过点作直线轴交抛物线于另一点,点是直线下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点作轴于点,交于点,交于点,连接,过点作于点,设点的横坐标为,线段的长为,求与之间的函数关系式(不要求写出自变量的取值范围); (3)在(2)的条件下,连接,过点作于点(点在线段上),交于点,连接交于点,当时,求线段的长.参考答案1、D2、C3、D4、B5、C6、C7、B8、A9、C10、D11、5.67×10712、x≠213、a(2x+3y)(2x﹣3y),14、15、116、2≤x<3.17、18、90°19、4或220、21、-,-.22、(1)画图见解析;(2)画图见解析,CD= .23、(1)本次调查共抽取了50名学生;(2)补图见解析;(3)估计最喜欢太阳岛风景区的学生有540名.24、(1)证明见解析;(2)△ACB≌△DCE(SAS),△EMC≌△BCN(ASA),△AON≌△DOM(AAS),△AOB≌△DOE(HL)25、(1)A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)威丽商场至少需购进6件A种商品.26、(1)证明见解析;(2)证明见解析;(3).27、(1)抛物线的解析式为y=x2﹣2x﹣3;(2)d= t;(3)MN=.【解析】1、试题分析:﹣7的倒数是﹣,故选D.考点:倒数.2、试题分析:A、原式=a3,不正确;B、原式=5a3,不正确;C、原式=a6,正确;D、原式=a2+2ab+b2,不正确,故选C考点:整式的混合运算.3、试题分析:A、是轴对称图形,不是中心对称图形,不符题意;B、是轴对称图形,不是中心对称图形,不符题意;C、不是轴对称图形,是中心对称图形,不符题意;D、是轴对称图形,也是中心对称图形,符合题意.故选D.考点:1.中心对称图形;2.轴对称图形.4、试题分析:根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.考点:二次函数的性质.5、试题分析:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选C.考点:三视图.6、试题分析:方程两边同乘(x+3)(x-1)得,2(x﹣1)=x+3,2x﹣2=x+3,x=5,检验:当x=5时(x+3)(x﹣1)≠0,所以x=5是原方程的根;故选C.考点:解分式方程.7、试题分析:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.考点:圆周角定理.8、试题分析:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC= =,则cosB= =,故选A考点:锐角三角函数的定义.9、试题分析:A、∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;B、∵DE∥BC,∴,故B错误;C、∵DE∥BC,∴,故C正确;D、∵DE∥BC,∴△AGE∽△AFC,∴,故D错误;故选C考点:相似三角形的判定与性质.10、试题分析:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选D.考点:函数的图象.11、试题分析:57600000=5.67×107考点:科学记数法—表示较大的数.12、试题分析:由x﹣2≠0得,x≠2考点:函数自变量的取值范围.13、试题分析:原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y).考点:提公因式法与公式法的综合运用.14、试题分析:原式=3﹣6×=3﹣2=考点:二次根式的加减法.15、试题分析:∵反比例函数的图象经过点(1,2),∴2=3k﹣1,解得k=1.考点:反比例函数图象上点的坐标特征.16、试题分析:,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.考点:解一元一次不等式组.17、试题分析:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为.考点:概率公式.18、试题分析:设扇形的圆心角为n°,则=4π,解得,n=90,故圆心角为90°. 考点:弧长的计算.19、试题分析:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OB= BD=3,∴OC=OA==3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2.考点:菱形的性质.20、试题分析:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=.考点:1.矩形的性质;2.全等三角形的判定与性质.21、试题分析:根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式===-,当x=4sin60°﹣2=4× -2=2﹣2时,原式=- =-.考点:1.分式的化简求值;2.特殊角的三角函数值.22、试题分析:(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;(2)根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;试题解析:(1)如图所示;(2)如图所示,CD= =.考点:1.作图—应用与设计作图;2.勾股定理;3.平行四边形的判定;4.解直角三角形.23、试题分析:(1)根据条形统计图与扇形统计图求出总人数即可;(2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果.试题解析:(1)10÷20%=50(名),答:本次调查共抽取了50名学生;(2)50﹣10﹣20﹣12=8(名),补全条形统计图如图所示,(3)1350× =540(名),答:估计最喜欢太阳岛风景区的学生有540名.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.24、试题分析:(1)根据全等三角形的判定(SAS)证明△ACE≌△BCD,从而可知AE=BD;(2)根据条件判断出图中的全等直角三角形即可;(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,试题解析:DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中, ,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)考点:1.全等三角形的判定与性质;2.等腰直角三角形.25、试题分析:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.试题解析:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.考点:1.一元一次不等式的应用;2.二元一次方程组的应用.26、试题分析:(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.试题解析:(1)如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)如图2,延长BO交⊙O于点T,连接PT∵BT是⊙O的直径,∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB,又∠ABO=∠APT,∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG 上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°,∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴ =,∴ =,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.考点:圆的综合题.27、试题分析:(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据S△ABC=S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD于点K,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,可得四边形OHQI为矩形,可证△OBQ≌△OCH,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,得到P(t,﹣t﹣3),可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.试题解析:(1)∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∴∠EMB=∠EBM=45°,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,∵S△ABC=S△AMC+S△AMB,∴AB•OC=AC•MN+AB•EM,∴×4×3=× d+×4(3﹣t),∴d=t;(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBQ=∠OCH,∴△OBQ≌△OCH,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴ =,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK= =÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.考点:二次函数综合题.。

2017年黑龙江省各市中考数学试题汇总(6套)

2017年黑龙江省各市中考数学试题汇总(6套)

文件清单:2017年黑龙江省佳木斯市中考数学试卷(含答案)2017年黑龙江省哈尔滨市中考数学试题(含答案)2017年黑龙江省鹤岗市中考数学试卷(农垦、森工用)(含答案)2017年黑龙江省齐齐哈尔市中考数学试题(含答案)黑龙江省绥化市2017年中考数学试题(含答案)黑龙江省龙东地区2017年中考数学试卷及答案(含答案)2017年黑龙江省佳木斯市中考数学试卷一、填空题(每题3分,满分30分)1.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为吨.2.在函数y=中,自变量x的取值范围是.3.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.4.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球个.5.若关于x的一元一次不等式组无解,则a的取值范围是.6.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费元.7.如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则图中阴影部分的面积为.8.圆锥的底面半径为2cm,圆锥高为3cm,则此圆锥侧面展开图的周长为cm.9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.10.如图,四条直线l 1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,过点A1作A1A2⊥x轴,交l1于点A2,再过点A1作A1A2⊥l1交l2于点A2,再过点A2作A2A3⊥l3交y轴于点A3…,则点A2017坐标为.二、选择题(每题3分,满分30分)11.下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2 12.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.13.如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或714.某市4月份日平均气温统计图情况如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.13,13 B.13,13.5 C.13,14 D.16,1315.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.16.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y217.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤118.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD 上,则PE+PD的最小值是()A.2 B.2C.4 D.19.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种 C.6种 D.7种20.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5三、解答题(满分60分)21.先化简,再求值:÷﹣,其中a=1+2cos60°.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.23.如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线y=﹣x2+bx+c经过B、D两点.(1)求二次函数的解析式;(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.24.我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?.25.在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?26.已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.27.为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?28.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y 轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D 处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.2017年黑龙江省佳木斯市中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为8×1010吨.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:800亿=8×1010.故答案为:8×1010.2.在函数y=中,自变量x的取值范围是x≠1.【考点】E4:函数自变量的取值范围.【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.3.如图,BC∥EF,AC∥DF,添加一个条件AB=DE或BC=EF或AC=DF 或AD=BE(只需添加一个即可),使得△ABC≌△DEF.【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△DEF,易证∠A=∠EDF,∠ABC=∠E,故添加AB=DE、BC=EF或AC=DF根据ASA、AAS即可解题.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).4.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球5个.【考点】X4:概率公式.【分析】设这个袋子中有红球x个,根据已知条件列方程即可得到结论.【解答】解:设这个袋子中有红球x个,∵摸到红球的概率是,∴=,∴x=5,故答案为:5.5.若关于x的一元一次不等式组无解,则a的取值范围是a≥2.【考点】CB:解一元一次不等式组.【分析】先求出各不等式的解集,再与已知解集相比较求出a的取值范围.【解答】解:由x﹣a>0得,x>a;由1﹣x>x﹣1得,x<2,∵此不等式组的解集是空集,∴a≥2.故答案为:a≥2.6.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费39.5元.【考点】1G:有理数的混合运算.【分析】先根据单价×数量=总价求出10吨的水费,再根据单价×数量=总价加上超过10吨的部分的水费,再把它们相加即可解答.【解答】解:2.2×10+(2.2+1.3)×(15﹣10)=22+3.5×5=22+17.5=39.5(元).答:应交水费39.5元.故答案为:39.5.7.如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则图中阴影部分的面积为.【考点】MC:切线的性质;MO:扇形面积的计算.【分析】由条件可求得∠COA的度数,过O作OE⊥CA于点E,则可求得OE的长和CA的长,再利用S阴影=S扇形COA﹣S△COA可求得答案.【解答】解:如图,过O作OE⊥CA于点E,∵DB为⊙O的切线,∴∠DBA=90°,∵∠D=30°,∴∠BOC=60°,∴∠COA=120°,∵OC=OA=4,∴∠OAE=30°,∴OE=2,CA=2AE=4∴S阴影=S扇形COA﹣S△COA=﹣×2×4=π﹣4,故答案为:π﹣4.8.圆锥的底面半径为2cm,圆锥高为3cm,则此圆锥侧面展开图的周长为(2+4π)cm.【考点】MP:圆锥的计算.【分析】利用勾股定理易得圆锥的母线长,圆锥周长=弧长+2母线长.【解答】解:∵圆锥的底面半径是2,高是3,∴圆锥的母线长为: =,∴这个圆锥的侧面展开图的周长=2×+2π×2=2+4π.故答案为2+4π.9.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为4或4或4.【考点】KQ:勾股定理;KH:等腰三角形的性质.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【解答】解:如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM==4;如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM==4,∴Rt△ABM中,AM==4,综上所述,当△ABM为直角三角形时,AM的长为4或4或4.故答案为:4或4或4.10.如图,四条直线l 1:y1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,OA1=1,过点A1作A1A2⊥x轴,交l1于点A2,再过点A1作A1A2⊥l1交l2于点A2,再过点A2作A2A3⊥l3交y轴于点A3…,则点A2017坐标为[()2015,()2016].【考点】D2:规律型:点的坐标.【分析】先利用各直线的解析式得到x轴、l1、l2、y轴、l3、l4依次相交为30的角,各点的位置是每12个一循环,由于2017=168×12+1,则可判定点A2016在x轴的正半轴上,再规律得到OA2016=()2015,然后表示出点A2017坐标.【解答】解:∵y 1=x,l2:y2=x,l3:y3=﹣x,l4:y4=﹣x,∴x轴、l1、l2、y轴、l3、l4依次相交为30的角,∵2017=168×12+1,∴点A2016在x轴的正半轴上,∵OA2==,OA3=()2,OA4=()3,…OA2016=()2015,∴点A2017坐标为[()2015,()2016].故答案为[()2015,()2016].二、选择题(每题3分,满分30分)11.下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6b3,不符合题意;B、原式=27a6,符合题意;C、原式=x4,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选B12.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】利用中心对称图形与轴对称图形性质判断即可.【解答】解:既是轴对称图形又是中心对称图形的是,故选A13.如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.14.某市4月份日平均气温统计图情况如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.13,13 B.13,13.5 C.13,14 D.16,13【考点】W5:众数;W4:中位数.【分析】根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解.【解答】解:这组数据中,13出现了10次,出现次数最多,所以众数为13,第15个数和第16个数都是14,所以中位数是14.故选C.15.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.【考点】E6:函数的图象.【分析】根据特殊点的实际意义即可求出答案.【解答】解:先注甲时水未达连接地方是,乙水池中的水面高度没变化;当甲池中水到达连接的地方,乙水池中水面上升比较快;当两水池水面不持平时,乙水池的水面持续增长较慢,最后两池水面持平后继续快速上升,故选:D.16.反比例函数y=图象上三个点的坐标为(x1,y1)、(x2,y2)、(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y1<y3<y2【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据x1<x2<0<x3即可得出结论.【解答】解:∵反比例函数y=中,k=3>0,∴此函数图象的两个分支分别位于第一三象限,且在每一象限内y随x的增大而减小.∵x1<x2<0<x3,∴(x1,y1)、(x2,y2)在第三象限,(x3,y3)在第一象限,∴y2<y1<0<y3.故选B.17.已知关于x的分式方程=的解是非负数,那么a的取值范围是()A.a>1 B.a≥1 C.a≥1且a≠9 D.a≤1【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】根据分式方程的解法即可求出a的取值范围;【解答】解:3(3x﹣a)=x﹣3,9x﹣3a=x﹣3,8x=3a﹣3∴x=,由于该分式方程有解,令x=代入x﹣3≠0,∴a≠9,∵该方程的解是非负数解,∴≥0,∴a≥1,∴a的范围为:a≥1且a≠9,故选(C)18.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD 上,则PE+PD的最小值是()A.2 B.2C.4 D.【考点】PA:轴对称﹣最短路线问题;LB:矩形的性质.【分析】作D关于直线AC的对称点D′,过D′作D′E⊥AD于E,则D′E=PE+PD的最小值,解直角三角形得到即可得到结论.【解答】解:作D关于直线AC的对称点D′,过D′作D′E⊥AD于E,则D′E=PE+PD的最小值,∵四边形ABCD是矩形,∴∠ADC=90°,∵AD=4,∠DAC=30°,∴CD=,∵DD′⊥AC,∴∠CDD′=30°,∴∠ADD′=60°,∴DD′=4,∴D′E=2,故选B.19.“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种 B.5种 C.6种 D.7种【考点】95:二元一次方程的应用.【分析】设购买80元的商品数量为x,购买120元的商品数量为y,根据总费用是1000元列出方程,求得正整数x、y的值即可.【解答】解:设购买80元的商品数量为x,购买120元的商品数量为y,依题意得:80x+120y=1000,整理,得y=.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故选:A.20.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG :S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG :S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH 最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.三、解答题(满分60分)21.先化简,再求值:÷﹣,其中a=1+2cos60°.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:÷﹣===,当a=1+2cos60°=1+2×=1+1=2时,原式=.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.【考点】R8:作图﹣旋转变换;P7:作图﹣轴对称变换.【分析】根据题意画出相应的三角形,确定出所求点坐标即可.【解答】解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线y=﹣x2+bx+c经过B、D两点.(1)求二次函数的解析式;(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.【考点】H8:待定系数法求二次函数解析式;H5:二次函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【分析】(1)由旋转性质可得CD=AB=1、OA=OC=2,从而得出点B、D坐标,代入解析式即可得出答案;(2)由直线OP把△BOD的周长分成相等的两部分且OB=OD,知DQ=BQ,即点Q为BD的中点,从而得出点Q坐标,求得直线OP解析式,代入抛物线解析式可得点P坐标.【解答】解:(1)∵Rt△AOB绕点O逆时针旋转90°得到Rt△COD,∴CD=AB=1、OA=OC=2,则点B(2,1)、D(﹣1,2),代入解析式,得:,解得:,∴二次函数的解析式为y=﹣x2+x+;(2)如图,∵直线OP把△BOD的周长分成相等的两部分,且OB=OD,∴DQ=BQ,即点Q为BD的中点,∴点Q坐标为(,),设直线OP解析式为y=kx,将点Q坐标代入,得: k=,解得:k=3,∴直线OP的解析式为y=3x,代入y=﹣x2+x+,得:﹣ x2+x+=3x,解得:x=1或x=﹣4(舍),当x=1时,y=3,∴点P坐标为(1,3).24.我市某中学为了了解孩子们对《中国诗词大会》,《挑战不可能》,《最强大脑》,《超级演说家》,《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了200名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是36度.(4)若该学校有2000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)求得喜爱《挑战不可能》节目的人数,将条形统计图补充完整即可;(3)用360°×喜爱《地理中国》节目的人数占总人数的百分数即可得到结论;(4)直接利用样本估计总体的方法求解即可求得答案.【解答】解:(1)30÷15%=200名,答:本次调查中共抽取了200名学生;故答案为:200;(2)喜爱《挑战不可能》节目的人数=200﹣20﹣60﹣40﹣30=50名,补全条形统计图如图所示;(3)喜爱《地理中国》节目的人数所在的扇形的圆心角是360°×=36度;故答案为:36;(4)2000×=600名,答:该学校喜欢《最强大脑》节目的学生人数是600人.25.在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距480千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?【考点】FH:一次函数的应用.。

2017年中考数学卷黑龙江.哈尔滨

2017年中考数学卷黑龙江.哈尔滨

.
12. 函数 y = 2 x + 1 中,自变量 x 的取值范围是 x- 2
13. 把多项式 4ax2 - 9ay2 分解因式的结果是
. .
14. 计算
1 27 - 6 的结果是

3
15. 已知反比例函数
3k - 1
y=
的图象经过点
x
(1,2) ,则 k 的值为

16. 不等式组
ì?í5 -
2x? 1 的解集是
()
A. 小涛家离报亭的距离是 900m
B. 小涛从家去报亭的平均速度是 60m/min
C. 小涛从报亭返回家中的平均速度是 80m / min
D. 小涛在报亭看报用了 15min
2
第Ⅱ卷(共 90 分)
二、填空题(每题 3 分,满分 30 分,将答案填在答题纸上)
11. 将 57 600 000 用科学记数法表示为
最喜欢哪一个? ( 必选且只选一个 ) ”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结
果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1) 本次调查共抽取了多少名学生?
(2) 通过计算补全条形统计图;
(3) 若洪祥中学共有 1350 名学生,请你估计最喜欢太阳岛风景区的学生有多少名
A、 B两种商品共 34 件,如果将这
34 件商品全部售完后所得利润不低于 4000 元,那么威丽商场至少需购进多少件 A 种商品?
26. 已知: AB 是 ⊙O 的弦,点 C 是 AB 的中点,连接 OB 、 OC , OC 交 AB 于点 D . (1) 如图 1,求证: AD = BD ;

?? x - 3 < 0

2017黑龙江中考数学试题及答案

2017黑龙江中考数学试题及答案

2017黑龙江中考数学试题及答案2017年黑龙江省中考数学试卷于6月17日举行,考试内容涵盖了初中数学的各个知识点。

以下是该试卷的题目及答案。

一、选择题(共30小题,每小题2分,共60分)1.已知函数f(x) = x + 2, g(x) = 2x - 3,若f(x) = g(x),则x的值为多少?解:由题意可得:x + 2 = 2x - 3,整理得:x = 5。

答案:x = 5。

2.在等边三角形ABC中,BC = 5cm,角A = 60°,则三角形ABC的面积为多少?解:由等边三角形的性质可知,三角形ABC为等边三角形,AB = AC = BC = 5cm。

又由正弦定理的推论可得,三角形ABC的面积为S = 1/2 * AB^2 * sinA = 1/2 * 5^2 * sin60° = 1/2 * 25 * √3/2 = 25/4 * √3 cm^2。

答案:25/4 * √3 cm^2。

3.在立方体ABCDEFGH中,点M、N分别是BF、CG的中点,连接线MN的中点为P。

若AB = 8cm,则线段BP的长度为多少?解:由题意可知,MN为平行于BC的线段,所以MN的中点P也是线段BC的中点。

又由立方体的性质可知,BM = MF = BG/2 = AB/2 = 8/2 = 4cm。

所以BP = BM + MP = 4cm + 4cm = 8cm。

答案:8cm。

4.根据题意写出方程组:①x + y = 15②2x - y = -5解:根据第一题的题意可得方程组为:①x + y = 15②2x - y = -5答案:①x + y = 15②2x - y = -55.已知三角形ABC,角B = 90°,D为BC上一点,且角ACD = 45°,若BC = 8cm,则AC的长度为多少?解:由题意可知,三角形ABC为直角三角形,所以角ACB = 90°。

再由三角形的性质可得,角ACD + 角ACB = 180°,所以角ACB = 180° - 45° = 135°。

2017哈尔滨市中考数学解析

2017哈尔滨市中考数学解析

.1 / 152017年省市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕 1.﹣7的倒数是〔 〕 A .7B .﹣7C .D .﹣2.以下运算正确的选项是〔 〕 A .a 6÷a 3=a 2B .2a 3+3a 3=5a 6C .〔﹣a 3〕2=a 6D .〔a+b 〕2=a 2+b 23.以下图形中,既是轴对称图形又是中心对称图形的是〔 〕 A . B . C . D .4.抛物线y=﹣〔x+〕2﹣3的顶点坐标是〔 〕 A .〔,﹣3〕 B .〔﹣,﹣3〕C .〔,3〕D .〔﹣,3〕5.五个大小一样的正方体搭成的几何体如下图,其左视图是〔 〕A .B .C .D .6.方程=的解为〔 〕 A .x=3 B .x=4 C .x=5 D .x=﹣57.如图,⊙O 中,弦AB ,CD 相交于点P ,∠A=42°,∠APD=77°,那么∠B 的大小是〔 〕A .43°B .35°C .34°D .44°8.在Rt △ABC 中,∠C=90°,AB=4,AC=1,那么cosB 的值为〔 〕 A . B . C . D .9.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,点F 为BC 边上一点,连接AF 交DE 于点G ,那么以下结论中一定正确的选项是〔 〕 A . = B . = C . = D . =10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y 〔单位:m 〕与他所用的时间t 〔单位:min 〕之间的函数关系如下图,以下说法中正确的选项是〔 〕A .小涛家离报亭的距离是900mB .小涛从家去报亭的平均速度是60m/minC .小涛从报亭返回家中的平均速度是80m/minD .小涛在报亭看报用了15min二、填空题〔本大题共10小题,每题3分,共30分〕 11.将57600000用科学记数法表示为. 12.函数y=中,自变量x 的取值围是. 13.把多项式4ax 2﹣9ay 2分解因式的结果是. 14.计算﹣6的结果是.15.反比例函数y=的图象经过点〔1,2〕,那么k 的值为. 16.不等式组的解集是.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差异.从袋子中随机摸出一个小球,那么摸出的小球是红球的概率为.18.扇形的弧长为4π,半径为8,那么此扇形的圆心角为.19.四边形ABCD 是菱形,∠BAD=60°,AB=6,对角线AC 与BD 相交于点O ,点E 在AC 上,假设OE=,那么CE 的长为.20.如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE ⊥AM ,垂足为E .假设DE=DC=1,AE=2EM ,那么BM 的长为.三、解答题〔本大题共60分〕21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.〔1〕在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;〔2〕在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.23.随着社会经济的开展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区〞为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?〔必选且只选一个〕〞的问题,在全校围随机抽取了局部学生进展问卷调查,将调查结果整理后绘制成如下图的不完整的统计图,请你根据图中提供的信息答复以下问题:〔1〕本次调查共抽取了多少名学生?〔2〕通过计算补全条形统计图;〔3〕假设洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.〔1〕如图1,求证:AE=BD;〔2〕如图2,假设AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.〔1〕求每件A种商品和每件B种商品售出后所得利润分别为多少元;〔2〕由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.〔1〕如图1,求证:AD=BD;〔2〕如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;〔3〕如图3,在〔2〕的条件下,连接DP、MP,延长MP交⊙O于点Q,假设MQ=6DP,sin∠ABO=,求的值..3 / 1527.如图,在平面直角坐标系中,点O 为坐标原点,抛物线y=x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线y=x ﹣3经过B 、C 两点. 〔1〕求抛物线的解析式;〔2〕过点C 作直线CD ⊥y 轴交抛物线于另一点D ,点P 是直线CD 下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P 作PE ⊥x 轴于点E ,PE 交CD 于点F ,交BC 于点M ,连接AC ,过点M 作MN ⊥AC 于点N ,设点P 的横坐标为t ,线段MN 的长为d ,求d 与t 之间的函数关系式〔不要求写出自变量t 的取值围〕;〔3〕在〔2〕的条件下,连接PC ,过点B 作BQ ⊥PC 于点Q 〔点Q 在线段PC 上〕,BQ 交CD 于点T ,连接OQ 交CD 于点S ,当ST=TD 时,求线段MN 的长.2017年省市中考数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每题3分,共30分〕 1.﹣7的倒数是〔 〕 A .7B .﹣7C .D .﹣【考点】17:倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数. 【解答】解:﹣7的倒数是﹣, 应选:D .2.以下运算正确的选项是〔〕A.a6÷a3=a2B.2a3+3a3=5a6C.〔﹣a3〕2=a6D.〔a+b〕2=a2+b2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a3,不符合题意;B、原式=5a3,不符合题意;C、原式=a6,符合题意;D、原式=a2+2ab+b2,不符合题意,应选C3.以下图形中,既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.应选:D.4.抛物线y=﹣〔x+〕2﹣3的顶点坐标是〔〕A.〔,﹣3〕B.〔﹣,﹣3〕C.〔,3〕D.〔﹣,3〕【考点】H3:二次函数的性质.【分析】抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:y=﹣〔x+〕2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为〔﹣,﹣3〕.应选B.5.五个大小一样的正方体搭成的几何体如下图,其左视图是〔〕A.B.C. D.【考点】U2:简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,应选:C.6.方程=的解为〔〕A.x=3 B.x=4 C.x=5 D.x=﹣5【考点】B3:解分式方程.【分析】根据分式方程的解法即可求出答案.【解答】解:2〔x﹣1〕=x+3,2x﹣2=x+3,x=5,令x=5代入〔x+3〕〔x﹣1〕≠0,应选〔C〕.5 / 157.如图,⊙O 中,弦AB ,CD 相交于点P ,∠A=42°,∠APD=77°,那么∠B 的大小是〔 〕A .43°B .35°C .34°D .44°【考点】M5:圆周角定理.【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°, ∴∠B=∠APD ﹣∠D=35°, 应选B .8.在Rt △ABC 中,∠C=90°,AB=4,AC=1,那么cosB 的值为〔 〕 A .B .C .D .【考点】T1:锐角三角函数的定义.【分析】利用锐角三角函数定义求出cosB 的值即可. 【解答】解:∵在Rt △ABC 中,∠C=90°,AB=4,AC=1, ∴BC==, 那么cosB==,应选A9.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,点F 为BC 边上一点,连接AF 交DE 于点G ,那么以下结论中一定正确的选项是〔 〕A .= B . = C . = D . =【考点】S9:相似三角形的判定与性质.【分析】根据相似三角形的判定与性质即可求出答案. 【解答】解:〔A 〕∵DE ∥BC , ∴△ADE ∽△ABC , ∴,故A 错误;〔B 〕∵DE ∥BC , ∴,故B 错误;〔C 〕∵DE ∥BC ,,故C 正确;〔D 〕〕∵DE ∥BC , ∴△AGE ∽△AFC , ∴=,故D 错误;应选〔C 〕10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y 〔单位:m 〕与他所用的时间t 〔单位:min 〕之间的函数关系如下图,以下说法中正确的选项是〔 〕A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【考点】E6:函数的图象.【分析】根据特殊点的实际意义即可求出答案.【解答】解:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;应选:D.二、填空题〔本大题共10小题,每题3分,共30分〕11.将57600000用科学记数法表示为 5.67×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数一样.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:57600000用科学记数法表示为5.67×107,故答案为:5.67×107.12.函数y=中,自变量x的取值围是x≠2 .【考点】E4:函数自变量的取值围.【分析】根据分式有意义的条件:分母不为0进展解答即可.【解答】解:由x﹣2≠0得,x≠2,故答案为x≠2.13.把多项式4ax2﹣9ay2分解因式的结果是a〔2x+3y〕〔2x﹣3y〕.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a〔4x2﹣9y2〕=a〔2x+3y〕〔2x﹣3y〕,故答案为:a〔2x+3y〕〔2x﹣3y〕14.计算﹣6的结果是.【考点】78:二次根式的加减法.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:15.反比例函数y=的图象经过点〔1,2〕,那么k的值为 1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点〔1,2〕代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点〔1,2〕,∴2=3k﹣1,解得k=1.故答案为:1..7 / 1516.不等式组的解集是 2≤x <3 .【考点】CB :解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共局部即可. 【解答】解:,由①得:x ≥2, 由②得:x <3,那么不等式组的解集为2≤x <3. 故答案为2≤x <3.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差异.从袋子中随机摸出一个小球,那么摸出的小球是红球的概率为.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球, ∴摸出的小球是红球的概率为;故答案为:.18.扇形的弧长为4π,半径为8,那么此扇形的圆心角为 90° . 【考点】MN :弧长的计算.【分析】利用扇形的弧长公式计算即可. 【解答】解:设扇形的圆心角为n°,那么=4π,解得,n=90, 故答案为:90°.19.四边形ABCD 是菱形,∠BA D=60°,AB=6,对角线AC 与BD 相交于点O ,点E 在AC 上,假设OE=,那么CE 的长为 4或2.【考点】L8:菱形的性质.【分析】由菱形的性质证出△ABD 是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD 是菱形, ∴AB=AD=6,AC ⊥BD ,OB=OD ,OA=OC , ∵∠BAD=60°,∴△ABD 是等边三角形, ∴BD=AB=6, ∴OB=BD=3, ∴OC=OA==3,∴AC=2OA=6,∵点E 在AC 上,OE=, ∴CE=OC+或CE=OC ﹣, ∴CE=4或CE=2;故答案为:4或2.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.假设DE=DC=1,AE=2EM,那么BM的长为.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL 证明Rt△DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,那么BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA〔AAS〕,∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如下图:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM〔HL〕,∴EM=CM,∴BC=3CM,设EM=CM=x,那么BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+〔2x〕2=〔3x〕2,解得:x=,∴BM=;故答案为:.三、解答题〔本大题共60分〕21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答此题.【解答】解:÷﹣=.9 / 15==,当x=4sin60°﹣2=4×=﹣2时,原式=.22.如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.〔1〕在图中画出以AB 为底、面积为12的等腰△ABC ,且点C 在小正方形的顶点上;〔2〕在图中画出平行四边形ABDE ,且点D 和点E 均在小正方形的顶点上,tan ∠EAB=,连接CD ,请直接写出线段CD 的长.【考点】N4:作图—应用与设计作图;KQ :勾股定理;L6:平行四边形的判定;T7:解直角三角形.【分析】〔1〕因为AB 为底、面积为12的等腰△ABC ,所以高为4,点C 在线段AB 的垂直平分线上,由此即可画出图形;〔2〕扇形根据tan ∠EAB=的值确定点E 的位置,由此即可解决问题,利用勾股定理计算CD 的长;【解答】解:〔1〕△ABC 如下图; 〔2〕平行四边形ABDE 如下图,CD==.23.随着社会经济的开展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区〞为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?〔必选且只选一个〕〞的问题,在全校围随机抽取了局部学生进展问卷调查,将调查结果整理后绘制成如下图的不完整的统计图,请你根据图中提供的信息答复以下问题: 〔1〕本次调查共抽取了多少名学生? 〔2〕通过计算补全条形统计图;〔3〕假设洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】〔1〕根据条形统计图与扇形统计图求出总人数即可;〔2〕根据题意作出图形即可;〔3〕根据题意列出算式,计算即可得到结果.【解答】解:〔1〕10÷20%=50〔名〕,答:本次调查共抽取了50名学生;〔2〕50﹣10﹣20﹣12=8〔名〕,补全条形统计图如下图,〔3〕1350×=540〔名〕,答:估计最喜欢太阳岛风景区的学生有540名.24.:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.〔1〕如图1,求证:AE=BD;〔2〕如图2,假设AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】〔1〕根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;〔2〕根据条件即可判断图中的全等直角三角形;【解答】解:〔1〕∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD〔SAS〕,∴AE=BD,〔2〕∵AC=DC,.11 / 15∴AC=CD=EC=CB , △ACB ≌△DCE 〔SAS 〕;由〔1〕可知:∠AEC=∠BDC ,∠EAC=∠DBC ∴∠DO M=90°, ∵∠AEC=∠CAE=∠CBD , ∴△EMC ≌△BCN 〔ASA 〕, ∴CM=CN , ∴DM=AN ,△AON ≌△DOM 〔AAS 〕, ∵DE=AB ,AO=DO , ∴△AOB ≌△DOE 〔HL 〕25.威丽商场销售A ,B 两种商品,售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 种商品和5件B 种商品所得利润为1100元. 〔1〕求每件A 种商品和每件B 种商品售出后所得利润分别为多少元;〔2〕由于需求量大,A 、B 两种商品很快售完,威丽商场决定再一次购进A 、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A 种商品?【考点】C9:一元一次不等式的应用;9A :二元一次方程组的应用.【分析】〔1〕设A 种商品售出后所得利润为x 元,B 种商品售出后所得利润为y 元.由售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 种商品和5件B 种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;〔2〕设购进A 种商品a 件,那么购进B 种商品〔34﹣a 〕件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:〔1〕设A 种商品售出后所得利润为x 元,B 种商品售出后所得利润为y 元.由题意,得,解得:答:A 种商品售出后所得利润为200元,B 种商品售出后所得利润为100元.〔2〕设购进A 种商品a 件,那么购进B 种商品〔34﹣a 〕件.由题意,得 200a+100〔34﹣a 〕≥4000, 解得:a ≥6答:威丽商场至少需购进6件A 种商品.26.:AB 是⊙O 的弦,点C 是的中点,连接OB 、OC ,OC 交AB 于点D .〔1〕如图1,求证:AD=BD ;〔2〕如图2,过点B 作⊙O 的切线交OC 的延长线于点M ,点P 是上一点,连接AP 、BP ,求证:∠APB ﹣∠OMB=90°;〔3〕如图3,在〔2〕的条件下,连接DP 、MP ,延长MP 交⊙O 于点Q ,假设MQ=6DP ,sin ∠ABO=,求的值.【考点】MR:圆的综合题.【分析】〔1〕如图1,连接OA,利用垂径定理和圆周角定理可得结论;〔2〕如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;〔3〕如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由〔2〕得∠APB﹣〔90°﹣∠MBA〕=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin ∠ABO=,设DP=3a,那么PM=5a,可得结果.【解答】〔1〕证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;〔2〕证明:如图2,延长BO交⊙O于点T,连接PT ∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;〔3〕解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,那么∠AMP=∠BMN,.13 / 15∴△APM ≌△BNM , ∴AP=BN ,∠MAP=∠MBN , 延长PD 至点K , 使DK=DP , 连接AK 、BK ,∴四边形APBK 是平行四边形; AP ∥BK ,∴∠PAB=∠ABK ,∠APB+∠PBK=180°, 由〔2〕得∠APB ﹣〔90°﹣∠MBA 〕 =90°,∴∠APB+∠MBA=180° ∴∠PBK=∠MBA ,∴∠MBP=∠ABK=∠PAB , ∴∠MAP=∠PBA=∠MBN , ∴∠NBP=∠KBP , ∵PB=PB , ∴△PBN ≌△PBK , ∴PN=PK=2PD ,过点M 作MH ⊥PN 于点H , ∴PN=2PH ,∴PH=DP ,∠PMH=∠ABO , ∵sin ∠PMH=,sin ∠ABO=,∴,∴,设DP=3a ,那么PM=5a ,∴MQ=6DP=18a ,∴.27.如图,在平面直角坐标系中,点O 为坐标原点,抛物线y=x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线y=x ﹣3经过B 、C 两点. 〔1〕求抛物线的解析式;〔2〕过点C 作直线CD ⊥y 轴交抛物线于另一点D ,点P 是直线CD 下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P 作PE ⊥x 轴于点E ,PE 交CD 于点F ,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式〔不要求写出自变量t的取值围〕;〔3〕在〔2〕的条件下,连接PC,过点B作BQ⊥PC于点Q〔点Q在线段PC上〕,BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.【考点】HF:二次函数综合题.【分析】〔1〕首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;〔2〕根据S△ABC =S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;〔3〕如图2,由抛物线对称性可得D〔2,﹣3〕,过点B作BK⊥CD交直线CD于点K,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ 于点I交BK于点R,可得四边形OHQI为矩形,可证△OBQ≌△OCH,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,得到P〔t,﹣ t﹣3〕,可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.【解答】解:〔1〕∵直线y=x﹣3经过B、C两点,∴B〔3,0〕,C〔0,﹣3〕,∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;〔2〕如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A〔﹣1,0〕,∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∴∠EMB=∠EBM=45°,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,∵S△ABC=S△AMC+S△AMB,∴AB•OC=AC•MN+AB•EM,∴×4×3=×d+×4〔3﹣t〕,∴d=t;〔3〕如图2,∵y=x2﹣2x﹣3=〔x﹣1〕2﹣4,∴对称轴为x=1,.15 / 15∴由抛物线对称性可得D 〔2,﹣3〕, ∴CD=2,过点B 作BK ⊥CD 交直线CD 于点K , ∴四边形OCKB 为正方形, ∴∠OBK=90°,CK=OB=BK=3, ∴DK=1, ∵BQ ⊥CP , ∴∠CQB=90°,过点O 作OH ⊥PC 交PC 延长线于点H ,OR ⊥BQ 交BQ 于点I 交BK 于点R , ∴∠OHC=∠OIQ=∠OIB=90°, ∴四边形OHQI 为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBQ=∠OCH , ∴△OBQ ≌△OCH ,∴QG=OS ,∠GOB=∠SOC , ∴∠SOG=90°,∴∠ROG=45°,∵OR=OR ,∴△OSR ≌△OGR ,∴SR=GR ,∴SR=CS+BR , ∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°, ∴∠BOR=∠TBK ,∴tan ∠BOR=tan ∠TBK ,∴=,∴BR=TK ,∵∠CTQ=∠BTK ,∴∠QCT=∠TBK ,∴tan ∠QCT=tan ∠TBK , 设ST=TD=m ,∴SK=2m+1,CS=2﹣2m ,TK=m+1=BR ,SR=3﹣m ,RK=2﹣m , 在Rt △SKR 中, ∵SK 2+RK 2=SR 2,∴〔2m+1〕2+〔2﹣m 〕2=〔3﹣m 〕2, 解得m 1=﹣2〔舍去〕,m 2=; ∴ST=TD=,TK=,∴tan ∠TBK==÷3=,∴tan ∠PCD=,过点P 作PE′⊥x 轴于E′交CD 于点F′, ∵CF′=OE′=t, ∴PF′=t , ∴PE′=t+3, ∴P 〔t ,﹣ t ﹣3〕, ∴﹣t ﹣3=t 2﹣2t ﹣3, 解得t 1=0〔舍去〕,t 2=. ∴MN=d=t=×=.。

2017年黑龙江省哈尔滨市中考数学试卷

2017年黑龙江省哈尔滨市中考数学试卷

2017年黑龙江省哈尔滨市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1. −7的倒数是()A.7B.−7C.1 7D.−17【答案】D【考点】倒数【解析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】−7的倒数是−17,2. 下列运算正确的是()A.a6÷a3=a2B.2a3+3a3=5a6C.(−a3)2=a6D.(a+b)2=a2+b2【答案】C【考点】整式的混合运算【解析】各项计算得到结果,即可作出判断.【解答】A、原式=a3,不符合题意;B、原式=5a3,不符合题意;C、原式=a6,符合题意;D、原式=a2+2ab+b2,不符合题意,3. 下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.【答案】B【考点】中心对称图形轴对称图形【解析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选B.4. 抛物线y=−35(x+12)2−3的顶点坐标是()A.(12, −3) B.(−12, −3)C.(12, 3) D.(−12, 3)【答案】B【考点】二次函数的性质【解析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】y=−35(x+12)2−3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(−12, −3).5. 五个大小相同的正方体搭成的几何体如图所示,其左视图是()A. B.C. D.【答案】C【考点】简单组合体的三视图【解析】根据从左边看得到的图形是左视图,可得答案.【解答】从左边看第一层是两个小正方形,第二层左边是一个小正方形,6. 方程2x+3=1x−1的解为()A.x=3B.x=4C.x=5D.x=−5【答案】C【考点】解分式方程【解析】根据分式方程的解法即可求出答案.【解答】2(x−1)=x+3,2x−2=x+3,x=5,令x=5代入(x+3)(x−1)≠0,7. 如图,⊙O中,弦AB、CD相交于点P,∠A=42∘,∠APD=77∘,则∠B的大小是()A.43∘B.35∘C.34∘D.44∘【答案】B【考点】圆周角定理【解析】由同弧所对的圆周角相等求得∠A=∠D=42∘,然后根据三角形外角的性质即可得到结论.【解答】∵∠D=∠A=42∘,∴∠B=∠APD−∠D=35∘,8. 在Rt△ABC中,∠C=90∘,AB=4,AC=1,则cos B的值为()A.√154B.1 4C.√1515D.4√1717【答案】A【考点】锐角三角函数的定义勾股定理【解析】利用锐角三角函数定义求出cos B的值即可.【解答】∵在Rt△ABC中,∠C=90∘,AB=4,AC=1,∴BC=√42−12=√15,则cos B=BCAB =√154,9. 如图,在△ABC中,D、E分别为AB、AC边上的点,DE // BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.ADAB =AEECB.AGGF=AEBDC.BDAD=CEAED.AGAF=ACEC【答案】C【考点】相似三角形的性质与判定【解析】根据相似三角形的判定与性质即可求出答案.【解答】(A)∵DE // BC,∴△ADE∽△ABC,∴ADAB =AEAC,故A错误;(B)∵DE // BC,∴AGGF =AEEC,故B错误;(C)∵DE // BC,BD AD =CEAE,故C正确;(D)∵DE // BC,∴△AGE∽△AFC,∴AGAF =AEAC,故D错误;10. 周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【答案】D【考点】函数的图象【解析】根据特殊点的实际意义即可求出答案.【解答】A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=−60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50−30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30−15=15min,故D符合题意;二、填空题(本大题共10小题,每小题3分,共30分)将57600000用科学记数法表示为________.【答案】5.76×107【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】57600000用科学记数法表示为5.76×107,中,自变量x的取值范围是________.函数y=2x+1x−2【答案】x≠2【考点】函数自变量的取值范围【解析】根据分式有意义的条件:分母不为0进行解答即可.【解答】由x−2≠0得,x≠2,把多项式4ax 2−9ay 2分解因式的结果是________. 【答案】a(2x +3y)(2x −3y) 【考点】提公因式法与公式法的综合运用 【解析】本题考查了提公因式法与公式法的综合运用. 【解答】解:原式=a(4x 2−9y 2)=a(2x +3y)(2x −3y). 故答案为:a(2x +3y)(2x −3y)计算√27−6√13的结果是________. 【答案】√3【考点】二次根式的混合运算 【解析】先将二次根式化简即可求出答案. 【解答】解:原式=3√3−6×√33=3√3−2√3 =√3.故答案为:√3.已知反比例函数y =3k−1x 的图象经过点(1, 2),则k 的值为________.【答案】 1【考点】反比例函数图象上点的坐标特征 【解析】直接把点(1, 2)代入反比例函数y =3k−1x,求出k 的值即可.【解答】∵ 反比例函数y =3k−1x的图象经过点(1, 2),∴ 2=3k −1,解得k =1.不等式组{5−2x ≤1x −3<0 的解集是________.【答案】 2≤x <3 【考点】解一元一次不等式组分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】,{5−2x≤1x−3<0由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为________.【答案】617【考点】概率公式【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为6;17已知扇形的弧长为4π,半径为48,则此扇形的圆心角为________度.【答案】15【考点】弧长的计算【解析】利用扇形的弧长公式计算即可.【解答】设扇形的圆心角为n∘,=4π,则nπ×48180解得,n=15,四边形ABCD是菱形,∠BAD=60∘,AB=6,对角线AC与BD相交于点O,点E在AC 上,若OE=√3,则CE的长为________.【答案】4√3或2√3【考点】菱形的性质【解析】BD=3,由勾股由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=12定理得出OC=OA=√AB2−OB2=3√3,即可得出答案.∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60∘,∴△ABD是等边三角形,∴BD=AB=6,∴OB=12BD=3,∴OC=OA=√AB2−OB2=3√3,∴AC=20A=6√3,∵点E在AC上,OE=√3,∴当E在点O左边时CE=OC+√3=4√3当点E在点O右边时CE=OC−√3=2√3,∴CE=4√3或2√3;如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为________.【答案】2√55【考点】矩形的性质全等三角形的性质与判定【解析】由AAS证明△ABM≅△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt△DEM≅Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.【解答】∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90∘,AD // BC,AD=BC,∴∠AMB=∠DAE,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90∘,在△ABM和△DEA中,{∠AMB=∠DAE∠B=∠DEA=90AB=DE,∴△ABM≅△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=√55,∴BM=2√55;三、解答题(本大题共60分)先化简,再求代数式1x−1÷x+2x2−2x+1−xx+2的值,其中x=4sin60∘−2.【答案】1 x−1÷x+2x2−2x+1−xx+2=1x−1⋅(x−1)2x+2−xx+2=x−1x+2−xx+2=−1x+2,当x=4sin60∘−2=4×√32−2=2√3−2时,原式=2√3−2+2=2√3=−√36.【考点】分式的化简求值特殊角的三角函数值【解析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】1 x−1÷x+2x2−2x+1−xx+2=1x−1⋅(x−1)2x+2−xx+2=x−1x+2−xx+2=−1x+2,当x=4sin60∘−2=4×√32−2=2√3−2时,原式=2√3−2+2=2√3=−√36.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=32,连接CD,请直接写出线段CD的长.【答案】解:(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD=√12+52=√26.【考点】作图—应用与设计作图解直角三角形平行四边形的判定勾股定理【解析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;的值确定点E的位置,由此即可解决问题,利用勾股定理(2)首先根据tan∠EAB=32计算CD的长;【解答】解:(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD=√12+52=√26.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚.洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.【答案】10÷20%=50(名),答:本次调查共抽取了50名学生;50−10−20−12=8(名),补全条形统计图如图所示,=540(名),1350×2050答:估计最喜欢太阳岛风景区的学生有540名.【考点】用样本估计总体条形统计图扇形统计图【解析】(1)根据条形统计图与扇形统计图求出总人数即可;(2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果.【解答】10÷20%=50(名),答:本次调查共抽取了50名学生;50−10−20−12=8(名),补全条形统计图如图所示,1350×2050=540(名),答:估计最喜欢太阳岛风景区的学生有540名.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90∘,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【答案】∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90∘,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,{AC=BC∠ACE=∠BCD CE=CD∴△ACE≅△BCD(SAS),∴AE=BD,∵AC=DC,∴AC=CD=EC=CB,△ACB≅△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC ∴∠DOM=90∘,∵∠AEC=∠CAE=∠CBD,∴△EMC≅△BCN(ASA),∴CM=CN,∴DM=AN,△AON≅△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≅△DOE(HL)【考点】等腰直角三角形全等三角形的性质与判定【解析】(1)根据全等三角形的性质即可求证△ACE≅△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90∘,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,{AC=BC∠ACE=∠BCD CE=CD∴△ACE≅△BCD(SAS),∴AE=BD,∵AC=DC,∴AC=CD=EC=CB,△ACB≅△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90∘,∵∠AEC=∠CAE=∠CBD,∴△EMC≅△BCN(ASA),∴CM=CN,∴DM=AN,△AON≅△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≅△DOE(HL)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【答案】每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元威丽商场至少需购进6件A 种商品【考点】二元一次方程组的应用——行程问题一元一次不等式的实际应用二元一次方程的应用【解析】(1)设A 种商品售出后所得利润为x 元,B 种商品售出后所得利润为y 元.由售出1件A 种商品和4件B 种商品所得利润为600元,售出3件A 种商品和5件B 种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A 种商品a 件,则购进B 种商品(34−a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】设每件A 种商品售出后所得利润为x 元,每件B 种商品售出后所得利润为y 元.由题意,得{x +4y =6003x +5y =1100, 解得:{x =200y =100答:每件A 种商品售出后所得利润为200元,每件B 种商品售出后所得利润为100元. 设购进A 种商品a 件,则购进B 种商品(34−a)件.由题意,得200a +100(34−a)≥4000,解得:a ≥6答:威丽商场至少需购进6件A 种商品.已知:AB 是⊙O 的弦,点C 是AB̂的中点,连接OB 、OC ,OC 交AB 于点D .(1)如图1,求证:AD =BD ;(2)如图2,过点B 作⊙O 的切线交OC 的延长线于点M ,点P 是AĈ上一点,连接AP 、BP ,求证:∠APB −∠OMB =90∘;(3)如图3,在(2)的条件下,连接DP 、MP ,延长MP 交⊙O 于点Q ,若MQ =6DP ,sin ∠ABO =35,求MP MQ 的值.【答案】证明:如图1,连接OA ,∵ C 是AB̂的中点, ∴ AĈ=BC ̂, ∴ ∠AOC =∠BOC ,∵ OA =OB ,∴OD⊥AB,AD=BD;证明:如图2,延长BO交⊙O于点T,连接PT ∵BT是⊙O的直径∴∠BPT=90∘,∴∠APT=∠APB−∠BPT=∠APB−90∘,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90∘,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB−90∘=∠OMB,∴∠APB−∠OMB=90∘;如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≅△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP // BK,∴∠PAB=∠ABK,∠APB+∠PBK=180∘,由(2)得∠APB−(90∘−∠MBA)=90∘,∴∠APB+∠MBA=180∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≅△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∵∠PMH=12∠PMN=12∠AMB=∠BMO,∠BMO=∠ABO∴∠PMH=∠ABO,∵sin∠PMH=PHPM ,sin∠ABO=35,∴PHPM =35,∴DPPM =35,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴PMMQ =518.解法二:连接BQ、OQ.易知AB⊥OM,OB⊥MB,∴∠OMB=∠ABO,∴sin∠ABO=sin∠OMB=OBOM =35,设OB=OQ=3a,则OM=5a,易证MB2=MD⋅MO,∵MB是切线,∴∠MBP=∠MQB,∴△MPB∽△MBQ,∴MPMB =MBMQ,∴MB2=MP⋅MQ,∴MD⋅MO=MP⋅MQ,∴MDMP =MQMO,∵∠DMP=∠QMO,∴△MPD∽△MOQ,∴PDOQ =MPMO,∴MP=MOOQ ⋅PD=5a3a⋅PD,∴MPMQ =53PD6PD=518.【考点】圆与函数的综合圆与圆的综合与创新圆与相似的综合【解析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90∘,易得∠APT=∠APB−∠BPT=∠APB−90∘,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)解法一:如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≅△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180∘,由(2)得∠APB−(90∘−∠MBA)=90∘,易得∠NBP=∠KBP,可得△PBN≅△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=PHPM ,sin∠ABO=35,设DP=3a,则PM=5a,可得结果.解法二:连接BQ、OQ.易知AB⊥OM,OB⊥MB,利用相似三角形的性质解决问题即可:【解答】证明:如图1,连接OA,∵C是AB̂的中点,∴AĈ=BĈ,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;证明:如图2,延长BO交⊙O于点T,连接PT∵BT是⊙O的直径∴∠BPT=90∘,∴∠APT=∠APB−∠BPT=∠APB−90∘,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90∘,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB−90∘=∠OMB,∴∠APB−∠OMB=90∘;如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≅△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP // BK,∴∠PAB=∠ABK,∠APB+∠PBK=180∘,由(2)得∠APB−(90∘−∠MBA)=90∘,∴∠APB+∠MBA=180∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≅△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∵∠PMH=12∠PMN=12∠AMB=∠BMO,∠BMO=∠ABO∴∠PMH=∠ABO,∵sin∠PMH=PHPM ,sin∠ABO=35,∴PHPM =35,∴DPPM =35,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴PMMQ =518.解法二:连接BQ、OQ.易知AB⊥OM,OB⊥MB,∴∠OMB=∠ABO,∴sin∠ABO=sin∠OMB=OBOM =35,设OB=OQ=3a,则OM=5a,易证MB2=MD⋅MO,∵MB是切线,∴∠MBP=∠MQB,∴△MPB∽△MBQ,∴MPMB =MBMQ,∴MB2=MP⋅MQ,∴MD⋅MO=MP⋅MQ,∴MDMP =MQMO,∵∠DMP=∠QMO,∴△MPD∽△MOQ,∴PDOQ =MPMO,∴MP=MOOQ ⋅PD=5a3a⋅PD,∴MPMQ =53PD6PD=518.如图,在平面直角坐标系中,点O 为坐标原点,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,交y 轴于点C ,直线y =x −3经过B 、C 两点.(1)求抛物线的解析式;(2)过点C 作直线CD ⊥y 轴交抛物线于另一点D ,点P 是直线CD 下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P 作PE ⊥x 轴于点E ,PE 交CD 于点F ,交BC 于点M ,连接AC ,过点M 作MN ⊥AC 于点N ,设点P 的横坐标为t ,线段MN 的长为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,连接PC ,过点B 作BQ ⊥PC 于点Q (点Q 在线段PC 上),BQ 交CD 于点T ,连接OQ 交CD 于点S ,当ST =TD 时,求线段MN 的长.【答案】∵ 直线y =x −3经过B 、C 两点,∴ B(3, 0),C(0, −3),∵ y =x 2+bx +c 经过B 、C 两点,∴ {9+3b +c =0c =−3, 解得{b =−2c =−3, 故抛物线的解析式为y =x 2−2x −3;如图1,y =x 2−2x −3,y =0时,x 2−2x −3=0,解得x 1=−1,x 2=3,∴ A(−1, 0),∴ OA =1,OB =OC =3,∴ ∠ABC =45∘,AC =√10,AB =4,∵ PE ⊥x 轴,∴ ∠EMB =∠EBM =45∘,∵ 点P 的横坐标为t ,∴ EM =EB =3−t ,连接AM ,∵ S △ABC =S △AMC +S △AMB ,∴ 12AB ⋅OC =12AC ⋅MN +12AB ⋅EM ,∴12×4×3=12×√10d+12×4(3−t),∴d=2√105t;如图2,∵y=x2−2x−3=(x−1)2−4,∴对称轴为x=1,∴由抛物线对称性可得D(2, −3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90∘,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90∘,∵∠CQB+∠COB=180∘,∴O、C、Q、B四点共圆,∴∠OQB=∠OCB=45∘过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,OG⊥OS交KB 于G,∴∠OHC=∠OIQ=∠OIB=90∘,∴四边形OHQI为矩形,∵∠OQI=45∘,∴∠OQI=∠IOQ=45∘,∵∠OCQ+∠OBQ=180∘,∴∠OBG=∠OCS,∵OB=OC,∠BOG=∠COS,∴△OBG≅△OCS,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90∘,∴∠ROG=∠QOI=45∘,∵OR=OR,∴△OSR≅△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90∘,∠IBO+∠TBK=90∘,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴BROB =TKBK,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2−2m,TK=m+1=BR,SR=3−m,RK=2−m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2−m)2=(3−m)2,解得m1=−2(舍去),m2=12;∴ST=TD=12,TK=32,∴tan∠TBK=TKBK =32÷3=12,∴tan∠PCD=12,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=12t,∴PE′=12t+3,∴P(t, −12t−3),∴−12t−3=t2−2t−3,解得t1=0(舍去),t2=32.∴MN=d=2√105t=2√105×32=3√105.【考点】二次函数综合题【解析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据S△ABC=S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;(3)如图2,由抛物线对称性可得D(2, −3),过点B作BK⊥CD交直线CD于点K,OG⊥OS交KB于G,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,可得四边形OHQI为矩形,可证△OBG≅△OCS,△OSR≅△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS =2−2m ,TK =m +1=BR ,SR =3−m ,RK =2−m ,在Rt △SKR 中,根据勾股定理求得m ,可得tan ∠PCD =12,过点P 作PE′⊥x 轴于E′交CD 于点F′,得到P(t, −12t −3),可得−12t −3=t 2−2t −3,求得t ,再根据MN =d 求解即可.【解答】∵ 直线y =x −3经过B 、C 两点,∴ B(3, 0),C(0, −3),∵ y =x 2+bx +c 经过B 、C 两点,∴ {9+3b +c =0c =−3, 解得{b =−2c =−3, 故抛物线的解析式为y =x 2−2x −3;如图1,y =x 2−2x −3,y =0时,x 2−2x −3=0,解得x 1=−1,x 2=3,∴ A(−1, 0),∴ OA =1,OB =OC =3,∴ ∠ABC =45∘,AC =√10,AB =4,∵ PE ⊥x 轴,∴ ∠EMB =∠EBM =45∘,∵ 点P 的横坐标为t ,∴ EM =EB =3−t ,连接AM ,∵ S △ABC =S △AMC +S △AMB ,∴ 12AB ⋅OC =12AC ⋅MN +12AB ⋅EM , ∴ 12×4×3=12×√10d +12×4(3−t),∴ d =2√105t ; 如图2,∵ y =x 2−2x −3=(x −1)2−4,∴ 对称轴为x =1,∴ 由抛物线对称性可得D(2, −3),∴ CD =2,过点B 作BK ⊥CD 交直线CD 于点K ,∴ 四边形OCKB 为正方形,∴ ∠OBK =90∘,CK =OB =BK =3,∴ DK =1,∵ BQ ⊥CP ,∴ ∠CQB =90∘,∵ ∠CQB +∠COB =180∘,∴ O 、C 、Q 、B 四点共圆,∴ ∠OQB =∠OCB =45∘过点O 作OH ⊥PC 交PC 延长线于点H ,OR ⊥BQ 交BQ 于点I 交BK 于点R ,OG ⊥OS 交KB于G,∴∠OHC=∠OIQ=∠OIB=90∘,∴四边形OHQI为矩形,∵∠OQI=45∘,∴∠OQI=∠IOQ=45∘,∵∠OCQ+∠OBQ=180∘,∴∠OBG=∠OCS,∵OB=OC,∠BOG=∠COS,∴△OBG≅△OCS,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90∘,∴∠ROG=∠QOI=45∘,∵OR=OR,∴△OSR≅△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90∘,∠IBO+∠TBK=90∘,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴BROB =TKBK,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2−2m,TK=m+1=BR,SR=3−m,RK=2−m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2−m)2=(3−m)2,解得m1=−2(舍去),m2=12;∴ST=TD=12,TK=32,∴tan∠TBK=TKBK =32÷3=12,∴tan∠PCD=12,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=12t,∴PE′=12t+3,∴P(t, −12t−3),∴−12t−3=t2−2t−3,解得t1=0(舍去),t2=32.∴MN=d=2√105t=2√105×32=3√105.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共30页) 2017年黑龙江省哈尔滨市中考数学试卷

一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)﹣7的倒数是( ) A.7 B.﹣7 C. D.﹣ 17172.(3分)下列运算正确的是( )

A.a6÷a3=a2 B.2a3+3a3=5a6 C.(﹣a3)2=a6 D.(a+b)2=a2+b2

3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )

A. B. C. D. 4.(3分)抛物线y=﹣(x+)2

﹣3的顶点坐标是( )

351

2

A.(,﹣3) B.(﹣,﹣3) C.(,3) D.(﹣,3) 1212121

25.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是

( )

A. B. C. D. 6.(3分)方程=的解为( ) 2𝑥+31𝑥‒1

A.x=3 B.x=4 C.x=5 D.x=﹣5 7.(3分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是( ) 第2页(共30页)

A.43° B.35° C.34° D.44° 8.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )

A. B. C. D. 15414151541717

9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是( )

A.= B.= C.= D.= 𝐴𝐷𝐴𝐵𝐴𝐸𝐸𝐶𝐴𝐺𝐺𝐹𝐴𝐸𝐵𝐷𝐵𝐷𝐴𝐷𝐶𝐸𝐴𝐸𝐴𝐺𝐴𝐹𝐴𝐶𝐸𝐶10.(3分)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时

间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是( )

A.小涛家离报亭的距离是900m B.小涛从家去报亭的平均速度是60m/min C.小涛从报亭返回家中的平均速度是80m/min D.小涛在报亭看报用了15min

第3页(共30页)

二、填空题(本大题共10小题,每小题3分,共30分) 11.(3分)将57600000用科学记数法表示为 .

12.(3分)函数y=中,自变量x的取值范围是 . 2𝑥+1𝑥‒2

13.(3分)把多项式4ax2﹣9ay2

分解因式的结果是 .

14.(3分)计算﹣6的结果是 . 2713

15.(3分)已知反比例函数y=的图象经过点(1,2),则k的值3𝑘‒1𝑥为 .

16.(3分)不等式组的解集是 . {5‒2𝑥≤1

𝑥‒3<0

17.(3分)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 . 18.(3分)已知扇形的弧长为4π,半径为8,则此扇形的圆心角为 . 19.(3分)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为 . 320.(3分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为 .

三、解答题(本大题共60分)

21.(7分)先化简,再求代数式÷﹣的值,其中1𝑥‒1𝑥+2𝑥2‒2𝑥+1𝑥𝑥+2

x=4sin60°﹣2. 22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上. 第4页(共30页)

(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上; (2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长. 32

23.(8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题: (1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图; (3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.

24.(8分)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N. (1)如图1,求证:AE=BD; (2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形. 第5页(共30页)

25.(10分)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元. (1)求每件A种商品和每件B种商品售出后所得利润分别为多少元; (2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品? 26.(10分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交𝐴𝐵

AB于点D. (1)如图1,求证:AD=BD; (2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,𝐴𝐶

连接AP、BP,求证:∠APB﹣∠OMB=90°; (3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值. 35𝑀𝑃𝑀𝑄

27.(10分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2

+bx+c

交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点. 第6页(共30页)

(1)求抛物线的解析式; (2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围); (3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.

第7页(共30页)

2017年黑龙江省哈尔滨市中考数学试卷 参考答案与试题解析

一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)(2017•哈尔滨)﹣7的倒数是( ) A.7 B.﹣7 C. D.﹣ 1717【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.

【解答】解:﹣7的倒数是﹣, 17故选:D.

【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.

2.(3分)(2017•哈尔滨)下列运算正确的是( )

A.a6÷a3=a2 B.2a3+3a3=5a6 C.(﹣a3)2=a6 D.(a+b)2=a2+b2

【分析】各项计算得到结果,即可作出判断. 【解答】解:A、原式=a3,不符合题意; B、原式=5a3

,不符合题意;

C、原式=a6

,符合题意;

D、原式=a2+2ab+b2

,不符合题意,

故选C 【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.

3.(3分)(2017•哈尔滨)下列图形中,既是轴对称图形又是中心对称图形的是( )

A. B. C. D. 【分析】根据轴对称图形与中心对称图形的概念求解. 第8页(共30页)

【解答】解:A、是轴对称图形,不是中心对称图形,不合题意; B、是轴对称图形,不是中心对称图形,不合题意; C、不是轴对称图形,是中心对称图形,不合题意; D、是轴对称图形,也是中心对称图形,符合题意. 故选:D. 【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

4.(3分)(2017•哈尔滨)抛物线y=﹣(x+)2

﹣3的顶点坐标是( )

351

2

A.(,﹣3) B.(﹣,﹣3) C.(,3) D.(﹣,3) 1212121

2【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.

【解答】解:y=﹣(x+)2﹣3是抛物线的顶点式, 3512

根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3). 1

2故选B.

【点评】此题主要考查了二次函数的性质,关键是熟记:抛物线y=a(x﹣h)2+k的顶点坐标是(h,k),对称轴是x=h.

5.(3分)(2017•哈尔滨)五个大小相同的正方体搭成的几何体如图所示,其左视图是( )

A. B. C. D. 【分析】根据从左边看得到的图形是左视图,可得答案. 【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,

相关文档
最新文档