应用回归分析-第2章课后习题参考答案
《应用回归分析》课后题答案解析

《应用回归分析》部分课后习题答案第一章回归分析概述变量间统计关系和函数关系的区别是什么答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。
回归分析与相关分析的联系与区别是什么:答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。
在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x 与变量y的密切程度是一回事。
b.相关分析中所涉及的变量y与变量x全是随机变量。
而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。
回归模型中随机误差项ε的意义是什么答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
线性回归模型的基本假设是什么答:线性回归模型的基本假设有:1.解释变量….xp是非随机的,观测值…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.回归变量的设置理论根据是什么在回归变量设置时应注意哪些问题"答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。
应用回归分析第四版课后答案

假设 3、随机误差项ε与解释变量 X 之间不相关:
Cov(Xi, εi)=0
i=1,2, …,n
假设 4、ε服从零均值、同方差、零协方差的正态分布
εi~N(0, 2 )
i=1,2, …,n
2.3 证明(2.27 式),ei =0 ,eiXi=0 。
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i ))2
方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。其中每个平 方项的权数相同,是普通最小二乘回归参数估计方法。在误差项等方差不相关的 条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。然而在异方差 的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差 平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方 差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。由 OLS
X 2n
X kn
量的观测值矩阵; β(k 1)1
0 1
2
k
为总体回归参数向量;
μ
n1
1 2 n
为随机误差项向量。
多元回归线性模型基本假定:课本 P57
第四章
4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与
法。
答:运用加权最小二乘法消除多元线性回归中异方差性的思想与一元线性回
归的类似。多元线性回归加权最小二乘法是在平方和中加入一个适当的权数 wi ,
以调整各项在平方和中的作用,加权最小二乘的离差平方和为:
《应用回归分析》课后题答案

《使用回归分析》部分课后习题答案第一章回归分析概述1.1变量间统计关系和函数关系的区别是什么?答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。
1.2回归分析和相关分析的联系和区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有 a.在回归分析中,变量y 称为因变量,处在被解释的特殊地位。
在相关分析中,变量x 和变量 y 处于平等的地位,即研究变量 y 和变量 x 的密切程度和研究变量 x 和变量 y 的密切程度是一回事。
b. 相关分析中所涉及的变量 y 和变量 x 全是随机变量。
而在回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制。
1.3回归模型中随机误差项ε的意义是什么?答:ε 为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究 y 和 x1,x2 ⋯..xp 的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4线性回归模型的基本假设是什么?答:线性回归模型的基本假设有: 1. 解释变量 x1.x2 ⋯.xp 是非随机的,观测值xi1.xi2 ⋯..xip 是常数。
2. 等方差及不相关的假定条件为 {E( εi)=0 i=1,2 ⋯. Cov(εi,εj)= {σ^23.正态分布的假定条件为相互独立。
4. 样本容量的个数要多于解释变量的个数,即 n>p.1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题?答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。
应用回归分析第四版课后习题答案-全-何晓群-刘文卿

实用回归分析第四版 第一章 回归分析概述1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y 与x1,x2…..xp 的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp 是非随机的,观测值xi1.xi2…..xip 是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。
证明:其中:∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ01ˆˆˆˆi i i i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。
应用回归分析第四版课后习题答案_全_何晓群_刘文卿

1 n
1 (Lxxnx)Co( yi ,n
2
n
i1
(xi
Lxx
n
i1
x)2
的无偏估计量
E(ei2 )
(xi x )2 ] 2 Lxx
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
应用回归分析第四版课后习题答案全何晓群刘文卿

实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。
证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:01ˆˆˆˆi i i i iY X e Y Yββ=+=-0100ˆˆQ Qββ∂∂==∂∂即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。
证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xx i n i iY L X X X Y n E X Y E E ββ )] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==1010)()1(])1([βεβεβ=--+=--+=∑∑==i xx i ni i xx i ni E L X X X nL X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xx i ni i xx i ni X Var L X X X nY L X X X n Var Var εβββ++--=--=∑∑== 222212]1[])(2)1[(σσxxxx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 证明:(1)())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSESSR )Y ˆY Y Y ˆn1i 2ii n1i 2i +=-+-=∑∑==ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明2ˆ22-=∑neiσ是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章1.一个回归方程的复相关系数R=0.99,样本决定系数R2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。
《应用回归分析》课后习题答案

答:选择模型的数学形式的主要依据是经济行为理论,根据变量的样本数据作出解释变量与被解释变量之间关系的散点图,并将由散点图显示的变量间的函数关系作为理论模型的数学形式。对同一问题我们可以采用不同的形式进行计算机模拟,对不同的模拟结果,选择较好的一个作为理论模型。
df
均方
F
显著性
组间
(组合)
1231497.500
7
175928.214
5.302
.168
线性项
加权的
1168713.036
1
1168713.036
35.222
.027
偏差
62784.464
6
10464.077
.315
.885
组内
66362.500
2
33181.250
总数
1297860.000
9
由于 ,拒绝 ,说明回归方程显著,x与y有显著的线性关系。
.212
.586
1.708
a.因变量: y
(6)可以看到P值最大的是x3为0.284,所以x3的回归系数没有通过显著检验,应去除。
去除x3后作F检验,得:
Anovab
模型
平方和
df
均方
F
Sig.
1
回归
12893.199
2
6446.600
11.117
.007a
残差
4059.3.500
.724
.433
.212
.586
1.708
a.因变量: y
(2)
所以三元线性回归方程为
模型汇总
模型
R
应用回归分析第四版课后习题答案-全-何晓群-刘文卿精选全文完整版

可编辑修改精选全文完整版实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。
证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。
证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xxi ni i Y L X X X Y n E X Y E E ββ)] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==01010)()1(])1([βεβεβ=--+=--+=∑∑==i xxi ni i xx i ni E L X X X n L X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xxi ni i xx i n i X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑==222212]1[])(2)1[(σσxx xx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 证明:(1)01ˆˆˆˆi i i i iY X e Y Y ββ=+=-())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSE SSR )Y ˆY Y Y ˆn1i 2i i n1i 2i+=-+-=∑∑==0100ˆˆQQββ∂∂==∂∂ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章1.一个回归方程的复相关系数R=0.99,样本决定系数R2=0.9801,我们能2ˆ22-=∑neiσ判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 一元线性回归模型有哪些基本假定?答:1. 解释变量 1x ,Λ,2x ,p x 是非随机变量,观测值,1i x ,,2Λi x ip x 是常数。
2. 等方差及不相关的假定条件为⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧≠=====j i n j i j i n i E j i i ,0),,2,1,(,),cov(,,2,1,0)(2ΛΛσεεε 这个条件称为高斯-马尔柯夫(Gauss-Markov)条件,简称G-M 条件。
在此条件下,便可以得到关于回归系数的最小二乘估计及误差项方差2σ估计的一些重要性质,如回归系数的最小二乘估计是回归系数的最小方差线性无偏估计等。
3. 正态分布的假定条件为⎩⎨⎧=相互独立n i n i N εεεσε,,,,,2,1),,0(~212ΛΛ 在此条件下便可得到关于回归系数的最小二乘估计及2σ估计的进一步结果,如它们分别是回归系数的最及2σ的最小方差无偏估计等,并且可以作回归的显著性检验及区间估计。
4. 通常为了便于数学上的处理,还要求,p n >及样本容量的个数要多于解释变量的个数。
在整个回归分析中,线性回归的统计模型最为重要。
一方面是因为线性回归的应用最广泛;另一方面是只有在回归模型为线性的假设下,才能的到比较深入和一般的结果;再就是有许多非线性的回归模型可以通过适当的转化变为线性回归问题进行处理。
因此,线性回归模型的理论和应用是本书研究的重点。
1. 如何根据样本),,2,1)(;,,,(21n i y x x x i ip i i ΛΛ=求出p ββββ,,,,210Λ及方差2σ的估计;2. 对回归方程及回归系数的种种假设进行检验;3. 如何根据回归方程进行预测和控制,以及如何进行实际问题的结构分析。
2.2 考虑过原点的线性回归模型 n i x y i i i ,,2,1,1Λ=+=εβ误差n εεε,,,21Λ仍满足基本假定。
求1β的最小二乘估计。
答:∑∑==-=-=n i ni i i i x y y E y Q 1121121)())(()(ββ∑∑∑===+-=--=∂∂n i n i ni i i i i i i x y x x x y Q111211122)(2βββ令,01=∂∂βQ即∑∑===-n i ni i i i x y x 11210β 解得,ˆ1211∑∑===ni ini i i xyx β即1ˆβ的最小二乘估计为.ˆ1211∑∑===ni ini ii xyx β2.3 证明: Q (β0,β1)= ∑(y i-β0-β1x i)2因为Q (∧β0,∧β1)=min Q (β0,β1 )而Q (β0,β1) 非负且在R 2上可导,当Q 取得最小值时,有即-2∑(y i-∧β0-∧β1x i )=0 -2∑(y i-∧β0-∧β1x i ) x i=0又∵e i =yi -( ∧β0+∧β1x i )= yi -∧β0-∧β1x i ∴∑e i =0,∑e i x i =0(即残差的期望为0,残差以变量x 的加权平均值为零)2.4 解:参数β0,β1的最小二乘估计与最大似然估计在εi~N(0, 2 ) i=1,2,……n 的条件下等价。
证明:因为ni N i ,.....2,1),,0(~2=σε所以),(~2110110σββεββX X Y N i i +++=其最大似然函数为已知使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。
即使得下式最小 :∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ ①因为①恰好就是最小二乘估计的目标函数相同。
所以,在ni N i ,.....2,1),,0(~2=σε 的条件下, 参数β0,β1的最小二乘估计与最大似然估计等价。
100ˆˆQQββ∂∂==∂∂2.5.证明0β)是0β的无偏估计。
证明:若要证明0β)是0β的无偏估计,则只需证明E(0β))=0β。
因为0β),1β)的最小二乘估计为⎪⎩⎪⎨⎧-==x y L L xxxy 101/βββ)))其中∑∑∑∑∑∑∑∑∑-=-=-=-=-=--=22222)(1)(1))((i i i i xx i i i i i i i i xy x nx x n x x x L y x ny x y x n y x y y x x LE(0ˆβ)=E(x y 1ˆβ-)=E(∑∑==--n i i xx i n i i y L x x x y n 111)=E[∑=--ni i xx i y L x x x n 1)1(]=E[∑=++--ni i i xx i x L x x x n110))(1(εββ]=E(∑=--ni xx i L x x x n 10)1(β)+E(∑=--n i ixx i x L x x x n 11)1(β)+E(∑=--ni i xxi L x x x n 1)1(ε)其中∑=--ni xx i L x x x n 10)1(β=∑=--ni xx i L x x x n 10)1(β=))(1(10∑=--ni ixx x xL x n n β由于∑=-ni i x x 1)(=0,所以∑=--ni xxi L x x x n 10)1(β=0β∑=--ni i xx i x L x x x n 11)1(β=∑=--ni ixx i i x L x x x n x 11)(β=))((11∑=--ni i ixx x x xL x x β=)-)(((11∑=--ni i ixxx x x xL xx β)=)(1x x -β=0又因为一元线性回归模型为⎩⎨⎧++=),0(210σεεββN x y ii i i 独立同分布,其分布为各所以E(iε)=0所以E(∑=--ni xx i L x x x n 10)1(β)+E(∑=--n i i xx i x L x x x n 11)1(β)+E(∑=--ni i xx i L x x x n 1)1(ε=++)0()(0E E β ∑=--ni i xxi E L x x x n 1)()1(ε=0β所以0β)是0β的无偏估计。
2.6 解:因为∑==ni i yn y 11 ①,xy ∧∧-=ββ10 ②,yLx in i xxix∑=∧-=11β③联立 ①②③式,得到y L x ini xx ix x n ∑=∧--=10)1(β。
])1([)(10y Lx ini xxi x xnVar Var ∑=∧--=β)(1])1[(2y L x x x n i Var ni xx i ∑--==σ2122]2(1[)∑-=--+=ni xxinL x L x x x n x x xx i因为∑-==ni xxx x Li 12)(,)(1=-∑=ni ix x ,所以σβ21212212])(21[)()()(nLx L x x x nxxni in i ni x x xxi Var ∑∑-∑===∧-++=σ22)(1⎪⎪⎪⎭⎫ ⎝⎛+=L x xxn σ2122)()(1⎪⎪⎪⎪⎭⎫ ⎝⎛+=∑-=ni x x x i n2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证:(1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ()()∑∑==-+-=-=ni i i n i i y i y yy y y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni i i n i i i i n i i y y y y y y y y12112)ˆˆ)(ˆ2ˆ()()SSE SSR y y y yni i i n i i +=-+-=∑∑==1212)ˆˆ证明:(1)因为2-n 22SSESSR L xx =∧∧=σβ和,所以SSTSSE SST SSRn SSESSR n n SSE t LLxxxx)()(22222-=-=-∧=∧=∧βσβ又因为SST SSR r=2,所以SST SSE SST SSR SST r =-=-21故21)2(r r n t --=得证。
(2)22222011111111ˆˆˆˆˆˆ()()(())(())nnnni i ii xx i i i i SSR y y x y y x x y x x L βββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xx L SSR F t SSE n βσ∴===-g2.9 验证(2.63)式:()σ2xx2i Lx -x e i-n 1-1var ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=)( 证明:),()()()()(∧∧∧+==y y y y y y eiiiiiii cov 2-var var -var var ))x -y cov 2var var x y x y i1ii1i(,()()(∧∧∧+-++=βββ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++=--L x x L xx i n )()(22xx 22212in 1x x σσσ()σ2xx2x -x in 11⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=L其中: ()⎪⎪⎭⎫ ⎝⎛-∧+x y cov x y i 1i β,()()⎪⎪⎭⎫⎝⎛∧+=x -cov y cov x y y i 1i i β,,()()⎪⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛=∑∑==n 1i i xxii i n 1i i i y x y x y y x -cov x -n 1cov L,, ()σσ222n1Lx x xxi-+=()σ22n 1⎪⎪⎪⎭⎫ ⎝⎛+=-Lx x xxi注:各个因变量yy y n (2)1,是独立的随机变量),cov()var()var()var(Y X Y X Y X 2++=+2.10 用第9题证明2-n ie 22∑=∧σ是σ2的无偏估计量证明:()∑-=∧∧=⎪⎪⎭⎫ ⎝⎛n 1i 22y y ii2-n 1E E σ∑=⎪⎭⎫⎝⎛=n 1i 2e i 2-n 1E ()∑==ni i e 12-n 1var ()σ2n1i xx2Lx -x i-n1-12-n 1∑=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=()σ222-n 1-=n σ2= 注:[])()()var(X E X E X 22+=2.11验证22-+=n F Fr证明:)2(*)2(-⎪⎭⎫ ⎝⎛=-=n SSE SSR n SSESSR F 所以有F n SSR SSE )2(-=()2)2(11112-+=⎪⎭⎫ ⎝⎛-+=+=+==n F FF n SSR SSESSE SSR SSR SST SSR r以上表达式说明r ²与F 等价,但我们要分别引入这两个统计量,而不是只引入其中一个。