Inference in Fuzzy Models of Physical Processes
Fuzzy中英对照表

Composition of fuzzy relations
模糊關係之合成
Compositional rule of inference
推論之合成規則
合成規則推論法
Computing, soft
軟性運算
柔性運算或
柔性解算
Conditional possibility distribution
工業流程控制
Inference, composition based
組合式推論
Inference, individual-rule based
個別規則基礎的推論
個別規則式推論
Inference engine, Dienes-Rescher
Dienes-Rescher推論機制
Inference engine, Lukasiewicz
模糊關係方程式
Equilibrium
均衡
平衡
Extension principle
擴展法則
Feedforward network
前饋網路
Fuzzifier, Gaussian
高斯模糊化
高斯模糊化器
Fuzzifier, singleton
單點模糊化
單點模糊化器
Fuzzifier, triangular
Dombi類型之模糊交集
Intersection, fuzzy Dubois-Prade class
Dubois-Prade類型之模糊交集
Intersection Yager class
Yager類型之交集
Interval analysis
區間分析
Interval-valued function
博士生要做自己的导师

博士生要做自己的导师作为一个刚毕业的博士生,体会到学习期间,要努力做自己的导师。
导师很重要,但是现在很多导师都很忙,大方向上可以把关,细节上恐怕只能靠自己了。
正如《怎样获得研究生学位――研究生及导师指南》书中所说:“在博士教育阶段,你必须把握自己的学习,取得博士学位,以此作为自己的责任。
当然,你的周围会有很多人帮助你,但是,决定什么是必须要做的,以及实际的完成这些任务,这一责任最终只能落在你自己的头上。
”我认为有如下几个方面特别要引起注意。
研究方向确定。
现在很多导师会指定一个大方向,比如温室蔬菜病害预警系统,我们要按照大方向来前行。
但是对于一个博士论文来说,还需进一步明确:比如做哪种蔬菜的,采用什么方法来预警,究竟有哪些关键技术,等等。
还得理清自己的创新点。
对于农业工程专业偏软件方向的我来说,模型是核心,有时数据获取方法也可以作为创新点。
这些一般都要自己理出方案之后,再提交导师审阅,双方讨论确定。
文献阅读与偶像论文确定。
在方向确定后,就是开题,这就要以文献阅读为基础。
虽然导师会指定一些文献,但是鉴于很多导师工作繁忙,要在宏观上把握各个研究方向的总体进展,对于某一个方向上的文献,并不一定比专门一心一意做该方向的学生掌握的全、掌握的新。
而且学生有更多的时间来检索和获取文献,因此在文献阅读这块,经过半年到一年左右的积累,应该有信心超过导师。
所谓“偶像论文”,是从导师那里学到的一个概念,我理解就是和自己研究特别相关、可以作为试验设计、结果分析和论文写作模板的论文。
我的很多论文就是参考前人的模式写作的,站在偶像的肩膀上前进,确实受益匪浅。
试验设计与执行。
试验方案通常是学生设计,交由导师审阅,双方讨论之后确定的。
方案执行是个持续奋斗、有时甚至是艰苦卓绝的过程。
有了硕士阶段的基础,博士生的执行力应当有了很大的提升,甚至可以领导一个小组,如几个硕士来执行一个试验。
这种一线工作能力,甚至在毕业后参加工作的头几年,仍然需要,因为我们可能还是一个小兵。
INFERENCE METHOD FOR FUZZY INFERENCE CONSEQUENT PA

专利名称:INFERENCE METHOD FOR FUZZYINFERENCE CONSEQUENT PART UNDER PIDCONTROL发明人:HAYASAKA HIROSHI申请号:JP23793289申请日:19890913公开号:JPH03100703A公开日:19910425专利内容由知识产权出版社提供摘要:PURPOSE:To simplify an arithmetic procedure and to shorten an arithmetic time by dividing the membership function of inference consequent part into fixed membership function and floating membership function and performing inference arithmetic processing as to relative parameters together. CONSTITUTION:The membership function of the inference consequent part 14 which performs fuzzy inference processing is divided into the fixed membership function and floating membership function. When variables outputted by the reasoning consequent part 14, e.g. a P(proportional) parameter and an I(integral) parameter are in relation A=P/I, the result obtained by adding a fuzzy evaluated value of the I parameter obtained at the inference antecedent part 13 at an inference consequent part 14 is assigned as a fixed membership function. The result obtained by adding the fuzzy evaluated value of the P parameter, on the other hand, is assigned as a floating membership function. Then the fixed membership function and floating membership function are put together in the relation A=P/I to obtain a new inference value. Consequently, the arithmetic time is shortened and the inference process is simplified.申请人:MITSUBISHI ELECTRIC CORP 更多信息请下载全文后查看。
ieee fuzzy 短文

ieee fuzzy 短文Fuzzy logic is a mathematical tool that allows for approximate reasoning and decision-making in uncertain or ambiguous situations. It originated from the work of Lotfi Zadeh in the 1960s and has since been widely applied in various fields, including engineering, computer science, and artificial intelligence.At its core, fuzzy logic deals with degrees of truth rather than the traditional binary logic of true or false. It acknowledges that many concepts in the real world are not easily defined or categorizable in a strict sense. Fuzzy logic allows for the representation of imprecise or vague information and enables the use of linguistic terms to describe these concepts.The main building blocks of fuzzy logic are fuzzy sets, which are defined by membership functions that assign a degree of membership to each element in a set. Unlike in classical set theory, where an element either belongs to a set or does not, fuzzy sets provide a more flexible approach by allowing for partial membership. This allows for a more nuanced representation of data and facilitates better decision-making in uncertain situations. Fuzzy logic is often employed in control systems, where it enables the modeling of complex, nonlinear relationships between inputs and outputs. By incorporating linguistic rules, fuzzy logic controllers can handle imprecise or incomplete information and adapt to changing conditions. This makes them particularly useful in applications such as temperature and speed control, as well as in intelligent systems like autonomous vehicles.Another area where fuzzy logic has found extensive application is in pattern recognition and image processing. Fuzzy logic algorithms can effectively handle the inherent uncertainty and variability in real-world data, making them suitable for tasks such as object recognition, classification, and clustering. By considering the degree of similarity or dissimilarity between objects, fuzzy logic techniques can provide more robust and reliable results compared to traditional binary methods.Fuzzy logic has also been utilized in decision-making systems, where it allows for the modeling of human-like reasoning processes. By employing fuzzy inference and rule-based systems, decision support systems can analyze complex data and make intelligent decisions based on expert knowledge and subjective criteria. This can be particularly valuable in fields such as medicine, finance, and risk analysis, where decisions often involve multiple factors and uncertainties.Despite its numerous applications and advantages, fuzzy logic does have its limitations. The construction of accurate membership functions and the formulation of appropriate fuzzy rules can be challenging. Additionally, the computational complexity of fuzzy logic algorithms may be higher compared to classical methods, leading to increased processing time and resource requirements.In conclusion, fuzzy logic provides a powerful framework for dealing with uncertainty and imprecision in decision-making. Its ability to handle vague and incomplete information makes it highly applicable in a wide range of fields. By incorporating linguistic terms and membership functions, fuzzy logic enables morerealistic and human-like reasoning processes. However, it is important to carefully consider the appropriate use of fuzzy logic and to address the associated challenges when applying it in practice.。
洗衣机模糊控制原理

中文摘要洗衣机自问世以来,经过一个多世纪的发展,现正呈现出全自动、多功能、大容量、高智能、省时节能的发展趋势。
近年来,电子技术、控制技术、信息技术的不断完善、成熟,为上述发展趋势提供了坚强的技术保障。
L·A·Zadeh教授最早提出了模糊集合理论,由此产生了模糊控制技术,其突出的优点是:不需要对被控对象建立精确的数学模型。
对于复杂的、非线性的、大滞后的、时变的系统来说,建立数学模型是非常困难的。
全自动滚筒洗衣干衣机的自动化、智能化控制正是一种难以建立精确数学模型的控制问题,采用模糊控制技术,可以很方便的控制洗衣干衣过程。
模糊控制全自动滚筒洗衣干衣机是通过模糊推理找出最佳洗涤烘干方案,以优化洗涤烘干时间、洗净程度、烘干效果,最终达到提高效率,简化操作,、节水节电省时的效果。
模糊控制全自动滚筒洗衣干衣机属于创新项目,填补国内空白,达到国际先进水平。
它的研制成功,必将大大推动我国乃至世界洗衣机行业的发展。
模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过程的一种智能控制方法。
该方法首先将操作人员或专家经验编成模糊规则,然后将来自传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输入,完成模糊推理,将推理后得到的输出量加到执行器上。
关键词:洗衣干衣机、家用滚筒式、模糊控制技术、模糊控制器、模糊控制规则ABSTRACTIt has been developed for more than one century since the emergence of washing machine.Now the tendency to develop is fully- automatism,Multifunction,large capacity,high intelligence,time and energy saving.Recently,the tendency has been guaranteed substantially with the perfection and mature of electronic technology,control technology and information technology.Professor L·A·Zadeh first put forward the Theory of Fuzzy Set,from which the technology of Fuzzy Control arise.It is extraordinary virtue is:There is no definite need to establish the exact math model of the controlled object.It is very convenience to establish mathematical models to the systems with very complex,non.1inear,large—lag and timely change characteristic.And it is the very problem incontrol to establish the exact mathematical model in fully-automatic washing—drying machines automatism and optimize.It is very convenient to control the process of washing and drying to use the technology off contr01.The fuzzy control of the fully—automatism front loading washing· drying machine, is through the fuzzy inference to find the best plan of washing-drying,optimize the time of washing and drying,the degree of cleaning and the effect of drying SO to reach the intention of raising the efficiency,predigesting the operate and saving the water and electricity.Fuzzy control fully—- automatism front loading washing drying machine is an innovate project,which padded the blankness in the world and achieve international advanced level.The Success of the research will impel the development of the washing machine industry greatly.Key Words:washing—drying machine,household front loading,fuzzy control technology,fuzzy controller,fuzzy control rule .目录:第一章:简介1.绪言2.简单论述第二章:模糊控制理论和技术基础1. 模糊控制原理2. 模糊控制器的构成3. 模糊控制系统的工作原理4. 模糊控制系统分类5. 模糊控制器的设计6. 模糊控制器设计实例-洗衣机模糊控制第三章:程序实现1.模糊控制理论和技术基础总结2.程序设计及实现1 绪论第一章绪言国际相关产品的发展水平、现状及发展趋势:1965年,美国加里弗尼亚大学控制理论教授L·A·Zadeh(扎德)提出模糊集理论。
数据缺失下的IFCM-Slope One协同过滤推荐算法

D01:10.13546/ki.tjyjc.2020.09.040Ct理送愛]数据缺失下的IFCM-Slope One协同过滤推荐算法张艳菊",陆畅小(辽宁工程技术大学a.工商管理学院;b.管理科学与工程研究院,辽宁葫芦岛125105)摘要:为了提高数据缺失情况下的推荐准确性,保证服务的质量,给用户提供更加准确与实时的个性化信息,文章将直觉模糊C均值聚类(IFCM)和协同过滤推荐算法相结合,构建了IFCM-Slope One协同过滤推荐算法。
通过引入直觉模糊C均值聚类对用户进行分类,减小邻居用户的搜索范围,降低计算的复杂度,再利用Slope One对用户喜好矩阵缺失数据进行填补,避免由于数据缺失导致推荐偏差,最后基于协同过滤推荐算法计算相似邻居集,并将相似邻居集中的用户喜好隶属度进行从大到小的排序,形成Top-n项目推荐集,生成用户推荐结果。
关键词:直觉模糊C均值聚类(IFCM);协同过滤推荐:Slope One中图分类号:0159文献标识码:A文章编号:1002-6487(2020)09-0185-040引言实时准确的个性化推荐是电子商务行业运营管理水平的体现,是大数据时代发展的重要方面。
但现在互联网信息呈指数增长,全世界现存网站已到达10亿以上,我国网民数量也已经超过7亿,庞大的数据量加大了推荐的难度,如何提高推荐的准确性成为亟待解决的问题'“。
国内学者中,邓爱林等'通过对用户评分项目集中的空缺进行填充,并运用领域最近邻方法进行预测推荐%古凌岚°」针对传统的协同过滤推荐算法的稀疏性问题利用基因表达式预测局部用户一项目的缺失评分。
高灵渲网通过对样本用户利用分类策略进行分类,再对目标用户的具体推荐项目进行预测评分。
李小浩E针对协同过滤推荐算法的缺陷,提出了SCFCM推荐算法,提高推荐精度。
国外学者中Xue等冋通过预估缺失数据进行填充,减小稀疏性问题。
Kim等回利用预测模型,对已有评分预估和实际评分比较得预测偏差,进而进行结果修正。
人工智能英汉

人工智能英汉Aβα-Pruning, βα-剪枝, (2) Acceleration Coefficient, 加速系数, (8) Activation Function, 激活函数, (4) Adaptive Linear Neuron, 自适应线性神经元,(4)Adenine, 腺嘌呤, (11)Agent, 智能体, (6)Agent Communication Language, 智能体通信语言, (11)Agent-Oriented Programming, 面向智能体的程序设计, (6)Agglomerative Hierarchical Clustering, 凝聚层次聚类, (5)Analogism, 类比推理, (5)And/Or Graph, 与或图, (2)Ant Colony Optimization (ACO), 蚁群优化算法, (8)Ant Colony System (ACS), 蚁群系统, (8) Ant-Cycle Model, 蚁周模型, (8)Ant-Density Model, 蚁密模型, (8)Ant-Quantity Model, 蚁量模型, (8)Ant Systems, 蚂蚁系统, (8)Applied Artificial Intelligence, 应用人工智能, (1)Approximate Nondeterministic Tree Search (ANTS), 近似非确定树搜索, (8) Artificial Ant, 人工蚂蚁, (8)Artificial Intelligence (AI), 人工智能, (1) Artificial Neural Network (ANN), 人工神经网络, (1), (3)Artificial Neural System, 人工神经系统,(3) Artificial Neuron, 人工神经元, (3) Associative Memory, 联想记忆, (4) Asynchronous Mode, 异步模式, (4) Attractor, 吸引子, (4)Automatic Theorem Proving, 自动定理证明,(1)Automatic Programming, 自动程序设计, (1) Average Reward, 平均收益, (6) Axon, 轴突, (4)Axon Hillock, 轴突丘, (4)BBackward Chain Reasoning, 逆向推理, (3) Bayesian Belief Network, 贝叶斯信念网, (5) Bayesian Decision, 贝叶斯决策, (3) Bayesian Learning, 贝叶斯学习, (5) Bayesian Network贝叶斯网, (5)Bayesian Rule, 贝叶斯规则, (3)Bayesian Statistics, 贝叶斯统计学, (3) Biconditional, 双条件, (3)Bi-Directional Reasoning, 双向推理, (3) Biological Neuron, 生物神经元, (4) Biological Neural System, 生物神经系统, (4) Blackboard System, 黑板系统, (8)Blind Search, 盲目搜索, (2)Boltzmann Machine, 波尔兹曼机, (3) Boltzmann-Gibbs Distribution, 波尔兹曼-吉布斯分布, (3)Bottom-Up, 自下而上, (4)Building Block Hypotheses, 构造块假说, (7) CCell Body, 细胞体, (3)Cell Membrane, 细胞膜, (3)Cell Nucleus, 细胞核, (3)Certainty Factor, 可信度, (3)Child Machine, 婴儿机器, (1)Chinese Room, 中文屋, (1) Chromosome, 染色体, (6)Class-conditional Probability, 类条件概率,(3), (5)Classifier System, 分类系统, (6)Clause, 子句, (3)Cluster, 簇, (5)Clustering Analysis, 聚类分析, (5) Cognitive Science, 认知科学, (1) Combination Function, 整合函数, (4) Combinatorial Optimization, 组合优化, (2) Competitive Learning, 竞争学习, (4) Complementary Base, 互补碱基, (11) Computer Games, 计算机博弈, (1) Computer Vision, 计算机视觉, (1)Conflict Resolution, 冲突消解, (3) Conjunction, 合取, (3)Conjunctive Normal Form (CNF), 合取范式,(3)Collapse, 坍缩, (11)Connectionism, 连接主义, (3) Connective, 连接词, (3)Content Addressable Memory, 联想记忆, (4) Control Policy, 控制策略, (6)Crossover, 交叉, (7)Cytosine, 胞嘧啶, (11)DData Mining, 数据挖掘, (1)Decision Tree, 决策树, (5) Decoherence, 消相干, (11)Deduction, 演绎, (3)Default Reasoning, 默认推理(缺省推理),(3)Defining Length, 定义长度, (7)Rule (Delta Rule), 德尔塔规则, 18(3) Deliberative Agent, 慎思型智能体, (6) Dempster-Shafer Theory, 证据理论, (3) Dendrites, 树突, (4)Deoxyribonucleic Acid (DNA), 脱氧核糖核酸, (6), (11)Disjunction, 析取, (3)Distributed Artificial Intelligence (DAI), 分布式人工智能, (1)Distributed Expert Systems, 分布式专家系统,(9)Divisive Hierarchical Clustering, 分裂层次聚类, (5)DNA Computer, DNA计算机, (11)DNA Computing, DNA计算, (11) Discounted Cumulative Reward, 累计折扣收益, (6)Domain Expert, 领域专家, (10) Dominance Operation, 显性操作, (7) Double Helix, 双螺旋结构, (11)Dynamical Network, 动态网络, (3)E8-Puzzle Problem, 八数码问题, (2) Eletro-Optical Hybrid Computer, 光电混合机, (11)Elitist strategy for ant systems (EAS), 精化蚂蚁系统, (8)Energy Function, 能量函数, (3) Entailment, 永真蕴含, (3) Entanglement, 纠缠, (11)Entropy, 熵, (5)Equivalence, 等价式, (3)Error Back-Propagation, 误差反向传播, (4) Evaluation Function, 评估函数, (6) Evidence Theory, 证据理论, (3) Evolution, 进化, (7)Evolution Strategies (ES), 进化策略, (7) Evolutionary Algorithms (EA), 进化算法, (7) Evolutionary Computation (EC), 进化计算,(7)Evolutionary Programming (EP), 进化规划,(7)Existential Quantification, 存在量词, (3) Expert System, 专家系统, (1)Expert System Shell, 专家系统外壳, (9) Explanation-Based Learning, 解释学习, (5) Explanation Facility, 解释机构, (9)FFactoring, 因子分解, (11)Feedback Network, 反馈型网络, (4) Feedforward Network, 前馈型网络, (1) Feasible Solution, 可行解, (2)Finite Horizon Reward, 横向有限收益, (6) First-order Logic, 一阶谓词逻辑, (3) Fitness, 适应度, (7)Forward Chain Reasoning, 正向推理, (3) Frame Problem, 框架问题, (1)Framework Theory, 框架理论, (3)Free-Space Optical Interconnect, 自由空间光互连, (11)Fuzziness, 模糊性, (3)Fuzzy Logic, 模糊逻辑, (3)Fuzzy Reasoning, 模糊推理, (3)Fuzzy Relation, 模糊关系, (3)Fuzzy Set, 模糊集, (3)GGame Theory, 博弈论, (8)Gene, 基因, (7)Generation, 代, (6)Genetic Algorithms, 遗传算法, (7)Genetic Programming, 遗传规划(遗传编程),(7)Global Search, 全局搜索, (2)Gradient Descent, 梯度下降, (4)Graph Search, 图搜索, (2)Group Rationality, 群体理性, (8) Guanine, 鸟嘌呤, (11)HHanoi Problem, 梵塔问题, (2)Hebbrian Learning, 赫伯学习, (4)Heuristic Information, 启发式信息, (2) Heuristic Search, 启发式搜索, (2)Hidden Layer, 隐含层, (4)Hierarchical Clustering, 层次聚类, (5) Holographic Memory, 全息存储, (11) Hopfield Network, 霍普菲尔德网络, (4) Hybrid Agent, 混合型智能体, (6)Hype-Cube Framework, 超立方体框架, (8)IImplication, 蕴含, (3)Implicit Parallelism, 隐并行性, (7) Individual, 个体, (6)Individual Rationality, 个体理性, (8) Induction, 归纳, (3)Inductive Learning, 归纳学习, (5) Inference Engine, 推理机, (9)Information Gain, 信息增益, (3)Input Layer, 输入层, (4)Interpolation, 插值, (4)Intelligence, 智能, (1)Intelligent Control, 智能控制, (1) Intelligent Decision Supporting System (IDSS), 智能决策支持系统,(1) Inversion Operation, 倒位操作, (7)JJoint Probability Distribution, 联合概率分布,(5) KK-means, K-均值, (5)K-medoids, K-中心点, (3)Knowledge, 知识, (3)Knowledge Acquisition, 知识获取, (9) Knowledge Base, 知识库, (9)Knowledge Discovery, 知识发现, (1) Knowledge Engineering, 知识工程, (1) Knowledge Engineer, 知识工程师, (9) Knowledge Engineering Language, 知识工程语言, (9)Knowledge Interchange Format (KIF), 知识交换格式, (8)Knowledge Query and ManipulationLanguage (KQML), 知识查询与操纵语言,(8)Knowledge Representation, 知识表示, (3)LLearning, 学习, (3)Learning by Analog, 类比学习, (5) Learning Factor, 学习因子, (8)Learning from Instruction, 指导式学习, (5) Learning Rate, 学习率, (6)Least Mean Squared (LSM), 最小均方误差,(4)Linear Function, 线性函数, (3)List Processing Language (LISP), 表处理语言, (10)Literal, 文字, (3)Local Search, 局部搜索, (2)Logic, 逻辑, (3)Lyapunov Theorem, 李亚普罗夫定理, (4) Lyapunov Function, 李亚普罗夫函数, (4)MMachine Learning, 机器学习, (1), (5) Markov Decision Process (MDP), 马尔科夫决策过程, (6)Markov Chain Model, 马尔科夫链模型, (7) Maximum A Posteriori (MAP), 极大后验概率估计, (5)Maxmin Search, 极大极小搜索, (2)MAX-MIN Ant Systems (MMAS), 最大最小蚂蚁系统, (8)Membership, 隶属度, (3)Membership Function, 隶属函数, (3) Metaheuristic Search, 元启发式搜索, (2) Metagame Theory, 元博弈理论, (8) Mexican Hat Function, 墨西哥草帽函数, (4) Migration Operation, 迁移操作, (7) Minimum Description Length (MDL), 最小描述长度, (5)Minimum Squared Error (MSE), 最小二乘法,(4)Mobile Agent, 移动智能体, (6)Model-based Methods, 基于模型的方法, (6) Model-free Methods, 模型无关方法, (6) Modern Heuristic Search, 现代启发式搜索,(2)Monotonic Reasoning, 单调推理, (3)Most General Unification (MGU), 最一般合一, (3)Multi-Agent Systems, 多智能体系统, (8) Multi-Layer Perceptron, 多层感知器, (4) Mutation, 突变, (6)Myelin Sheath, 髓鞘, (4)(μ+1)-ES, (μ+1) -进化规划, (7)(μ+λ)-ES, (μ+λ) -进化规划, (7) (μ,λ)-ES, (μ,λ) -进化规划, (7)NNaïve Bayesian Classifiers, 朴素贝叶斯分类器, (5)Natural Deduction, 自然演绎推理, (3) Natural Language Processing, 自然语言处理,(1)Negation, 否定, (3)Network Architecture, 网络结构, (6)Neural Cell, 神经细胞, (4)Neural Optimization, 神经优化, (4) Neuron, 神经元, (4)Neuron Computing, 神经计算, (4)Neuron Computation, 神经计算, (4)Neuron Computer, 神经计算机, (4) Niche Operation, 生态操作, (7) Nitrogenous base, 碱基, (11)Non-Linear Dynamical System, 非线性动力系统, (4)Non-Monotonic Reasoning, 非单调推理, (3) Nouvelle Artificial Intelligence, 行为智能,(6)OOccam’s Razor, 奥坎姆剃刀, (5)(1+1)-ES, (1+1) -进化规划, (7)Optical Computation, 光计算, (11)Optical Computing, 光计算, (11)Optical Computer, 光计算机, (11)Optical Fiber, 光纤, (11)Optical Waveguide, 光波导, (11)Optical Interconnect, 光互连, (11) Optimization, 优化, (2)Optimal Solution, 最优解, (2)Orthogonal Sum, 正交和, (3)Output Layer, 输出层, (4)Outer Product, 外积法, 23(4)PPanmictic Recombination, 混杂重组, (7) Particle, 粒子, (8)Particle Swarm, 粒子群, (8)Particle Swarm Optimization (PSO), 粒子群优化算法, (8)Partition Clustering, 划分聚类, (5) Partitioning Around Medoids, K-中心点, (3) Pattern Recognition, 模式识别, (1) Perceptron, 感知器, (4)Pheromone, 信息素, (8)Physical Symbol System Hypothesis, 物理符号系统假设, (1)Plausibility Function, 不可驳斥函数(似然函数), (3)Population, 物种群体, (6)Posterior Probability, 后验概率, (3)Priori Probability, 先验概率, (3), (5) Probability, 随机性, (3)Probabilistic Reasoning, 概率推理, (3) Probability Assignment Function, 概率分配函数, (3)Problem Solving, 问题求解, (2)Problem Reduction, 问题归约, (2)Problem Decomposition, 问题分解, (2) Problem Transformation, 问题变换, (2) Product Rule, 产生式规则, (3)Product System, 产生式系统, (3) Programming in Logic (PROLOG), 逻辑编程, (10)Proposition, 命题, (3)Propositional Logic, 命题逻辑, (3)Pure Optical Computer, 全光计算机, (11)QQ-Function, Q-函数, (6)Q-learning, Q-学习, (6)Quantifier, 量词, (3)Quantum Circuit, 量子电路, (11)Quantum Fourier Transform, 量子傅立叶变换, (11)Quantum Gate, 量子门, (11)Quantum Mechanics, 量子力学, (11) Quantum Parallelism, 量子并行性, (11) Qubit, 量子比特, (11)RRadial Basis Function (RBF), 径向基函数,(4)Rank based ant systems (ASrank), 基于排列的蚂蚁系统, (8)Reactive Agent, 反应型智能体, (6) Recombination, 重组, (6)Recurrent Network, 循环网络, (3) Reinforcement Learning, 强化学习, (3) Resolution, 归结, (3)Resolution Proof, 归结反演, (3) Resolution Strategy, 归结策略, (3) Reasoning, 推理, (3)Reward Function, 奖励函数, (6) Robotics, 机器人学, (1)Rote Learning, 机械式学习, (5)SSchema Theorem, 模板定理, (6) Search, 搜索, (2)Selection, 选择, (7)Self-organizing Maps, 自组织特征映射, (4) Semantic Network, 语义网络, (3)Sexual Differentiation, 性别区分, (7) Shor’s algorithm, 绍尔算法, (11)Sigmoid Function, Sigmoid 函数(S型函数),(4)Signal Function, 信号函数, (3)Situated Artificial Intelligence, 现场式人工智能, (1)Spatial Light Modulator (SLM), 空间光调制器, (11)Speech Act Theory, 言语行为理论, (8) Stable State, 稳定状态, (4)Stability Analysis, 稳定性分析, (4)State Space, 状态空间, (2)State Transfer Function, 状态转移函数,(6)Substitution, 置换, (3)Stochastic Learning, 随机型学习, (4) Strong Artificial Intelligence (AI), 强人工智能, (1)Subsumption Architecture, 包容结构, (6) Superposition, 叠加, (11)Supervised Learning, 监督学习, (4), (5) Swarm Intelligence, 群智能, (8)Symbolic Artificial Intelligence (AI), 符号式人工智能(符号主义), (3) Synapse, 突触, (4)Synaptic Terminals, 突触末梢, (4) Synchronous Mode, 同步模式, (4)TThreshold, 阈值, (4)Threshold Function, 阈值函数, (4) Thymine, 胸腺嘧啶, (11)Topological Structure, 拓扑结构, (4)Top-Down, 自上而下, (4)Transfer Function, 转移函数, (4)Travel Salesman Problem, 旅行商问题, (4) Turing Test, 图灵测试, (1)UUncertain Reasoning, 不确定性推理, (3)Uncertainty, 不确定性, (3)Unification, 合一, (3)Universal Quantification, 全称量词, (4) Unsupervised Learning, 非监督学习, (4), (5)WWeak Artificial Intelligence (Weak AI), 弱人工智能, (1)Weight, 权值, (4)Widrow-Hoff Rule, 维德诺-霍夫规则, (4)。
自然灾害风险分析的信息矩阵方法

・2・
自 然 灾 害 学 报 15 卷
1 自然灾害风险分析的 4 个环节
自然灾害风险泛指自然灾害发生的时间 、 空间 、 强度的可能性 。例如我们说“ 一次大洪水 5h 后将会淹 没村庄 A ” ,时间是“5h后 ” ,空间是“ 村庄 A ” ,强度是“ 大洪水 ” ,可能性是“ 将会 ” 。严格地讲 ,自然灾害风险 的存在需要有 3 个条件 : ( 1 )必须存在灾源 ; ( 2 )必须有暴露于灾源影响范围之内的人员和财物 ; ( 3 ) 必须存 在伤亡和损失的可能性 。其中 ,灾源也称为致灾因子 ; 暴露物也称为承灾体 。自然灾害的风险水平取决于致 灾因子强度 、 承灾体脆弱性 、 伤亡和损失 。 自然灾害风险分析是对风险区遭受不同强度自然灾害的可能性及其可能造成的后果进行定量分析和评 估 。为此 ,首先必须确定致灾因子测度空间 、 场地致灾力测度空间 、 承灾体破坏测度空间 、 伤亡和损失测度空 间 。每个测度空间称为一个环节 。 在自然灾害风险分析中 ,测度空间也称为定义域 。为了使用模糊集表达方式 ,测度空间也称为论域 。如 果没有不同测度空间的混淆 , 用 U 代表论域 , 其元素变量记为 u。在需要有所区别时 , 用 M ( m agnitude, 量 级 )记致灾因子论域 , W (wave,波 )记场地致灾力论域 , D ( damage,破坏 )记承灾体破坏论域 , L ( loss,损失 ) 记 伤亡和损失论域 ,相应的元素变量分别记为 m , w, d, l。从致灾因子到损失是一个因果链 ,由图 1 所示 。尤其 值得注意的是 , L 是一个多维空间 , 元素 l有多个分量 。通常一个分量是死亡人数 ,一个分量是受伤人数 ,一 个分量是损失金额 。 在原因环节中 ,主要工作是估计致灾因子 m 发生的可能 性 P ( m ) 。全球地震危险性图 使用测量随机不确定性的概 率测度表达可能性 , 主要工作是用 Cornell早在 1968 就总结 [2] 出来的所谓 PSHA 方法 估计地震参数 m 发生的概率分布 Prob ( m ) 。如果概率分布不易估计 , 则可代之估计可能性 [3] 概率分布 Poss ( m , p) , 相应的风险称为模糊风险 。 中间环节 1 的主要工作 , 是识别灾害打击力 m 从灾源到 场地的衰减关系 w = f1 ( m , s) , 以便根据暴露的承灾体的环境 参数 s (包括距离在内 ) , 计算出该承灾体将面对的场地致灾 力 w。 中间环节 2 的主要工作 , 是识别致灾力 w 与承灾体破坏 程度 d 之间的“ 剂量 - 反应 ” 关系 d = f2 ( w , θ) , 以便根据承灾 体参数 θ(通常是一个向量 ) , 计算出该承灾体的破坏程度 d。 在结果环节中 , 主要工作是识别破坏程度 d 和损失程度 l 图 1 自然灾害风险分析的四个环节和相应的论域 之间的关系 l = f3 ( d, φ) , 以便根据社会性参数 φ (包括人口 Fig . 1 Four step s and universes for risk analysis 密度 、 承灾体价值等在内 ) , 计算出该承灾体将面对的损失 l。 of natural disaster 自然灾害风险分析的最后一部分工作 , 就是研究出某种 ) 和 f3 ( d, φ) , 模型 , 由致灾因子 m 发生的可能性 P ( m ) 和承灾体系统中的 3 个关系 w = f1 ( m , s) , d = f2 ( w ,θ 计算出承灾体 O 的损失 l发生的可能性 PO ( l) 。对于由 n 个承灾体 O 1 , O 2 , …, O n组成的区域 C 的自然灾害 风险分析 , 需进行一些合成运算 , 得出区域 C 的损失 lc发生的可能性 Pc ( lc ) 。 显然 ,自然灾害风险分析 ,主要涉及两类模式识别 : 致灾因子概率分布识别 ,承灾体系统输入 - 输出关系 识别 。由于概率分布和输入 - 输出关系在数学上均可用函数表达 ,所以 ,自然灾害风险分析涉及的两类模式 识别 ,均是函数关系的识别 。在只有有限观测数据的条件下 ,本文建议用一种新的统计方法去识别这些函数 关系 。我们称它为信息矩阵方法 ,它由构造信息矩阵 、 生成模糊关系矩阵和模糊近似推理 3 部分组成 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Inference in Fuzzy Models of Physical ProcessesBohdan S.Butkiewicz1Warsaw University of Technology,Institute of Electronic Systems,00-665Warsaw,Poland"B.Butkiewicz"bb@.pl.pl/~bb/index.htmlAbstract.General idea of the paper is comparison of different reasoningmethods,which may be used in some types of fuzzy models.Differenttriangular norms and defuzzification methods were used.It is shownthat many reasoning methods give similar results.However,many ofthem are not very reasonable.Some simple theorems about functionsapproximated by models are presented.Special attention is applied tomodeling of physical processes.Examples of models used in reality arepresented.Some of them are build as modifications of Takagi-Sugenomodel introduced earlier by author.1IntroductionThere are many classes of fuzzy models.One of possible classification was given by Pedrycz[10].He arranged model categories in order of an increased level of structural dependencies.The least structured category appearsfirst on the list –tabular representations–fuzzy grammars–fuzzy relational equations–fuzzy neural networks–rule based models–local regression models–fuzzy regression modelsIn the paper,analyze of this categories is performed from point of view of possi-ble applications in modeling of physical processes.Fuzzy grammar[9]models are used for describing time series and signal classifiers.Fuzzy relational equation models were largely studying by Pedrycz,Nola,Hirota,and some others mainly from theoretical point of view.It seems that these models are good for system identification.Tabular,rule based,and local regression models are studying in the paper.Most popular reasoning:Mamdani[8],Larsen[7],Tsukamoto[13], and Takagi-Sugeno[12]are considered.Special attention is applied to inference methods used during approximate reasoning to obtain good results.General-ized Mamdani and generalized Larsen reasoning are used with different triangu-lar norms and some other parison of results obtained for some models of physical processes are presented.B.Reusch(Ed.):Fuzzy Days2001,LNCS2206,pp.782–790,2001.c Springer-Verlag Berlin Heidelberg2001Inference in Fuzzy Models of Physical Processes 7832Description of Models 2.1Tabular ModelsTabular model has a form of a table,where basic relations between linguistic labels of inputs and outputs are presented.Relations describing dynamics of sin-gle input single output (SISO)system of first order may be presented as a single table.Rows and colons denote linguistic values of input and derivative of input.In the table are placed linguistic values of output.The model is very popular in fuzzy modeling and control.It may presents,for example,fuzzy controller of proportional-derivative (PD)type.Tabular model may be suitable for physical processes,especially when we have no much information about process behavior.Example,steam boiler may be described by quantity of supplied water and fuel,temperature and pressure inside of boiler and quantity of outgoing ing linguistic values small,medium,large,low,medium,high steady-state behavior of boiler may be described.But good description of dynamics requires knowledge about time constant and may be other parameters,so requires analytical description of process.Tabular model is suitable also for simple discrete systems.Some theoretical and practical results obtained in fuzzy control area [2][3],and examples presented in the paper show that general Mamdani reasoning,where operations minimum and maximum were replaced by different triangular t-norms and s-norms,is good for this type of model.Moreover,for different tri-angular norms the results are similar,so it is not very important what pair of norms is used during reasoning.Also the results are identical if rules are used in aggregated form or not.Consider now a simple example of a function y =f (x )with saturation describing by seven rulesR1:if x is P L then y is P LR2:if x is P M then y is P MR3:if x is P S then y is P SR4:if x is ZE then y is ZEand symmetrically for negative values.If Mamdani,Larsen,Tsukamoto or Takagi-Sugeno model is used then rule weights equals to membership value µ{.}(x )of x for respective set {.}.Height,areas,and gravity defuzzification methods are weighted means y =i y i w i i w i(1)Also Tsukamoto model use weighted mean.Suppose that membership func-tions µ{.}(x )have symmetrical triangular shape with trapezes at the end of universum [-10,10].Thus,membership is linear function µ{.}(x )=a i x +b i where a i ,b i are constant in some regions.If height defuzzification method is used then values y i are independent on weight w i ,except trapezes.So,y = y i (a i x +b i )/ (a i x +b i ).Similar situation is observed for Larsen model.The results are presented in the Fig.1.Generally,a theorem may be easy proofed.Theorem 1Suppose that membership functions are symmetric and described in different784 B.S.Butkiewiczregions by polynomials of n-th order.If Mamdani or Larsen models are used with height defuzzification method then models are described piecewise by ratio-nal functions y =a n x n +a n −1x n −1+...+a 0b n x n +b n −1x n −1+...+b 0(2)Now,consider Tsukamoto method.Let similarly µ{.}(x )=a i x +b i .FunctionsFig.1.Mamdani model with height defuzzification,logic (left),Yager (right)opera-tionsµ{.}(y )=c i |y |and values y i =µ{.}−1(w i )=w i /c i .So,y =[ (a i x +b i )2/c i ]/ (a i x +b i ).Generally,one obtains theorem.Fig.2.Mamdani (left)and Larsen (right)models with area defuzzification and logic operationsTheorem 2If membership functions are symmetric and described in different regions by poly-nomials of n-th order and Tsukamoto model is used then model is describedInference in Fuzzy Models of Physical Processes 785piecewise by rational functionsy =a n x 2n +a 2n −1x n −1+...+a 0b n x n +b n −1x n −1+...+b 0(3)Finally,consider Mamdani and Larsen models with areas and gravity methods.For symmetrical triangular shapes values y i are constant but areas S i depend on the weights w i in square S i =A (1−w i /2)w i .Thus,for areas method y = S i w i / S i = Ay i (a i x +b i )[1−(a i x +b i )2/2]/ A (a i x +bi )[1−(a i x +bi )2/2].General dependence is more complicated.An example is presented in the Fig.2.Two other examples of Mamdani and Tsukamoto models are shown in the parison of models with Mamdani,Larsen and TsukamotoFig.3.Mamdani model with gravity defuzzification (left)and Tsukamoto model (right)both with algebraic operationsreasoning with different triangular norms and defuzzification methods shows that choice of triangular norm has no big influence on the result,curves obtained are very similar.Grater influence has defuzzification method,especially when height method is compared with areas and gravity.Mamdani and Larsen models give similar results.Tsukamoto model is different.Some interesting results concerning equivalence of approximated reasoning using different interpretation of fuzzy if-then rules and aggregation problem are presented in [6].Sometimes one uses Wang model.It was proofed,(Wang theorem [14])that any continuous function may be exactly approximated by fuzzy tabular model with gaussian membership functions for input and consequences.Gaussian func-tions are not very convenient to use and may have nothing common with physical process behavior.If we have some knowledge about functional relations between process vari-ables it is better to use Takagi Sugeno model.786 B.S.Butkiewicz2.2Rule-based ModelsThis type of models is the most popular.This approach to modeling seems more general.The rules may contain heterogeneous form,and different statements Rules can be graduated by word quantifiplex analyze is impossible,because of possible system and rules diversity.It seems that rule based models are good for situations where non numerical values are expected as decision or model output,example possibility that output take some linguistic value.It may describe some sociological,medical and other decision problems.An example of model supporting human decision for personnel selection in tourist agency is presented below.Suppose that chief of agency looks for a can-didate,which can work as a guide.The candidate ought to:–known at least two languages among English,French,German,Spain in very high level–known history and geography of a region in high level–know-how to use telefax,xserox,computer–have pleasant sight at least in satisfactory level–be responsible and patient in high level–be able to resolve unexpected problems at least in medium level–................Let the candidate fulfill each feature with some level.For example he has a note from an exam or something like this.There are several candidates.Who is the best?Any numerical value of the candidate feature can be treated as fuzzy number with membership µC (x ).Any requirement can be described by fuzzy set with membership µR (x ).Overlapping membership functions it is possible to find level l =max {min [µC (x ),µR (x )]}of feature satisfaction.Finding weighted sum w i l i ,where w i are weight of i −th feature choused before,it is possible to find the best candidate.Other good solution is put l =max [µC (x )µR (x )].2.3Local Regression ModelsThis models are the best if we have some,may be not exact,mathematical de-scription for physical process.However,the model can be used also without this knowledge.Takagi-Sugeno model may be considered under some conditions [15]as universal approximator.Very popular is Takagi-Sugeno-Kang model (TSK)[11]use linear functions as local approximations.Author experience shown that using other than linear functions,example polynomials of second order,with-out real knowledge of local system behavior,not gives better approximation.Contrary,the results can be considered as bad,i.e.not justified by any reason.Modification of TSK modelThe TSK model may describe sufficiently well any continuouse function y =f (x 1,x 2,...,x n ).However,the model has one very important inconvenience.Sup-pose that model describe a function y =f (x )and is composed with two rules if x is Small then y =a 1x +b 1Inference in Fuzzy Models of Physical Processes787 if x is Large then y=a2x+b2If conventional triangular or trapezoidal functions are use for membership func-tions of fuzzy sets of x,here for Large and Small,see Fig.4(left),then non expected effect arise,see Fig.4(right)and5,and[1].In intermediate region parabolic distortion appears.Thus,the model is worth than conventional crisp model with two linear functions and two separated regions.Of course,it is pos-Fig.4.Membership functions for x(left),TSK model and chord(right)sible use conventional spline convolution model for better approximation,but it is complicated.Author proposed in[4]some simple modification of TSK model which can avoid inconvenience of TSK model.Suppose that we have some exper-imental data forming two straight lines with different slopes and an intermediate region.TSK model gives function g(x).Two lines in separate regions may be joined directly in intermediate region by chord line c(x),but this solution is not very good.However,is is possiblefind better solution.In intermediate region the weighted meanu(x)=g(x)+λc(x)1+λ(4)can be taken as model value,whereλis a constant choosed experimentally for good approximation of the data.The result is shown in the Fig.5.The data represent strange effect of optical property relaxation observed in chalkogenide viteouse semiconductor glasses after gamma irradiation[5].Very interesting property of Takagi-Sugeno model is possibility of knowledge discovering.If mathematical description of some phenomena is known,building this model for unknown process we may verify what phenomena are observed in this process.Presented example shown that two effects are discovered using model built for relaxation process of optical properties in chalcogenides.After gamma irradiation along the time T elapse transparency of semiconductor glass changes in accordance with two different lows.Membership functions of the model give appropriate regions for the lows.2.4Fuzzy Regression ModelsSometimes it is not possible to introduce in the model all variables,which have influence on physical process.Simply,these variables are not measured or are not788 B.S.ButkiewiczFig.5.TSK model without modification(left)and after modification(right) possible to measure.However,the model must take often in consideration influ-ence of these variables.An example of such situation may be sintering process.It depends on actual total mass of details in the furnace,ambient temperature not possible to preview many days before etc.Reasonable solution is to build fuzzy regression model where conclusion is a fuzzy number or fuzzy function or/and to build fuzzy-probability model where conclusion is random variable or function. In this way additional uncertainty may be introduced.Numerical considerations concerning inference method are limited to an ex-ample of model of sintering process.Different components,as Cu,MnS,C (graphite),StZn are added to iron powder.Exact description of physical and chemical changes during sintering is unknown,because of their complexity.Thus, mathematical model can not be built.Main task of model was preview geomet-rical changes of detail dimensions after sintering process,taking in consideration proportion of powder components,temperature in sintering zone of the furnace, velocity of tape transporting details in the furnace,and initial density of pressed powder.It was impossible to gathered data in special way.Production process can not be interrupted.However,some specimens with different components were prepared and put in the furnace together with produced details.Thus,some data for the model were very difficult to compare,and results were sometimes dis-crepant.First,rule-based model was built.Mamdani and Larsen methods are compared.After,modified Takagi Sugeno model is proposed and accepted.The rules have formif Cu is S and C is S then∆h=f1(Cu,C,σ1)if Cu is S and C is M then∆h=f2(Cu,C,σ2) ...................................if StZn is S then∆h=f10(StZn,σ10) ...................................if T emp is L and T ime is L then∆h=f17(T emp,T ime,σ17)where∆h describes changes of any parameter,example the height of detail,vari-ables Cu,C,StZn,...contents of the powder components,and variables T emp, T ime the temperature and time in sintering zone of the furnace.VariablesσiInference in Fuzzy Models of Physical Processes789 have a special task.Functions f i are fuzzy functions.Its values are fuzzy num-bers with trapezoidal shapes of membership functions.Valueσi desribe width of trapezes,so it describe uncertainty.It is approximate model of the process. Any rule may be considered as multidimensional cloud with different density. Example of this fuzzy surface is presented in the Fig.6.Fig.6.Example of fuzzy surface for rule1.Stars represent center value of fuzzy num-bers,points minimal and maximal values3ConclusionPhysical processes may be modeled in two ways depending on knowledge of mathematical relations between process variables.Without any knowledge,rule-based fuzzy Mamdani and Larsen models or Takagi-Sugeno-Kang fuzzy regres-sion model with linear functions can be build.In many types of models Mamdani reasoning with logic operation(minimum and maximum)is used.Author expe-rience shows that also other triangular norms,ex.algebraic operations,can be used with success.However,many operations give similar results.In the paper only a few examples are presented,but author have tried many other triangular rsen reasoning is underestimated.It gives also good results and often is easier in numerical applications then Mamdani.If we have some knowledge in the form of functional dependencies for relations between variables,we may use these functions as conclusions in some rules in Takagi-Sugeno fuzzy regres-sion model.Theoretically it is the best solution in this case,but practically it is difficult tofind the best shape of membership functions,so estimation of model parameters is complicated.If standard triangular or trapezoidal shape for mem-bership functions is used then strange effect arises in intermediate regions,shown as example presented in the paper.Therefore,author proposed new solution for Takagi-Sugeno model.In intermediate region weighted mean of standard model and chord joining ends of intermediate region is introduced.790 B.S.ButkiewiczReferences1.Babuska R.:Fuzzy Modeling for Control,Kluwer Academic Publisher(1998).2.Butkiewicz B.S.:Steady-State Error of a System with Fuzzy Controller,IEEETransactions on System,Man,and Cybernetics,Part B:Cybernetics,Vol.28,No.6, (1998)855–860.3.Butkiewicz B.S.:About Robustness of Fuzzy Logic PD and PID Controller un-der Changes of Reasoning Methods,European Symp.on Intelligent Techniques, Aachen,Germany(2000)350–356.4.Butkiewicz B.S.:Fuzzy Reasoning Methods,its Properties and Applications(inpolish),accepted for Prace Naukowe Politechniki Warszawskiej,Elektronika.5.Butkiewicz B.S.,Golovchak R.,Kovalskiy A.,Shpotyuk O.,and Vakiv M.:Onthe Problem of Relaxation for Radiation-Induced Optical Effects in Some Ternary Chalcogenide Glasses,Radiation Effects and Deffects in Solids,(2000).6.Czogala E.,Leski J.,On Equivalence of Approximate Reasoning Results UsingDifferent Interpretations of Fuzzy if-then Rules,Fuzzy Sets and Systems,Vol.117, (2001)279–296.rsen P.M.:Industrial application of fuzzy logic control,Int.J.Man MachineStudies,Vol.12,No.1(1980)3–10.8.Mamdani E.H.:Application of fuzzy algorithm for control of simple dynamic plant,Proc.IEE,Vol.121,No.12(1974)158—1588.9.Mizumoto M.,Toyoda J.,Tanaka K.:General formulation of formal grammars,Information Science,Vol.4(1972)87–100.10.Pedrycz W.:Fuzzy Models:Methodology,Design,Applications and Challenges,inPerdycz W.(ed.)Fuzzy Modelling Paradigms end Practice,Kluwer Acad.Publ.pp3-22,1996.11.Sugeno M.,Kang G.T.:Structure Identification of Fuzzy Model,Fuzzy sets andSystems,Vol.28(1988)15–33.12.Takagi T.,Sugeno M.:Fuzzy Identification of Systems and its Application to Mod-eling and Control,IEEE Trans.on Systems,Man,and Cybernetics,Vol.15(1985) 116-132.13.Tsukamoto Y.:An approach to fuzzy reasoning method,in Fuzzy Set Theory andApplications,Gupta M.M.,Ragade R.K.,Yager R.R.,(eds.),Amsterdam,North-Holland(1979).14.Wang X.L.:Fuzzy Systems are Universal Approximators,Proc.IEEE Int.Conf.on Fuzzy Systems,San Diego,CA(1992)1163–1169.15.Ying H.,Ding Y.,Li S.,Shao S.:Comparison of Necessary Conditions for TypicalTakagi-Sugeno and Mamdani Fuzzy System as Universal Approximators,IEEE Trans.on Systems,Man,and Cybernetics-Part A,Vol.29,No.5(1999)508–514.。