2020届江苏省南通中学高三上学期第二次调研测试数学试题.
2020届江苏省南通市通州区高三第二次调研抽测数学试题(解析版)

2020届江苏省南通市通州区高三第二次调研抽测数学试题一、填空题1.己知复数z 满足(12)34z i i +=+ (i 为虚数单位),则z =__________【解析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【详解】解:由(12)34z i i +=+,得34(34)(12)11212(12)(12)55i i i z i i i i ++-===-++-,z ∴=【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.己知集合{1A =,2a ,4},{2B a =,0},若A B ⋂≠∅,则实数a 的值为_______.【答案】12【解析】根据题意对2a 的值分情况讨论,分别检验是否符合题意,即可求出a 的值. 【详解】解:A B ⋂≠∅Q ,且元素之间互异,0a ∴≠,①当21a =时:12a =,此时集合{1A =,14,4},集合{1B =,0},符合题意, ②当24a =时:2a =,此时集合{1A =,4,4},集合{4B =,0},不符合元素的互异性,故舍去,③当22a a =时:0a =或2,此时不符合元素的互异性,故舍去, 综上所求:12a =, 故答案为12.【点睛】本题主要考查了集合的基本运算,做题时注意集合元素的互异性,是基础题.3.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______.【答案】85【解析】写出茎叶图对应的所有的数,去掉最高分,最低分,再求平均分.【详解】解:所有的数为:77,78,82,84,84,86,88,93,94,共9个数,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7个数,平均分为78828484868893857++++++=,故答案为85.【点睛】本题考查茎叶图及平均数的计算,属于基础题.4.执行如图所示的伪代码,则输出的结果为.【答案】11【解析】试题分析:I=1,1<7成立,S=3,I=3;3<7成立,S=7,I=5;5<7,S=11,I=7;7<7不成立,输出11;【考点】1.程序框图;2.循环结构;5.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_________.【答案】1 36.函数2()lg1f xx=-_____________.【答案】1|05x x ⎧⎫<≤⎨⎬⎩⎭7.已知双曲线221412x y -=的右准线与渐近线的交点在抛物线22y px =上,则实数p 的值为___________. 【答案】328.已知高为3 的圆柱内接于一个直径为5的球内,则该圆柱的体积为_______. 【答案】12π【解析】画出图形,求出圆柱的底面半径,然后求解体积. 【详解】解:高为3的圆柱内接于一个直径为5的球内,如图: 可得222253()()()2222h r R =-=-=,则该圆柱的体积为:22312ππ⨯⨯=. 故答案为12π.【点睛】本题考查球的内接体,圆柱的体积的求法,考查空间想象能力以及计算能力.考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 9.已知等比数列{}n a 的各项均为正数,若32a =,则152a a +的最小值为_____. 【答案】210.在平面直角坐标系xOy 中,已知圆22:(1)1C x y +-=,圆22:(23)6C x y '++=.直线:3l y kx =+与圆C 相切,且与圆C '相交于A ,B 两点,则弦AB 的长为_________ 15【解析】利用直线与圆相切求出斜率k ,得到直线的方程,几何法求出||AB 【详解】解:直线:3l y kx =+与圆C 相切,C 圆心为(0,1)1=,得k =当3y =+时,C '到直线的距离92d ==,不成立,当3y =+时,l 与圆C '相交于A ,B 两点,C '到直线的距离32d ==,||AB ==【点睛】考查直线与圆的位置关系,相切和相交问题,属于中档题.11.己知函数||()(21)x f x x =-,若关于x 的不等式2(22)(3)0f x x a f ax --+-„对任意的[]1,3x ∈恒成立,则实数a 的取值范围是______. 【答案】[]4,0-12.在ABC ∆中,已知a ,b ,c 分别是角A ,B ,C 的对边.若a ,b ,c 成等比数列,且22()()3b c b c a ac +-=-,则11tan tan A C+的值为____________【解析】运用等比数列的中项性质和正弦定理、余弦定理,结合同角的商数关系、平方关系,两角和的正弦公式,化简可得所求值. 【详解】解:a ,b ,c 成等比数列,可得2b ac =,由正弦定理可得2sin sin sin B A C =, 22()()3b c b c a ac +-=-,即为22223c a b ac +-=,可得2221cos 23c a b B ac +-==,故B 为锐角,sin 3B ==则211cos cos sin cos cos sin sin()sin 1tan tan sin sin sin sin sin sin sin 4A C C A C A A CB AC A C A C A C sin B B +++=+=====.故答案为4. 13.如图,己知半圆O 的直径8AB =,点P 是弦AC (包含端点A ,C )上的动点,点Q 在弧»BC上.若OAC ∆是等边三角形,且满足0OQ OP =u u u r u u u r g ,则OP BQ u u u r u u u rg 的最小值为___________.【答案】8【解析】建系,设AP m =,表示出P 点坐标,则()162OP BQ OP OQ OB OP OB m =-=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r g g g ,根据m 的范围得出答案.【详解】解:以O 为原点建立平面坐标系如图所示:则(4,0)A -,(4,0)B ,(2C -,23), 设(04)AP m m =剟,则1(42P m -,3)m , ∴1(42OP m =-u u u r ,3)m ,(4,0)OB =u u u r ,Q 0OQ OP =u u u r u u u rg ,∴()162OP BQ OP OQ OB OP OB m =-=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g ,显然当m 取得最大值4时,OP BQ u u u r u u u rg 取得最小值8. 故答案为8.14.已知函数2()(,f x x ax b a b R =++∈)在区间(]0,1上有零点0x ,则0011()493x ab x +-的最大值是________. 【答案】1144【解析】由00f x =()得200b x ax =--, 23220000000[]?44x x ab ax a x x a x a x ∴=--=--≤=().(当且仅当a =-x 0-a 即x 0=-2a 时取等号)432000001114934439x x x x ab x ∴+-≤-+()(),令4320000439x x x g x =-+(),则320000000212)(933x g x x x x x x '=-+=--()(), ∴g (x 0)在(0,13)上单调递增,在(13,23)上单调递减,在(23,1)上单调递增,又g (13)=1324,g (1)=14-13+19=136,∴g (x 0)的最大值为136.0011493x ab x ⎛⎫∴+- ⎪⎝⎭的最大值为14×136=1144.二、解答题15.如图,在平面直角坐标系xOy 中,A 为单位圆与x 轴正半轴的交点,P 为单位圆上一点,且AOP α∠=,将点P 沿单位圆按逆时针方向旋转角β后到点Q (a , b ), 其中β∈2,63ππ⎡⎤⎢⎥⎣⎦(1)若点P 的坐标为34,55⎛⎫⎪⎝⎭,4πβ=时,求ab 的值; (2)若6πα=,求b 2 -a 2的取值范围.【答案】(1)750ab =-;(2)221,12b a ⎡⎤-∈-⎢⎥⎣⎦【解析】(1)由题意利用任意角的三角函数的定义,可得3cos 5α=,4sin 5α=,且cos()4a πα=+,sin()4b πα=+,再利用二倍角公式求得ab 的值.(2)由题意可得cos()6a πβ=+,sin()6b πβ=+,可得22b a -的解析式,再利用余弦函数的定义域和值域求得22b a -的范围. 【详解】(1) cos ,sin 44a b ππαα⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,所以11cos sin sin 2cos 244222ab πππαααα⎛⎫⎛⎫⎛⎫=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 因为3cos 5α=,所以()2117cos 22cos 12250ab αα==-=- (2) cos ,sin 66a b ππββ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 所以2222sin cos cos 2663b a πππβββ⎛⎫⎛⎫⎛⎫-=+-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为2,63ππβ⎡⎤∈⎢⎥⎣⎦,所以252,333πππβ⎡⎤+∈⎢⎥⎣⎦:所以1cos 21,32πβ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以221,12b a ⎡⎤-∈-⎢⎥⎣⎦16.如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,且PA =AD ,E , F 分别是棱AB , PC 的中点.求证:(1) EF //平面PAD ; (2)平面PCE ⊥平面PCD .【答案】(1)见解析;(2)见解析【解析】(1)取PD 的中点G 构造平行四边形AEFG ,得到//EF AG ,从而证出//EF 平面PAD ;(2)先证EF ⊥平面PCD ,再利用面面垂直的判定定理得到平面PCD ⊥平面PCE . 【详解】证明:(1)如图,取PD 的中点G ,连接AG ,FG ,E Q 是棱AB 的中点,底面ABCD 是矩形, //AE CD ∴,且12AE CD =,又F Q ,G 分别是棱PC ,PD 的中点,//FG CD ∴,且12FG AC =, //AE FG ∴,且AE FG =, ∴四边形AEFG 为平行四边形,//EF AG ∴,又EF ⊂/Q 平面PAD ,AG ⊂平面PAD ,//EF ∴平面PAD ;(2)PA AD =Q ,点G 是棱PD 的中点,AG PD ∴⊥,又//EF AG Q ,EF PD ∴⊥,PA ⊥Q 平面ABCD ,CD ⊂平面ABCD , PA CD ∴⊥,Q 底面ABCD 是矩形,AD CD ∴⊥,PA ⊂Q 平面ABCD ,AD ⊂平面ABCD ,且PA AD A =I ,CD \^平面PAD ,又AG ⊂Q 平面PAD ,CD AG ∴⊥, //FE AG Q ,CD EF ∴⊥,又CD ⊂Q 平面PCD ,PD ⊂平面PCD ,且CD PD D =I ,EF ∴⊥平面PCD ,又EF ⊂Q 平面PCE ,∴平面PCD ⊥平面PCE .17.中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.已知某条高铁线路通车后,发车时间间隔t (单位:分钟)满足*525,t t N ≤≤∈,经测算,高铁的载客量与发车时间间隔t 相关:当2025t ≤≤时高铁为满载状态,载客量为1000人;当520t?时,载客量会在满载基础上减少,减少的人数与()220t -成正比,且发车时间间隔为5分钟时的载客量为100人.记发车间隔为t 分钟时,高铁载客量为()P t .()1求()P t 的表达式;()2若该线路发车时间间隔为t 分钟时的净收益()()24065020004t Q t P t t t =-+-(元),当发车时间间隔为多少时,单位时间的净收益()Q t t最大? 【答案】(1)2**10004(20),520,,()1000,2025,t t t N P t t t N ⎧--≤<∈=⎨≤≤∈⎩(2)发车时间间隔为10分钟时,()Q t t最大 【解析】(1)分520t?和2025t ≤<两段求函数()P t 的解析式,当520t?时,2()1000(20)P t k t =--,当5t =时,()100P t =,求k ;(2)根据(1)的结果,分段求函数()Q t ,利用导数求函数的最大值. 【详解】 解:(1)当520t ?时,不妨设2()1000(20)P t k t =--,因为(5)100P =,所以解得4k =.因此2**10004(20),520,,()1000,2025,t t t N P t t t N ⎧--≤<∈=⎨≤≤∈⎩.(2)①当520t ?时,23()()40650200050020004tQ t P t t t t t =-+-=-+- 因此2()2000()500Q t y t t t t==--+,520t?.因为()y t ¢=32220002(1000)2t t t t---+=,当510t ?时,()0y t ¢>,()y t 单增;当1020t <<时,()0y t ¢<,()y t 单减.所以max ()(10)200y t y ==. ②当2025t ≤≤时,2()409002000Q t t t =-+- 因此()50()90040()Q t y t t t t==-+,2025t ≤≤. 因为()y t ¢=2240(50)0t t--<,此时()y t 单减.所以max ()(20)0y t y ==, 综上,发车时间间隔为10分钟时,()Q t t最大. 【点睛】本题考查了分段函数求解析式,以及利用导数解实际问题的最值,本题的关键是正确表达()P t 和()Q t .18.在平面直角坐标系中,已知椭圆C :22221x y a b+= (a>b>0)的离心率为12,右焦点F 到右准线的距离为3.(1)求椭圆C 的方程;(2)过点F 作直线l (不与x 轴重合)和椭圆C 交于M , N 两点,设点5,02A ⎛⎫⎪⎝⎭. ①若AMN V 的面积为35,求直线l 方程;②过点M 作与)轴垂直的直线l "和直线NA 交于点P ,求证:点P 在一条定直线上.【答案】(1)22143x y +=;(2)①1)y x =-,②见解析 【解析】(1)由椭圆离心率的定义,右焦点与右准线的距离求得椭圆方程; (2)用设而不求的求直线方程,用三角形面积得直线方程,分类讨论可得. 【详解】 解:(1)由题意:2222123c a a c c a b c ⎧=⎪⎪⎪-=⎨⎪=+⎪⎪⎩解得:2a b =⎧⎪⎨=⎪⎩C 的方程为22143x y +=(2)①当直线l 斜率不存在时,方程为1x =,此时331,,1,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,不合题意;当直线l 斜率存在时,设方程为(1)y k x =-.由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,消去y 得:()22223484120k x k x k +-+-=.设()()1122,,,M x y N x y .由题意,>0∆, 且221212228412,3434k k x x x x k k-+=⋅=++ 所以()1212||y y k x x k -=-== 因为5,02A ⎛⎫⎪⎝⎭, AMN ∆所以12151225y y ⎛⎫⨯-⨯-= ⎪⎝⎭,即212||345k k=+,解得k =,所以直线l 的方程为1)y x =-.②当直线l 的斜率不存在时,直线NA 的方程为:2250x y --=.令32y =,得4x =, 所以直线NA 与l '的交点坐标3(4,)2.当直线l 的斜率存在时,由①知,221212228412,3434k k x x x x k k -+=⋅=++ 由直线NA 的方程为:225522y y x x ⎛⎫=- ⎪⎝⎭- 令1y y =,得()()()121222255511522221y x k x x k x x y k x ⎛⎫⎛⎫---+- ⎪ ⎪⎝⎭⎝⎭=+=- ()()()121222544121kx x x x k k x k x -+++-=-()()33222241258441342341k k k k k x k k k x --⋅++-++=- ()()()()33222222412584414134234411k k k k k x k x k k k x k x --⋅++--++===--所以直线NA 与l '的交点P 的坐标为1(4,)P y , 综上所述,点P 在一条定直线4x =上, 【点睛】本题考查求椭圆的标准方程,直线和圆锥曲线的位置关系,属于难题. 19.已知函数()2()f x lnx ax a R =+∈,2()12()g x x f x =+-. (1)当1a =-时,①求函数()f x 在点()()1,1A f 处的切线方程; ②比较()f m 与1()f m的大小;(2)当0a >时,若对(1,)x ∀∈+∞时,()0g x …,且()g x 有唯一零点,证明:34a <. 【答案】(1)①见解析,②见解析;(2)见解析【解析】(1)①把1a =-代入函数解析式,求出函数的导函数得到()1f ',再求出()1f ,利用直线方程的点斜式求函数()f x 在点A 处的切线方程;②令1122()()()2()22h m f m f lnm m ln lnm m m m m m =-=---=-+,利用导数研究函数的单调性,可得当01m <<时,1()()f m f m >;当1m =时,1()()f m f m =;当1m >时,1()()f m f m<.(2)由题意,21240x lnx ax +--…,()g x '在(1,)+∞上有唯一零点0x a =+.利用导数可得当0(1,)x x ∈时,()g x 在0(1,)x 上单调递减,当0(x x ∈,)+∞时,()g x 在0(x ,)+∞上单调递增,得到0()()min g x g x =.由()0g x …在(1,)+∞恒成立,且()0g x =有唯一解,可得00()0()0g x g x '=⎧⎨=⎩,得200000212(2)0x lnx x x x +---=,即200230lnx x --+=.令2000()23h x lnx x =--+,则0002()2h x x x '=--,再由0()0h x '<在(1,)+∞上恒成立,得0()h x 在(1,)+∞上单调递减,进一步得到0011()2a x x =-在(1,2)上单调递增,由此可得34a <. 【详解】解:(1)①当1a =-时,()2f x lnx x =-,1()2f x x'=-,()11f '=-, 又(1,2)A ,∴切线方程为2(1)y x +=--,即10x y ++=; ②令1122()()()2()22h m f m f lnm m ln lnm m m m m m=-=---=-+,则222222(1)()20m m h m m m m -+'=--=-<, ()h m ∴在(0,)+∞上单调递减.又()10h =,∴当01m <<时,()0h m >,即1()()f m f m>;当1m =时,()0h m =,即1()()f m f m =;当1m >时,()0h m <,即1()()f m f m<.证明:(2)由题意,21240x lnx ax +--…,而222(21)()24x ax g x x a x x--'=--=,令()0g x '=,解得x a =±0a >Q ,∴1a +>,()g x ∴'在(1,)+∞上有唯一零点0x a =+.当0(1,)x x ∈时,()0g x '<,()g x 在0(1,)x 上单调递减, 当0(x x ∈,)+∞时,()0g x '>,()g x 在0(x ,)+∞上单调递增. 0()()min g x g x ∴=.()0g x Q …在(1,)+∞恒成立,且()0g x =有唯一解,∴00()0()0g x g x '=⎧⎨=⎩,即00200022401240x a x x lnx ax ⎧--=⎪⎨⎪+--=⎩,消去a ,得200000212(2)0x lnx x x x +---=, 即200230lnx x --+=.令2000()23h x lnx x =--+,则0002()2h x x x '=--, 0()0h x '<Q 在(1,)+∞上恒成立, 0()h x ∴在(1,)+∞上单调递减,又()120h =>, ()22210h ln =--<, 012x ∴<<.0011()2a x x =-Q 在(1,2)上单调递增, 34a ∴<. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查利用导数研究函数的单调性,考查逻辑思维能力与推理论证能力,属难题. 20.已知数列{}n a 的前n 项积为n T ,满足()(1)*23n n n T n N -=∈. 数列{}nb 的首项为2,且满足()*1(1)n nnb n b n N +=+∈.(1)求数列{}n a ,{}n b 的通项公式;(2)记集合{}*1|(105),n n n M n a b b n n N λ+=+∈„,若集合M 的元素个数为2,求实数λ的取值范围;(3)是否存在正整数,,p q r 使得12q p q a a a b r a +++=+⋅L 成立?如果存在,请写出,,p q r 满足的条件,如果不存在,请说明理由.【答案】(1)13-=n n a ,b n =2n ;(2)40056033λ<„;(3)答案不唯一,见解析 【解析】(1)当1n =时,111a T ==;当2n ≥时,1nn n T a T -=,即可的{}n a 的通项公式,由1(1)n n nb n b +=+可得11n n b b n n +=+,即数列n b n ⎧⎫⎨⎬⎩⎭是常数数列,即可求出{}n b 的通项公式;(2)参变分离,构造函数列14(1)(105)()3n n n n f n -++=,判断其增减性,即可求出λ的取值范围;(3)假设存在,根据数列{}n a 为等比数列,利用公式求出其前q 项和,对r 分类讨论. 【详解】(1)因为(1)23n n nT -=,所以当2n ≥时,(1)21(1)(2)12333n n n n n n n n T a T -----=== 而当1n =时,111a T ==适合上式,所以13-=n n a ,因为1(1)n n nb n b +=+,即11n nb b n n+=+ 所以数列n b n ⎧⎫⎨⎬⎩⎭是常数数列,所以1121n b b b n ===,所以2n b n =.(2)由(1)知,不等式1(105)n n n a b b n λ++„即为14(1)(105)3n n n n λ-++„设14(1)(105)()3n n n n f n -++= 因为14(1)(2)(1015)4(1)(105)(1)()33n n n n n n n n f n f n -++++++-=-()240(1)2233nn n n +-++=而560400(1)120,(2)200,(3),(4)33f f f f ==== 要使14(1)(105)3n n n n λ-++„只有2解,则有40056033λ<„(3)假设存在正整数,,p q r ,因为21123113332q q q a a a --+++=++++=L L 所以有131423(*)q q p r --=+⋅⋅若2r ≥,则11234331,(*)q q q r --⋅⋅>-…不成立,所以1r =,1314q p --=,若q 为奇数,当1q =时,0p =,不成立,.当1q >时,设21q k =+,*k N ∈, 则12313191444q k k p ----===∈Z .若q 为偶数,设2q k =,*k N ∈,则21113139191134442k k k p ----⋅--===⋅+,因为1914k --∈Z ,所以p Z ≠.综上所述,当q 为大于1的奇数时,1r =,1314q p --=;当q 为偶数时,不存在. 【点睛】本题考查数列的通项公式的求法,数列的增减性的判定及等比数列前n 项和公式,属于综合题.21.设点(,)x y 在矩阵M 对应变换作用下得到点(2,)x x y +. (1)求矩阵M ;(2)若直线:25l x y -=在矩阵M 对应变换作用下得到直线l ',求直线l '的方程.【答案】(1)2011⎡⎤⎢⎥⎣⎦;(2)3x -4y -10=0. 【解析】(1)设出矩阵M ,利用矩阵变换得到关于x 、y 的方程组,利用等式恒成立求出矩阵M ;(2)设点(,)x y 在直线l 上,利用矩阵变换得到点(,)x y '',代入直线l 中,求得直线l '的方程. 【详解】解:(1)设a b M c d ⎡⎤=⎢⎥⎣⎦,由题意,2a b x x M c d y x y ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦g , 所以2ax by x +=,且cx dy x y +=+恒成立; 所以2a =,0b =,1c =,1d =;所以矩阵2011M ⎡⎤=⎢⎥⎣⎦;(2)设点(,)x y 在直线l 上,在矩阵M 对应变换作用下得到点(,)x y ''在直线l '上,则2x x '=,y x y '=+,所以12x x =',12y y x ='-'; 代入直线:25l x y -=中,可得34100x y '-'-=; 所以直线l '的方程为34100x y --=. 【点睛】本题考查了矩阵变换的计算问题,也考查了运算求解能力,是基础题.22.某校高一年级模仿《中国诗词大会》节目举办学校诗词大会,进入正赛的条件为:电脑随机抽取10首古诗,参赛者能够正确背诵6首及以上的进入正赛,若学生甲参赛,他背诵每一首古诗的正确的概率均为12(1)求甲进入正赛的概率;(2)若进入正赛,则采用积分淘汰制,规则是:电脑随机抽取4首古诗,每首古诗背诵正确加2分,错误减1分.由于难度增加,甲背诵每首古诗正确的概率为25,求甲在正赛中积分X 的概率分布列及数学期望. 【答案】(1)193512;(2)分布列见解析,期望为45. 【解析】(1)若甲进入正赛,即甲答对的题目数为6,7,8,9或者10道,分别根据二项分布的相关公式计算概率相加即可;(2)列出正赛中X 的所有可能的取值,分别计算概率,列出分布列计算期望即可. 【详解】(1)甲进入正赛的概率为1010106710101010111222P C C C ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L()10671010101011932512C C C ⎛⎫=++⋯+=⎪⎝⎭甲进入正赛的概率为193512. (2)甲的积分X 的可能取值为8分,5分,2分,1-分,4-分,则43143442162396(8),(5)562555625P X C P X C ⎛⎫⎛⎫⎛⎫====== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 221321442321623216(2),(1)5562555625P X C P X C ⎛⎫⎛⎫⎛⎫⎛⎫====-== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 404381(4)5625P X C ⎛⎫=-==⎪⎝⎭ 所以X 的概率分布列为所以1696216216814()852146256256256256255E X =⨯+⨯+⨯-⨯-⨯= 甲在正赛中积分X 的数学期望为45.【点睛】本题考查了离散型随机变量的分布列与数学期望的计算问题,考查分析和解决问题的能力,是中档题.23.已知抛物线C; y 2 =2x 的焦点为F ,准线为l , P 为抛物线C 上异于顶点的动点. (1)过点P 作准线1的垂线,垂足为H ,若△PHF 与△PO F 的面积之比为2:1,求点P 的坐标; (2)过点M (12-,0)任作一条直线 m 与抛物线C 交于不同的两点A , B .若两直线PA , PB 斜率之和为2,求点P 的坐标.【答案】(1)1,12⎛⎫± ⎪⎝⎭;(2)1,12⎛⎫⎪⎝⎭【解析】(1)求得抛物线的焦点和准线,设2(2t P ,)t ,由三角形的面积公式可得||2||PH OF =,解方程可得t ,进而可得P 的坐标;(2)设直线m 的方程为1()2y k x =+,0k ≠,联立抛物线的方程,消去x ,可得y 的二次方程,设21(2y A ,1)y ,22(2y B ,2)y ,运用韦达定理和判别式大于0,再由直线的斜率公式,化简整理可得t ,k 的方程,由恒成立思想可得t ,进而得到所求P 的坐标, 【详解】解:(1)抛物线2:2C y x =的焦点为1(2F ,0),准线为1:2l x =-,设2(2t P ,)t ,由PH l ⊥,可得21||22t PH =+,由PHF ∆,与∆POF 的面积之比为2:1,可得||2||PH OF =,即为2112222t +=⨯,解得1t =±,则P 的坐标为1(2,1)±;(2)设直线m 的方程为1()2y k x =+,0k ≠,联立抛物线方程可得220ky y k -+=,由△2440k =->,即11k -<<,0k ≠,设21(2y A ,1)y ,22(2y B ,2)y ,可得122y y k+=,121y y =,则12222212122222222PA PB t y t y k k y y t y t y t t--+=+=+=++--, 化为21212122()t y y t y y t y y ++=++++, 即22221()t t t k k+=+++,可得22(1)(1)0t k t -+-=对满足条件的k 恒成立, 可得1t =,则P 的坐标为1(2,1).【点睛】本题考查抛物线的定义、方程和性质,考查直线和抛物线的方程联立,运用韦达定理,以及直线的斜率公式的运用,考查化简运算能力,属于中档题.。
江苏省南通市2020届高三第二学期阶段性模拟考试数学试题(含答案解析)

开始输出n 输入p结束n ←1, S ←0S < pn ←n + 1S ←S + 2n NY(第5题)江苏省南通市2020届高三第二学期阶段性模拟考试数 学 试 题2020.05(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合{}1,2,3,4A =,{}2log (1)2B x x =-<,则A B =I ▲ . 2.设复数2(2i)z =+(i 为虚数单位),则z 的共轭复数为 ▲ .3.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线2x ﹣y ﹣1=0上方的概率为 .4.在平面直角坐标系xOy 中,若抛物线22(0)x py p =>上纵坐标为1的一点到焦点的距离为4,则该抛物线的焦点到准线的距离为 ▲ . 5.执行右边的程序框图,若p =14,则输出的n 的值为 ▲ .6.函数22log (32)y x x =--的值域为 ▲ .7.等差数列}{n a 中,若100119753=++++a a a a a , 则=-1393a a ▲ .8.现用一半径为10 cm ,面积为80π cm 2的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为 ▲ cm 3.9.已知() 0 αβ∈π,,,且()1tan 2αβ-=,1tan 5β=-,则tan α的值为 ▲ .10.已知实数,x y 满足40210440x y x y x y +-⎧⎪-+⎨⎪+-⎩≤≥≥,则3z x y =+-的取值范围是 ▲ .11.若函数()()ππ()sin 63f x a x x =++-是偶函数,则实数a 的值为 ▲ .12.在△ABC 中,cos 2sin sin A B C =,tan tan 2B C +=-,则tan A 的值为 ▲ . 13.已知函数2210()0xx mx x e f x e mx x ⎧+<⎪=⎨⎪+>⎩,,,,若函数()f x 有四个不同的零点,则实数m 的取值范围是 ▲ .14.已知[)0,2θπ∈,若关于k ()33sin cos k θθ-在(],2-∞-上恒成立,则θ的取值范围为 ▲ .二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)已知sin cos θθ+=,ππ44θ⎛⎫∈- ⎪⎝⎭,. (1)求θ的值;(2)设函数()22()sin sin f x x x θ=-+,x ∈R ,求函数()f x 的单调增区间.16.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 为梯形,//CD AB ,2AB CD =, AC 交BD 于O ,锐角PAD ∆所在平面PAD ⊥底面ABCD ,PA BD ⊥,点Q 在侧棱PC 上,且2PQ QC =. (1)求证://PA 平面QBD ; (2)求证:BD AD ⊥.17.(本小题满分14分)在平面直角坐标系xOy 中,圆O :224x y +=,直线l :43200x y +-=.43()55A ,为 圆O 内一点,弦MN 过点A ,过点O 作MN 的垂线交l 于点P . (1)若MN ∥l ,求△PMN 的面积.(2)判断直线PM 与圆O 的位置关系,并证明.18.(本小题满分16分)如图,有一正三角形铁皮余料,欲利用余料剪裁出一个矩形(矩形的一个边在三角形的边上),并以该矩形制作一铁皮圆柱的侧面。
南通市高三调研数学试卷及答案 (2).doc

江苏省南通市 2020 届高三上学期期末调研考试数学试卷A .必做题部分一、填空题:本大题共 14 小题,每小题 5 分,共 70 分.1.已知全集 U={1,2,3,4,5,6,7} ,集合 M { x Z | x 2 6 x 5≤ 0} ,则集合 e u M =U▲.2. 已知函数 f ( x) 3 cos2x sin 2x ,则 f (x) 的最小正周期是▲ .3. 经过点(- 2,3),且与直线 2x y 5 0 平行的直线方程为 ▲.4. 若复数 z 满足 zi3 i, 则 | z|▲ .i5. 程序如下:t ←1 i ←2While i ≤4t ←t ×i i ←i +1 End While Print t以上程序输出的结果是 ▲ .6. 若 x 1 , x 2 , x 3 ,L , x 2008 , x 2009 的方差为 ,则 3( x 1 2),3( x 2 2),L ,3( x 2008 2),3( x 2009 2) 的方差3 为 ▲ .7. 正方体 ABCD - A B CD 的棱长为2 3 ,则四面体 AB 1CD 1 的外接球的体积为1 11 1▲.x 2 28. 以椭圆yb 0) 的左焦点 F ( c,0) 为圆心,c 为半径的圆与椭圆的左准a 22 1(ab线交于不同的两点,则该椭圆的离心率的取值范围是▲.x ≤ 3,9. 设 a >0,集合 A={( x ,y )| x y 4 ≤ 0, } ,B={(x ,y )| ( x 1)2 ( y 1)2 ≤ a 2 } .若x y 2a ≥ 0点 P ( x , y )∈ A 是点 P (x ,y )∈ B 的必要不充分条件,则 a 的取值范围是▲ .10.在闭区间[ -1,1] 上任取两个实数,则它们的和不大于 1 的概率是▲.11.数列a n 中, a1 6 ,且 a n a n 1 a n 1 n 1 ( n N *,n≥2),则这个数列的通n项公式a n ▲.12.根据下面一组等式:s1 1,s2 2 3 5,s3 4 5 6 15,s4 7 8 9 10 34,s5 11 12 13 14 15 65,s6 16 17 18 19 20 21 111,可得 s1 s3 s5 s2 n 1 ▲.13 .在△ ABC 中, A π, D 是 BC 边上任意一点( D 与 B、 C 不重合),且6uuur uuur uuur uuur▲.| AB|2 |AD |2 BD DC ,则B等于14.设函数f ( x) x3 2ex2 mx ln x ,记 g( x) f (x),若函数 g (x) 至少存在一个零点,x则实数 m的取值范围是▲.二、解答题:本大题共 6 小题,共90 分.解答应写出文字说明、证明过程或演算步骤.A1 C1 15.(本小题 14 分)如图,在正三棱柱 ABC-A B C 中,点 D在边 BC上, AD⊥C D.B11 1 1 1(1)求证: AD⊥平面 BC C1 B 1;(2)设 E 是 B C 上的一点,当B1 E 的值为多少时,1 1EC1A CA E∥平面ADC?请给出证明.1 1DB 16.(本小题 14 分)uuur uuur如图,在四边形 ABCD中, AD=8,CD=6,AB=13,∠ ADC=90°,且AB AC50 .(1)求 sin ∠BAD的值;(2)设△ ABD的面积为 S△ABD,△ BCD的面积为 S△BCD,求SABD的值.SBCDBCA D 17.(本小题 15 分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12 月 1 日至 12 月 5 日的每天昼夜温差与实验室每天每 100 颗种子中的发芽数,得到如下资料:日期12月 1日12月2 12月3 12月4日 12月 5日日日温差 x (°C)10 11 13 12 8发芽数 y23 25 30 26 16(颗)该农科所确定的研究方案是 : 先从这五组数据中选取 2 组,用剩下的 3 组数据求线性回归方程,再对被选取的 2 组数据进行检验.(1)求选取的 2 组数据恰好是不相邻 2 天数据的概率;(2)若选取的是12 月 1 日与 12 月 5 日的两组数据,请根据12月 2日至 12月4 日的数据,求出 y 关于 x 的线性回归方程$y bx a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2 颗,则认为得到的线性回归方程是可靠的,试问( 2)中所得的线性回归方程是否可靠 ?18.(本小题 15 分)抛物线 y2 4 x 的焦点为F, A( x1, y1 ), B(x2 , y2 ) (x1 x2 , y1 0, y2 0) 在抛物线上,且存uuur uuur uuur25 .在实数λ,使 AF BF 0,| AB|4(1)求直线 AB的方程;(2)求△ AOB的外接圆的方程.19.(本小题 16 分)1ln x 在[1,+∞)上为增函数,且θ∈(0,π),已知函数 g( x)sin xm 1 ,m∈R.f (x) mx ln xx(1)求θ的值;(2)若f ( x) g (x) 在[1,+∞)上为单调函数,求m的取值范围;(3)设h(x) 2e,若在 [1 ,e] 上至少存在一个x0,使得f ( x0) g (x0) h( x0 ) 成立,x求 m 的取值范围.20.(本小题 16 分)已知等差数列 { a n } 的首项为a,公差为b,等比数列 { b n } 的首项为b,公比为a,其中 a,b 都是大于 1的正整数,且 a1b1 , b2a3.(1)求 a 的值;( 2)若对于任意的n N,总存在m N ,使得 a m 3 b n成立,求b的值;( 3)令C n a n 1b n,问数列 { C n } 中是否存在连续三项成等比数列?若存在,求出所有成等比数列的连续三项;若不存在,请说明理由.[ 来源 : 学+科+网] B.附加题部分21.(选做题)从 A,B,C,D四个中选做 2 个,每题10 分,共出文字说明、证明过程或演算步骤.A.选修 4-1(几何证明选讲)如图, AB是半圆的直径, C 是 AB延长线上一点, CD切半圆于点 D,CD=2,DE⊥AB,垂足为 E,且 E 是OB的中点,求 BC的长. A 20分.解答时应写D·O E B CB.选修 4-2(矩阵与变换)将曲线 xy 1 绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.C.选修 4-4(坐标系与参数方程)求直线x12t ,( t 为参数)被圆x3cos ,(α为参数)截得的弦长.y 1 2t y 3sin[ 来源:学科网]D.选修 4-5(不等式选讲)1已知x,y 均为正数,且 x>y,求证:2 xx22xy y2≥2 y 3.22.(必做题)已知等式( x22x 2)5a0a1 (x 1) a2 (x 1)2L a9 ( x 1)9a10 (x1)10,其中a i(i=0 ,1,2,, 10)为实常数.求:(1)10a n的值;n 1(2)10na n的值.n 123.(必做题)先阅读:如图,设梯形ABCD的上、下底边的长分别是a, b(a<b),高为 h,求梯形的面积.D′C′A B A′B′D CD CA B江苏省南通市 2020 届高三上学期期末调研考试(数学)一、填空题:本大题共14 小题,每小题 5 分,共 70 分.1.课本中的习题改编,考查集合的运算.一元二次不等式是C级要求.2.课本中的习题改编.考查知识点是三角公式,数学思想方法是化归的思想.关注 a sin x b cos xa 2b 2 sin( x) .3.课本中的练习题改编的.考查知识点是直线方程和两直线的位置关系.4.考查复数的运算.注意填空题的结果.5.考查算法的循环语句.关注语句何时循环结束和输出的t 值是多少 ?6.课本中的练习题改编的.考查统计中的方差.关注22 2x iax ibx i ax i b,( S )a S .7.课本中的习题改编.考查正方体、四面体与球的组合体的关系,关注正方体的体对角线和正方体外接球的直径相等.8.考查椭圆和圆的方程及其性质.关注椭圆的离心率的范围e (0,1) .解: c a2c 2c2a2e 21e2,所以离心率 e 的取值范围是 ( 2 ,1) .c22 29.考查线性规划、充分必要条件和圆的有关知识.10.考查概率中的几何概型,数形结合的思想方法.11.考查递推数列和等差数列的通项公式,数学能力是识别、归纳、构造.解: 方法一 由 a n a n 1 a n 1n1a nn 1( n 1)a n 1 ,na n 1n 1a n 1 1nn构造数列 { b n } , b na n ,b nb n 1 1 ,即数列 { b n } 是等差数列,n 1所以 b n3 n 1n 2 ,故 a n (n 2)( n 1) .方法二 归纳猜想,求得 a 1 62 3,a 2 12 34,a 3 20 4 5L ,猜想 a n (n 1)(n 2) .最好通过求出 a 4 验证猜想结果正确与否.该题是由数列 a n 中, a 12 ,且 a n 2 a n 12a n 1 n 1( n N * , n ≥ 2 ),则此n数列的通项公式 a n改编的.12.本题是课本中的习题.考查推理与证明中归纳猜想,数学能力是观察、归纳意识.方法一: S 1 1,S 1 S 3 16, S 1 S 3 S 5 81L , 猜想 S 1 S 3 LS 2 n 1 n 4 .方法二:先求出S2n 1(2 n 1)(2n22n1) ,然后求和(对文科学生要求较高,不必介绍)13.本题是北师大出版社教材例题改编的.考查向量的运算和三角形中的有关公式,平面向量数量积是 C 级要求.解:由uuur |AB|2uuur|AD |2uuurBDuuurDCuuur( ABuuur uuurAD ) (ABuuurAD )uuur uuurBD DCuuur( ABuuuruuur AD)DBuuur uuurBD DCuuur uuur uuur uuur uuur uuur uuurBD ( AB AD DC ) BD g( AB AC) 0 ,所以△ABC是A 为顶角的等腰三角形.由 A π,故 B5π.612另本题也可用建立恰当的坐标系,用解析法求得.14.考查对数函数、二次函数与三次函数方程的根,数学思想方法为数形结合,能力是常见函数的导数运用.解: g (x) x2 2ex m ln x 0 ,即 x2 2ex m ln x有两解,直接解不可能,只有x x通过画出两个图象的示意图求解.要画图,可通过求出它们的极值,确定单调区间.二、解答题:本大题共 6 小题,共 90 分,解答时应写出文字说明、证明过程或演算步骤.15.课本习题改编题.主要考查线面平行、垂直的的判定和证明等相关知识,基本数学能力是空间想象能力、化归能力和探究能力.要从第一小题中挖掘出 D 是边BC 的中点,第二小题要求学生注意问题的逻辑要求和答题的规范性,这里只需要指出结论并验证其充分性即可,当然亦可以先探求结论,再证明之,这事实上证明了结论是充分且必要的.16.主要考查解三角形和向量的运算等相关知识,数学基本能力是运算求解和数据处理能力.涉及三角形中三角恒等变换时,从化角或化边的角度入手,合理运用两角和与差的三角公式求解.另解:对于第二问,在ABC 中,求出 BC 13 ,在 ABD 中,求出 cos BAD ,进一步求出BD的长,在 BCD 中,知道三边求出S BCD .另:以点 D 为坐标原点,直线 AD 为 x 轴,直线 DC 为 y 轴建立坐标系, 设 B( x, y) ,求出 AB 的斜率,得到 tan BAD ,进一步求出 sin BAD .17.本题主要考查古典概率的计算及统计中的线性回归方程,数学能力是审题、数据处理的能力、阅读的能力.要求学生列举全面,书写规范.尤其注意此类问题的答题格式:设事件、说明概型、计算各基本事件种数、求值、作答.讲评时着重在引导学生认真审题.18.本题主要考查向量、直线与圆以及椭圆的相关知识,要求学生灵活运用圆的标准方程或一般方程求圆的方程,理解三角形外接圆圆心是三边中垂线的交点,也可求出交点坐标.关注弦长公式:l1 k2 | x 1x 2| ,抛物线y 22 px( p0) 的焦点弦长为lx 1x 2p .19.此题主要考查函数、导数、对数函数、二次函数与与单调性、不等式等知识的综合.数学思想方法是分类讨论、数形结合等.数学基本能力是推理论证和运算求解能力,同时考查学生的探究能力和分析问题与解决问题的能力.评讲时注意着重导数在研究函数问题中的应用.本题的第一小题是常规题比较容易,第二小题是以函数的单调性为背景,着重是利用导数转化为研究二次函数的恒成立问题.第三问是函数存在性问题,通过构造辅助函数,利用导数转化为研究分式函数、对数函数等函数的恒成立问题.利用导数来研究函数的性质,是近几年高考的热点.第二问另解:分类讨论: f ( x) g( x) mxm 2ln x ,当 m 0 时,由函数 x 1 在xx[1 ,+∞ )上是单调递 增,所以 mxm在 [1 ,+ ∞)上是单调递减,即xf (x)m 2ln x 在 [1 ,+∞)上是单调递减,所以 m 0 符合条件.g ( x) mxx当 m 0 时, f (x)g (x)2ln x 在[1 ,+∞)上是单调递减,所以所以 m 0 符合条件.当 m 0 时, ( f (x) g( x))'mx 2 2x m,要 f (x) g (x) 单调,则 22 x m 0 在2mxx[1 ,+∞)恒成立.因为函数 mx 2 2 x m 的开口向上,对称轴 x1 0 ,所以要 mx 22 x m 0在[1,m+∞)恒成立,则必须20 ,即 m 1 .4 4 m 综上,得 m 的取值范围 ( ,0] U [1,) .第三问另解:构造 F ( x) f (x)g (x) h(x) ,先解 F (x) ≤ 0 在[1 ,e] 恒成立,求出 m的取值范围.F ( x) mxm2ln x 2e ,xx当 m 0 时, x [1,e] , mx m 0 ,2e 0 ,x 2ln xx所以 F (x) 0 在 x[1,e] 成立,所以 m 0 符合.22e ,当 m 0 时, ( F ( x))' m m 2 2emx 2 x mx 2x x 2x 2因为 x[1,e] ,所以 2e 2x2m 0 ,所以 ( F ( x))'0 在[1 ,e] 上恒成立,0 , mxm故 F ( x) 在[1 , e] 上单调递增,F (x)max F (e) me 4 , e由 me m4≤0,解得 0 m4e 。
江苏省南通市2020届高三5月二模试题数学试题(解析版)

江苏省南通市2020届高三5月二模试题数学一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.记复数z =a +bi (i 为虚数单位)的共轭复数为()z a bi a b R =-∈,,已知z =2+i ,则2z =_____. 【答案】3﹣4i 【解析】 【分析】计算得到z 2=(2+i )2=3+4i ,再计算2z 得到答案. 【详解】∵z =2+i ,∴z 2=(2+i )2=3+4i ,则234z i =-. 故答案为:3﹣4i .【点睛】本题考查了复数的运算,共轭复数,意在考查学生的计算能力. 2.已知集合U ={1,3,5,9},A ={1,3,9},B ={1,9},则∁U (A∪B)=________. 【答案】{5} 【解析】易得A∪B =A ={1,3,9},则∁U (A∪B)={5}.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____. 【答案】30 【解析】 【分析】直接根据分层抽样的比例关系得到答案. 【详解】分层抽样的抽取比例为801160020=,∴抽取学生的人数为600120⨯=30. 故答案为:30.【点睛】本题考查了分层抽样的计算,属于简单题.4.角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (1,2),则sin (π﹣α)的值是_____.【答案】255【解析】 【分析】 计算sinα25y r ==,再利用诱导公式计算得到答案. 【详解】由题意可得x =1,y =2,r 5=sinα25y r ==,∴sin (π﹣α)=sinα25= 25. 【点睛】本题考查了三角函数定义,诱导公式,意在考查学生的计算能力. 5.执行以下语句后,打印纸上打印出的结果应是:_____. 【答案】28 【解析】 【分析】根据程序框图直接计算得到答案.【详解】程序在运行过程中各变量的取值如下所示:是否继续循环 i x 循环前 1 4 第一圈 是 4 4+2 第二圈 是 7 4+2+8 第三圈 是 10 4+2+8+14退出循环,所以打印纸上打印出的结果应是:28 故答案为:28.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.6.设α、β为互不重合的平面,m ,n 是互不重合的直线,给出下列四个命题: ①若m ∥n ,则m ∥α;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β; ③若α∥β,m ⊂α,n ⊂β,则m ∥n ;④若α⊥β,α∩β=m ,n ⊂α,m ⊥n ,则n ⊥β; 其中正确命题的序号为_____. 【答案】④ 【解析】 【分析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于①,当m ∥n 时,由直线与平面平行的定义和判定定理,不能得出m ∥α,①错误; 对于②,当m ⊂α,n ⊂α,且m ∥β,n ∥β时,由两平面平行的判定定理,不能得出α∥β,②错误; 对于③,当α∥β,且m ⊂α,n ⊂β时,由两平面平行的性质定理,不能得出m ∥n ,③错误;对于④,当α⊥β,且α∩β=m ,n ⊂α,m ⊥n 时,由两平面垂直的性质定理,能够得出n ⊥β,④正确; 综上知,正确命题的序号是④. 故答案为:④.【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.7.已知函数f(x)=322{102x xx x ≥,,(-),<<,若关于x 的方程f(x)=kx 有两个不同的实根,则实数k 的取值范围是________. 【答案】10,2⎛⎫ ⎪⎝⎭【解析】由图可知,当直线y =kx 在直线OA 与x 轴(不含它们)之间时,y =kx 与y =f(x)的图像有两个不同交点,即方程有两个不相同的实根.8.已知关于x 的不等式(ax ﹣a 2﹣4)(x ﹣4)>0的解集为A ,且A 中共含有n 个整数,则当n 最小时实数a 的值为_____. 【答案】-2 【解析】 【分析】讨论0,0,0a a a <=>三种情况,a <0时,根据均值不等式得到a 4a +=-(﹣a 4a-)≤﹣2=-4,计算等号成立的条件得到答案. 【详解】已知关于x 的不等式(ax ﹣a 2﹣4)(x ﹣4)>0, ①a <0时,[x ﹣(a 4a +)](x ﹣4)<0,其中a 4a+<0, 故解集为(a 4a+,4),由于a 4a +=-(﹣a 4a-)≤﹣=-4, 当且仅当﹣a 4a=-,即a =﹣2时取等号, ∴a 4a +的最大值为﹣4,当且仅当a 4a+=-4时,A 中共含有最少个整数,此时实数a 的值为﹣2;②a =0时,﹣4(x ﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a =0不符合条件;③a >0时,[x ﹣(a 4a +)](x ﹣4)>0,其中a 4a+≥4, ∴故解集为(﹣∞,4)∪(a 4a+,+∞),整数解有无穷多,故a >0不符合条件;综上所述,a =﹣2. 故答案为:﹣2.【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.9.已知双曲线22221x y a b -=(a >0,b >0)的两个焦点为10F ⎛⎫ ⎪ ⎪⎝⎭、20F ⎫⎪⎪⎝⎭,点P 是第一象限内双曲线上的点,且1212tan PF F ∠=,tan ∠PF 2F 1=﹣2,则双曲线的离心率为_____.【解析】 【分析】 根据正弦定理得1212122PF sin PF F PF sin PF F ∠==∠,根据余弦定理得2212PF PF +-2PF 1•PF 2cos ∠F 1PF 2212F F ==3,联立方程得到1233PF PF ==,计算得到答案.【详解】∵△PF 1F 2中,sin ∠PF 1F 2═5sin ∠PF 1F 2═5,∴由正弦定理得1212122PF sin PF F PF sin PF F ∠==∠,①又∵1212tan PF F ∠=,tan ∠PF 2F 1=﹣2, ∴tan ∠F 1PF 2=﹣tan (∠PF 2F 1+∠PF 1F 2)123214122-=-=+⨯,可得cos ∠F 1PF 245=, △PF 1F 2中用余弦定理,得2212PF PF +-2PF 1•PF 2cos ∠F 1PF 2212F F ==3,②①②联解,得12PF PF ==12PF PF -=∴双曲线的2a =,结合2c =,得离心率22c e a ==.. 【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和转化能力. 10.记S k =1k +2k +3k +……+n k ,当k =1,2,3,……时,观察下列等式:S 112=n 212+n ,S 213=n 312+n 216+n ,S 314=n 412+n 314+n 2,……S 5=An 612+n 5512+n 4+Bn 2,…可以推测,A ﹣B =_____. 【答案】14【解析】 【分析】观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案. 【详解】根据所给的已知等式得到:各等式右边各项的系数和为1, 最高次项的系数为该项次数的倒数,∴A 16=,A 15212B +++=1,解得B 112=-,所以A ﹣B 1116124=+=. 故答案为:14.【点睛】本题考查了归纳推理,意在考查学生的推理能力.11.设函数()f x x x a =-,若对于任意的1x ,2x ∈[2,)+∞,1x ≠2x ,不等式1212()()0f x f x x x ->-恒成立,则实数a 的取值范围是 . 【答案】2a ≤试题分析:由题意得函数()f x x x a =-在[2,)+∞上单调递增,当2a ≤时()()f x x x a =-在[2,)+∞上单调递增;当2a >时()f x x x a =-在[,)a +∞上单调递增;在[2,)a 上单调递减,因此实数a 的取值范围是2a ≤考点:函数单调性12.已知平面向量a r ,b r ,c r 满足|a r |=1,|b r |=2,a r ,b r 的夹角等于3π,且(a c -r r)•(b c -r r )=0,则|c r|的取值范围是_____.【答案】⎣⎦【解析】 【分析】计算得到|a b +r r |=2c =r |c r |cosα﹣1,解得cosα2=r ,根据三角函数的有界性计算范围得到答案.【详解】由(a c -r r)•(b c -rr )=0 可得 2c =r (a b +rr)•c a b -⋅=r r |a b +rr|•|c r|cosα﹣1×2cos3π=|a b +r r |•|c r |cosα﹣1,α为a b +r r 与cr 的夹角.再由 ()222a ba b +=++r r r r 2a r •b =r 1+4+2×1×2cos 3π=7 可得|a b +r r |=∴2c =rc r |cosα﹣1,解得cosα2=r .∵0≤α≤π,∴﹣1≤cos α≤12≤r 1,即2c r c r |+1≤0,解得≤|c r |≤故答案为22⎣⎦,. 【点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.13.在平面直角坐标系xOy 中,直角三角形ABC 的三个顶点都在椭圆()22211x y a a+=>上,其中A (0,1)为直角顶点.若该三角形的面积的最大值为278,则实数a 的值为_____. 【答案】3【分析】设直线AB 的方程为y =kx +1,则直线AC 的方程可设为y 1k =-x +1,(k ≠0),联立方程得到B (22221a ka k -+,222211a k a k -+),故S 442221211a k ka a k k +=⎛⎫+++ ⎪⎝⎭,令t 1k k =+,得S 42222(1)a a a t t=-+,利用均值不等式得到答案. 【详解】设直线AB 的方程为y =kx +1,则直线AC 的方程可设为y 1k=-x +1,(k ≠0) 由22211y kx x y a=+⎧⎪⎨+=⎪⎩消去y ,得(1+a 2k 2)x 2+2a 2kx =0,所以x =0或x 22221a k a k -=+ ∵A 的坐标(0,1),∴B 的坐标为(22221a k a k -+,k •22221a k a k -++1),即B (22221a k a k -+,222211a k a k-+), 因此AB 222222222221(0)(1)111a k a k k a k a k --=-+-=+++22221a k a k+, 同理可得:AC 211k =+•22221a kak+.∴Rt △ABC 的面积为S 12=AB •AC 2212k k=++44422422221221111a k a ka a k a a k k k +=⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭ 令t 1k k =+,得S ()4422422222(1)12a t a a a a t a tt==-++-+. ∵t 1k k =+≥2,∴S △ABC442222(1)(1)2a a a a a t t≤=--⨯.2t t =t 21a a-=时,△ABC 的面积S 有最大值为4227(1)8a a a =-.解之得a =3或a 329716+=. ∵a 3297+=时,t 21a a -=<2不符合题意,∴a =3.故答案为:3.【点睛】本题考查了椭圆内三角形面积的最值问题,意在考查学生的计算能力和转化能力.14.设f (x )=e tx (t >0),过点P (t ,0)且平行于y 轴的直线与曲线C :y =f (x )的交点为Q ,曲线C 过点Q 的切线交x 轴于点R ,若S (1,f (1)),则△PRS 的面积的最小值是_____. 【答案】2e【解析】 【分析】计算R (t 1t -,0),PR =t ﹣(t 1t -)1t =,△PRS 的面积为S 2te t=,导数S ′()212t e t t-=,由S ′=0得t =1,根据函数的单调性得到最值.【详解】∵PQ ∥y 轴,P (t ,0),∴Q (t ,f (t ))即Q (t ,2t e ),又f (x )=e tx (t >0)的导数f ′(x )=t e tx ,∴过Q 的切线斜率k =t 2t e ,设R (r ,0),则k 220t t e te t r-==-,∴r =t 1t -,即R (t 1t -,0),PR =t ﹣(t 1t -)1t=,又S (1,f (1))即S (1,e t ),∴△PRS 的面积为S 2t et=,导数S ′()212t e t t-=,由S ′=0得t =1,当t >1时,S ′>0,当0<t <1时,S ′<0,∴t =1为极小值点,也为最小值点,∴△PRS 的面积的最小值为2e . 故答案为:2e . 【点睛】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三角形ABC 中,角A,B,C 的对边分别为a,b,c ,若()31sin ,tan 53A AB =-=,角C 为钝角, 5.b = (1)求sin B 的值; (2)求边c 的长.【答案】(1)sin B =(2)13c = 【解析】 【分析】(1)由()sin sin B A A B ⎡⎤=--⎣⎦,分别求得sin cos A A ,,()()sin cos A B A B --,得到答案;(2)利用正弦定理sin sin a A b B=得到 a =13c =.【详解】(1)因为角C 为钝角,3sin 5A = ,所以4cos 5A == ,又()1tan 3A B -= ,所以02A B π<-< ,且()()sinA B A B -=-= , 所以()()()sin sin sin cos cos sin B A A B A A B A A B ⎡⎤=--=---⎣⎦3455=-=(2)因为sin sin a A b B ==,且5b = ,所以a =, 又()cos cos cos cos sin sinC A B A B A B =-+=-+= ,则2222cos 952525169c a b ab C ⎛=+-=+-⨯= ⎝ ,所以13c= .16.如图,四棱锥V﹣ABCD中,底面ABCD是菱形,对角线AC与BD交于点O,VO⊥平面ABCD,E是棱VC的中点.(1)求证:VA∥平面BDE;(2)求证:平面VAC⊥平面BDE.【答案】(1)见解析(2)见解析【解析】【分析】(1)连结OE,证明VA∥OE得到答案.(2)证明VO⊥BD,BD⊥AC,得到BD⊥平面VAC,得到证明.【详解】(1)连结OE.因为底面ABCD是菱形,所以O为AC的中点,又因为E是棱VC的中点,所以VA∥OE,又因为OE⊂平面BDE,VA⊄平面BDE,所以VA∥平面BDE;(2)因为VO⊥平面ABCD,又BD⊂平面ABCD,所以VO⊥BD,因为底面ABCD是菱形,所以BD⊥AC,又VO∩AC=O,VO,AC⊂平面VAC,所以BD⊥平面VAC.又因为BD⊂平面BDE,所以平面VAC⊥平面BDE.【点睛】本题考查了线面平行,面面垂直,意在考查学生的推断能力和空间想象能力.17.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y﹣29=0相切.(1)求圆的方程;(2)设直线ax﹣y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(﹣2,4),若存在,求出实数a的值;若不存在,请说明理由.【答案】(1)(x﹣1)2+y2=25.(2)(512+∞,).(3)存在,34a=【解析】分析】(1)设圆心为M(m,0),根据相切得到42955m-=,计算得到答案.(2)把直线ax ﹣y +5=0,代入圆的方程,计算△=4(5a ﹣1)2﹣4(a 2+1)>0得到答案. (3)l 的方程为()124y x a=-++,即x +ay +2﹣4a =0,过点M (1,0),计算得到答案. 【详解】(1)设圆心为M (m ,0)(m ∈Z ).由于圆与直线4x +3y ﹣29=0相切,且半径为5, 所以42955m -=,即|4m ﹣29|=25.因为m 为整数,故m =1.故所求圆的方程为(x ﹣1)2+y 2=25.(2)把直线ax ﹣y +5=0,即y =ax +5,代入圆的方程,消去y , 整理得(a 2+1)x 2+2(5a ﹣1)x +1=0,由于直线ax ﹣y +5=0交圆于A ,B 两点,故△=4(5a ﹣1)2﹣4(a 2+1)>0,即12a 2﹣5a >0,由于a >0,解得a 512>,所以实数a 的取值范围是(512+∞,). (3)设符合条件的实数a 存在,则直线l 的斜率为1a-, l 的方程为()124y x a=-++,即x +ay +2﹣4a =0, 由于l 垂直平分弦AB ,故圆心M (1,0)必在l 上, 所以1+0+2﹣4a =0,解得34a =.由于35412⎛⎫∈+∞ ⎪⎝⎭,,故存在实数34a = 使得过点P (﹣2,4)的直线l 垂直平分弦AB .【点睛】本题考查了直线和圆的位置关系,意在考查学生的计算能力和转化能力.18.如图,两座建筑物AB ,CD 的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m 和20m ,从建筑物AB 的顶部A 看建筑物CD 的视角∠CAD =60°. (1)求BC 的长度;(2)在线段BC 上取一点P (点P 与点B ,C 不重合),从点P 看这两座建筑物的视角分别为∠APB =α,∠DPC =β,问点P 在何处时,α+β最小?【答案】(1)103m ;(2)当BP 为202103t =时,α+β取得最小值. 【解析】 【分析】(1)作AE ⊥CD ,垂足为E ,则CE =10,DE =10,设BC =x ,根据()2tan CAD tan CAE ∠=∠得到2200x --=,解得答案.(2)设BP =t,则(0CP t t =<<,故()10ttan αβ+=,设()f t =,求导得到函数单调性,得到最值.【详解】(1)作AE ⊥CD ,垂足为E ,则CE =10,DE =10,设BC =x ,则()22202210011tan CAEx tan CAD tan CAE tan CAE x ∠∠=∠===-∠-2200x--=,解之得,x =x =(舍), (2)设BP=t,则(0CP t t =<<, ()101t tan t αβ+===-设()f t =,()2'200f t t =-+-令f '(t )=0,因为0t <<t =,当(0t ∈,时,f '(t )<0,f (t )是减函数;当(t ∈时,f '(t )>0,f (t)是增函数,所以,当t =f (t )取得最小值,即tan (α+β)取得最小值, 因为22000t -+-<恒成立,所以f (t )<0,所以tan (α+β)<0,2παβπ⎛⎫+∈⎪⎝⎭,, 因为y =tanx 在2ππ⎛⎫⎪⎝⎭,上是增函数,所以当202103t =α+β取得最小值.【点睛】本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力. 19.设首项为1的正项数列{a n }的前n 项和为S n ,数列{}2n a 的前n 项和为T n,且()243n nS p T--=,其中p 为常数. (1)求p 的值;(2)求证:数列{a n }为等比数列;(3)证明:“数列a n ,2x a n +1,2y a n +2成等差数列,其中x 、y 均为整数”的充要条件是“x =1,且y =2”. 【答案】(1)p =2;(2)见解析(3)见解析 【解析】 【分析】(1)取n =1时,由()24113p --=得p =0或2,计算排除p =0的情况得到答案.(2)241(2)33n n T S =--,则21141(2)33n n T S ++=--,相减得到3a n +1=4﹣S n +1﹣S n ,再化简得到2112n n a a ++=,得到证明.(3)分别证明充分性和必要性,假设a n ,2x a n +1,2y a n +2成等差数列,其中x 、y 均为整数,计算化简得2x ﹣2y ﹣2=1,设k =x ﹣(y ﹣2),计算得到k =1,得到答案. 【详解】(1)n =1时,由()24113p --=得p =0或2,若p =0时,243n n S T -=,当n =2时,()22224113a a-++=,解得a 2=0或212a =-, 而a n >0,所以p =0不符合题意,故p =2; (2)当p =2时,241(2)33n n T S =--①,则21141(2)33n n T S ++=--②, ②﹣①并化简得3a n +1=4﹣S n +1﹣S n ③,则3a n +2=4﹣S n +2﹣S n +1④,④﹣③得2112n n a a ++=(n ∈N *), 又因为2112a a =,所以数列{a n }是等比数列,且112n n a -=; (3)充分性:若x =1,y =2,由112n n a -=知a n ,2x a n +1,2y a n +2依次为112n -,22n ,142n +,满足112142222n n n -+⨯=+,即a n ,2x a n +1,2y a n +2成等差数列;必要性:假设a n ,2x a n +1,2y a n +2成等差数列,其中x 、y 均为整数,又112n n a -=,所以11111222222x yn n n -+⋅⋅=+⋅,化简得2x ﹣2y ﹣2=1,显然x >y ﹣2,设k =x ﹣(y ﹣2),因为x 、y 均为整数,所以当k ≥2时,2x ﹣2y ﹣2>1或2x ﹣2y ﹣2<1,故当k =1,且当x =1,且y ﹣2=0时上式成立,即证.【点睛】本题考查了根据数列求参数,证明等比数列,充要条件,意在考查学生的综合应用能力. 20.已知函数123()()()()f x x x x x x x =---,123,,x x x R ∈,且123x x x <<. (1)当123012x x x ===,,时,求函数()f x 的减区间; (2)求证:方程()0f x '=有两个不相等的实数根;(3)若方程()0f x '=的两个实数根是()αβαβ<,,试比较122x x +,232x x +与αβ,的大小,并说明理由.【答案】(1)(1,1)33-+(2)详见解析(3)231222x x x x αβ++<<<【解析】 【详解】试题分析:(1)当123012x x x ===,,时,322()(1)(2)=32,()362,f x x x x x x x f x x x =---+=-+',由()0f x <得()f x 减区间(133-+;(2)因为32123122331123()()()f x x x x x x x x x x x x x x x x =-+++++-,所以2123122331()32()()f x x x x x x x x x x x x =-+++'++,因为2221223312[()()()]0x x x x x x ∆=-+-+->所以,方程()0f x '=有两个不相等的实数根;(3)因为21221()()024x x x x f +-=-<',22323()()024x x x x f +-=-<',所以231222x x x x αβ++<<<试题解析:(1)当123012x x x ===,,时,322()(1)(2)=32,()362,f x x x x x x x f x x x =---+=-+',由()0f x <得()f x减区间(1)33-+; (2)法1:32123122331123()()()f x x x x x x x x x x x x x x x x =-+++++-,2123122331()32()()f x x x x x x x x x x x x =-+++'++2221223312[()()()]0x x x x x x ∆=-+-+->,123x x x <<,所以,方程()0f x '=有两个不相等的实数根;法2:122331()()()()()()()f x x x x x x x x x x x x x =--+---'-+,22321()()()0f x x x x x -'=-<,()f x 是开口向上的二次函数,所以,方程()0f x '=有两个不相等的实数根;(3)因为21221()()024x x x x f +-=-<',22323()()024x x x x f +-=-<',又()f x 在(,)α-∞和(,)β+∞增,()f x 在(,)αβ减, 所以231222x x x x αβ++<<<. 考点:利用导数求函数减区间,二次函数与二次方程关系本题包括A ,B 共1小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明、证明过程或演算步骤. [选修4-2:矩阵与变换]21.试求曲线y =sinx 在矩阵MN 变换下的函数解析式,其中M 1002⎡⎤=⎢⎥⎣⎦,N 10201⎡⎤⎢⎥=⎢⎥⎣⎦. 【答案】y =2sin 2x . 【解析】【分析】计算MN 11100022020102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,计算得到函数表达式. 【详解】∵M 1002⎡⎤=⎢⎥⎣⎦,N 10201⎡⎤⎢⎥=⎢⎥⎣⎦,∴MN 11100022020102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, ∴在矩阵MN 变换下,x y ⎡⎤⎢⎥⎣⎦→1'2'2x x y y ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦∴曲线y =sinx 在矩阵MN 变换下的函数解析式为y =2sin 2x . 【点睛】本题考查了矩阵变换,意在考查学生的计算能力.[选修4-4:极坐标与参数方程]22.已知直线l 的极坐标方程为63sin πρθ⎛⎫-= ⎪⎝⎭,圆C 的参数方程为1010x cos y sin θθ=⎧⎨=⎩(θ为参数). (1)请分别把直线l 和圆C 的方程化为直角坐标方程; (2)求直线l 被圆截得的弦长.【答案】(1120y -+=.x 2+y 2=100.(2)16 【解析】 【分析】(1)直接利用极坐标方程和参数方程公式化简得到答案. (2)圆心()0,0到直线的距离为1262d ==,故弦长为. 【详解】(1)sin 63πρθ⎛⎫-= ⎪⎝⎭,即1sin cos 622ρθθ⎛⎫-= ⎪ ⎪⎝⎭,即162y x =,120y -+=.10cos 10sin x y θθ=⎧⎨=⎩,故22100x y +=. (2)圆心()0,0到直线的距离为1262d ==,故弦长为16=. 【点睛】本题考查了极坐标方程和参数方程,圆的弦长,意在考查学生的计算能力和转化能力.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.23.在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,EF ∥AB ,∠BAF =90°,AD =2,AB =AF =2EF =2,点P 在棱DF 上.(1)若P 是DF 的中点,求异面直线BE 与CP 所成角的余弦值; (2)若二面角D ﹣AP ﹣C 的正弦值为63,求PF 的长度. 【答案】(1)3015.(22. 【解析】 【分析】(1)以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系,则BE =u u u r (﹣1,0,2),CP =u u u r(﹣2,﹣1,1),计算夹角得到答案.(2)设FP FD λ=u u u r u u u r,0≤λ≤1,计算P (0,2λ,2﹣2λ),计算平面APC 的法向量n =r(1,﹣1,222λλ-),平面ADF 的法向量m =r(1,0,0),根据夹角公式计算得到答案. 【详解】(1)∵BAF =90°,∴AF ⊥AB ,又∵平面ABEF ⊥平面ABCD ,且平面ABEF ∩平面ABCD =AB , ∴AF ⊥平面ABCD ,又四边形ABCD矩形,∴以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系, ∵AD =2,AB =AF =2EF =2,P 是DF 的中点,∴B (2,0,0),E (1,0,2),C (2,2,0),P (0,1,1),BE =u u u r(﹣1,0,2),CP =u u u r (﹣2,﹣1,1), 设异面直线BE 与CP 所成角的平面角为θ,则cosθ2301556BE CP BE CP⋅===⋅⋅u u u r u u u ru u u r u u u r ,∴异面直线BE 与CP 所成角的余弦值为23015. (2)A (0,0,0),C (2,2,0),F (0,0,2),D (0,2,0),设P (a ,b ,c ),FP FD λ=u u u r u u u r,0≤λ≤1,即(a ,b ,c ﹣2)=λ(0,2,﹣2),解得a =0,b =2λ,c =2﹣2λ,∴P (0,2λ,2﹣2λ),AP =u u u r(0,2λ,2﹣2λ),AC =u u u r (2,2,0), 设平面APC 的法向量n =r(x ,y ,z ),则()2220220n AP y z n AC x y λλ⎧⋅=+-=⎨⋅=+=⎩u u uv r u u u v r,取x =1,得n =r(1,﹣1,222λλ-), 平面ADP 的法向量m =r(1,0,0),∵二面角D ﹣AP ﹣C 的正弦值为6, ∴|cos m n r r <,>|2261()322()22m nm nλλ⋅===-⋅+-r r r r , 解得12λ=,∴P (0,1,1), ∴PF 的长度|PF |222(00)(10)(12)2=-+-+-=.【点睛】本题考查了异面直线夹角,根据二面角求长度,意在考查学生的空间想象能力和计算能力.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.24.甲、乙、丙三名射击运动员射中目标的概率分别为1,,2a a (01)a <<,三人各射击一次,击中目标的次数记为ξ.(1)求ξ的分布列及数学期望;(2)在概率()P i ξ=(i =0,1,2,3)中, 若(1)P ξ=的值最大, 求实数a 的取值范围. 【答案】(1)41a +,ξ的分布列为(2)10,2⎛⎤ ⎥⎝⎦【解析】(1)P(ξ)是“ξ个人命中,3-ξ个人未命中”的概率.其中ξ的可能取值为0、1、2、3.P(ξ=0)=01C 112⎛⎫-⎪⎝⎭02C (1-a)2=12(1-a)2; P(ξ=1)=11C ·122C (1-a)2+01C 112⎛⎫- ⎪⎝⎭12C a(1-a)=12(1-a 2); P(ξ=2)=11C ·1212C a(1-a)+01C 112⎛⎫- ⎪⎝⎭22C a 2=12(2a -a 2);P(ξ=3)=11C ·1222C a 2=22a . 所以ξ的分布列为ξ的数学期望为E(ξ)=0×12(1-a)2+1×12(1-a 2)+2×12(2a -a 2)+3×22a=412a +.(2)P(ξ=1)-P(ξ=0)=12[(1-a 2)-(1-a)2]=a(1-a); P(ξ=1)-P(ξ=2)=12[(1-a 2)-(2a -a 2)]=122a-; P(ξ=1)-P(ξ=3)=12[(1-a 2)-a 2]=2122a-.由2(1)0,12{0,21202a a a a-≥-≥-≥和0<a <1,得0<a≤12,即a 的取值范围是10,2⎛⎤ ⎥⎝⎦.。
江苏省南通市四校2020-2021学年高三上学期第二次联考数学试题

因为 , ,
则 , , , ,
即ABD错,C正确;
故选:C.
【点睛】
本题主要考查判断元素与集合之间关系、判断集合与集合之间关系,以及集合的并集,涉及不等式的解法,属于基础题型.
2.A
【分析】
本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查. 时, .
(1)求 的值;
(2)当 时,求 的图象与 轴所围成图形的面积.
18.已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).
(Ⅰ)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值;
(Ⅱ)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.
【详解】
因为 , ,
所以 .
故选:D.
【点睛】
本题考查根据分段函数的解析式求函数值,考查三角函数求值问题,属于基础题.
4.B
【分析】
只需使原函数在 和 上都递增,且端点处的函数值符合要求即可.
【详解】
若函数 在 上递增,则只需满足 ,
解得: .
故选:B.
【点睛】
本题考查根据分段函数的单调性求参数的取值范围,较简单.
【详解】
由函数图象可知,函数f(x)为奇函数,
而 中, 是非奇非偶函数, 是偶函数,
应排除B,C.
若函数为f(x)=x- ,则x→+∞时,f(x)→+∞,排除D;
故选: .
【点睛】
本题考查由函数图象选取函数解析式,涉及函数奇偶性的判断以及极限,属综合基础题.
7.B
【分析】
江苏省南通市通州区2019-2020学年高三第二次调研抽测数学试题(教师版)

2020届高三第二次调研抽测数学一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.1.己知复数z 满足(12)34z i i +=+ (i 为虚数单位),则z =__________【解析】【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】解:由(12)34z i i +=+,得34(34)(12)11212(12)(12)55i i i z i i i i ++-===-++-,z ∴=【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.己知集合{1A =,2a ,4},{2B a =,0},若A B ⋂≠∅,则实数a 的值为_______. 【答案】12【解析】【分析】根据题意对2a 的值分情况讨论,分别检验是否符合题意,即可求出a 的值.【详解】解:A B ⋂≠∅Q ,且元素之间互异,0a ∴≠,①当21a =时:12a =,此时集合{1A =,14,4},集合{1B =,0},符合题意, ②当24a =时:2a =,此时集合{1A =,4,4},集合{4B =,0},不符合元素的互异性,故舍去, ③当22a a =时:0a =或2,此时不符合元素的互异性,故舍去, 综上所求:12a =, 故答案为:12. 【点睛】本题主要考查了集合的基本运算,做题时注意集合元素的互异性,是基础题.3.如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为_______。
【答案】85【解析】【分析】写出茎叶图对应的所有的数,去掉最高分,最低分,再求平均分.【详解】解:所有的数为:77,78,82,84,84,86,88,93,94,共9个数,去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7个数,平均分为78828484868893857++++++=,故答案为:85.【点睛】本题考查茎叶图及平均数的计算,属于基础题.4.执行如图所示的伪代码,则输出的结果为.【答案】11【解析】试题分析:I=1,1<7成立,S=3,I=3;3<7成立,S=7,I=5;5<7,S=11,I=7;7<7不成立,输出11;考点:1.程序框图;2.循环结构;5.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_________.【答案】1 3【解析】【求出所有可能,找出符合可能的情况,代入概率计算公式.【详解】解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有246=ð种,甲乙在同一个公司有两种可能,故概率为2163 P==,故答案为:13.【点睛】本题考查古典概型及其概率计算公式,属于基础题6.函数()f x=_____________.【答案】1|05 x x⎧⎫<≤⎨⎬⎩⎭【解析】【分析】由题意可得,2210xlgx⎧>⎪⎪⎨⎪-⎪⎩…,解不等式可求.【详解】解:由题意可得,2210 xlgx⎧>⎪⎪⎨⎪-⎪⎩…,解可得,15x <…,故答案为:1|05x x⎧⎫<⎨⎬⎩⎭….【点睛】本题主要考查了函数的定义域的求解,属于基础题.7.已知双曲线221412x y-=的右准线与渐近线的交点在抛物线22y px=上,则实数p的值为___________.【答案】3 2【解析】求出双曲线的渐近线方程,右准线方程,得到交点坐标代入抛物线方程求解即可.【详解】解:双曲线221412x y -=的右准线2414a x c ===,渐近线y =,双曲线221412x y -=的右准线与渐近线的交点(1,, 交点在抛物线22y px =上,可得:32p =, 解得32p =. 故答案为:32. 【点睛】本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查,属于基础题.8.已知高为3 的圆柱内接于一个直径为5的球内,则该圆柱的体积为_______.【答案】12π【解析】【分析】画出图形,求出圆柱的底面半径,然后求解体积.【详解】解:高为3的圆柱内接于一个直径为5的球内,如图:可得2r ==, 则该圆柱的体积为:22312ππ⨯⨯=.故答案为:12π.【点睛】本题考查球的内接体,圆柱的体积的求法,考查空间想象能力以及计算能力.考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.9.已知等比数列{}n a 的各项均为正数,若32a =,则152a a +的最小值为_____.【答案】【解析】【分析】由题意可得,0q >,10a >,122a q=,2152224a a q q +=+,利用基本不等式可求最小值。
2020届江苏省南通市高考第二次调研数学模拟试卷有答案(加精)

南通市高三第二次调研测试数学Ⅰ参考公式:柱体的体积公式V Sh =柱体,其中S 为柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲. 2.已知复数12i34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 3.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图所示, 则成绩不低于60分的人数为▲.4.如图是一个算法流程图,则输出的S 的值为▲.5.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积 大于32 cm 2的概率为▲.6.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲.7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()2P -,则双曲线C 的焦距为▲./分(第3题)8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A ,,(51)B ,,则tan()αβ-的值为▲.9.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲.11.在平面直角坐标系xOy 中,若动圆C上的点都在不等式组33030x x x ⎧⎪+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲.12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点,则实数 m 的取值范围是▲.13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.14.已知a为常数,函数()f x =23-,则a 的所有值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b,()12=-c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.16.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AB = AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异于 端点),且∠ABE =∠ACF ,AE ⊥BB 1,AF ⊥CC 1. 求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为AA 1B 1C 1B CFE(第16题)(第18题)(1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆 柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形 (各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大?19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,.记i i i c a b =+(i = 1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由.20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(第17题)0(2)设1()()ln 1(0)2a g x f x b x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <.南通市高三第二次调研测试数学Ⅱ(附加题)若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=.B .[选修4-2:矩阵与变换](本小题满分10分)换1T ,在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变2T 对应的矩阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积.C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)ABDOC(第21—A 题)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张 如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元, 点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖总金额为X 元. (1)求概率(600)P X =;(2)求X 的概率分布及数学期望()E X .23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除.南通市高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲.【答案】{}13,2.已知复数12i 34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 【答案】433.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图 所示,则成绩不低于60分的人数为▲.【答案】304.如图是一个算法流程图,则输出的S 的值为▲. 【答案】1255.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积大于32 cm 2的概率为▲. 【答案】136.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲.7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()2P -,则双曲线C 的焦距为▲. 【答案】8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A,,(51)B ,,则tan()αβ-的值为▲./分(第3题)【答案】979.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 【答案】6-10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲. 【答案】811.在平面直角坐标系xOy 中,若动圆C上的点都在不等式组33030x x x ⎧⎪+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲. 【答案】22(1)4x y -+=12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点, 则实数m 的取值范围是▲. 【答案】()1+∞,13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.【答案】1014.已知a为常数,函数()f x =23-,则a 的所有值为▲.【答案】144,二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b ,()12=-c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.解:(1)因为()cos sin αα=,a ,()sin cos ββ=-,b,()12=-c ,所以1===a b c ,且cos sin sin cos sin ()αβαβαβ⋅=-+=-a b . ……3分因为+=a b c ,所以22+=a bc ,即a 2+ 2a ⋅b + b 2= 1,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.……6分(2)因为5π6α=,所以()12=,a .依题意,()1sin cos 2ββ+=--,b c .……8分因为()//+a b c,所以)()11cos sin 022ββ-+--=.化简得,11sin 22ββ=,所以()π1sin 32β-=.…… 12分因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.…… 14分16.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AB = AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异 于端点),且∠ABE =∠ACF ,AE ⊥BB 1,AF ⊥CC 1. 求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .证明:(1)在三棱柱ABC -A 1B 1C 1中,BB 1 // CC 1. 因为AF ⊥CC 1,所以AF ⊥BB 1.…… 2分 又AE ⊥BB 1,AE I AF A =,AE ,AF ⊂平面AEF , 所以BB 1⊥平面AEF .…… 5分又因为BB 1⊂平面BB 1C 1C ,所以平面AEF ⊥平面BB 1C 1C .…… 7分 (2)因为AE ⊥BB 1,AF ⊥CC 1,∠ABE =∠ACF ,AB = AC , 所以Rt △AEB ≌Rt △AFC . 所以BE = CF .…… 9分 又由(1)知,BE // CF . 所以四边形BEFC 是平行四边形. 从而BC // EF .…… 11分又BC ⊄平面AEF ,EF ⊂平面AEF , 所以BC // 平面AEF .…… 14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为AA 1B 1C 1B CFE (第16题)(1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值. 解:设()00P x y ,,()11Q x y ,.(1)在3y x =+中,令0x =,得3y =,从而b = 3. …… 2分由222193y x a y x ⎧+=⎪⎨⎪=+⎩,得()222319x x a ++=. 所以20269a x a =-+.…… 4分因为10PB x ==,所以2269a a=+,解得218a =. 所以椭圆的标准方程为221189y x +=.…… 6分 (2)方法一: 直线PB 1的斜率为1003PB y k x -=, 由11QB PB ⊥,所以直线QB 1的斜率为1003QB x k y =--. 于是直线QB 1的方程为:0033x y x y =-+-. 同理,QB 2的方程为:0033x y x y =--+.…… 8分 联立两直线方程,消去y ,得20109y x x -=.…… 10分因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以012x x =-.…… 12分 所以1212012PB B QB B S xS x ∆∆==.…… 14分 方法二:设直线PB 1,PB 2的斜率为k ,k ',则直线PB 1的方程为3y kx =+. 由11QB PB ⊥,直线QB 1的方程为13y x k=-+.将3y kx =+代入221189y x +=,得()2221120k x kx ++=, (第17题)0(第18题)因为P 是椭圆上异于点B 1,B 2的点,所以00x ≠,从而0x =21221k k -+.…… 8分 因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以2000200033912y y y k k x x x -+-'⋅=⋅==-,得12k k '=-.…… 10分 由22QB PB ⊥,所以直线2QB 的方程为23y kx =-.联立1323y x k y kx ⎧=-+⎪⎨⎪=-⎩,则2621k x k =+,即12621k x k =+.…… 12分 所以1212201212212621PB B QB B k S xk S x kk ∆∆-+===+.…… 14分18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿 虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形(各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大? 解:(1)设所得圆柱的半径为r dm ,则()2π24100r r r +⨯=, (4)分解得r =6分(2)设所得正四棱柱的底面边长为a dm ,则21004x a a a x ⎧⎪⎨⎪-⎩≤≤,,即220.x a a x ⎧⎪⎨⎪⎩≤≤, (9)分 方法一:所得正四棱柱的体积3204400x x V a x x x⎧<⎪=⎨⎪>⎩≤≤,,……11分记函数304()400x x p x x x⎧<⎪=⎨⎪>⎩≤,, 则()p x在(0,上单调递增,在)⎡+∞⎣上单调递减,所以当x =max ()p x =所以当x =a =max V=3.…… 14分 方法二:202a x a≤≤,从而a 11分所得正四棱柱的体积()222020V a x a a a ==≤≤.所以当a =x =max V=3.…… 14分答:(1dm ;(2)当x 为 16分 【评分说明】①直接“由()21002xx x ⋅+=得,x=2分;②方法一中的求解过程要体现()p x V ≤≤,凡写成()p x V =≤5分, 其它类似解答参照给分.19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,. 记i i i c a b =+(i = 1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由. 解:(1)假设数列123c c c ,,是等差数列, 则2132c c c =+,即()()()2211332a b a b a b +=+++.因为12b b ,,3b 是等差数列,所以2132b b b =+.从而2132a a a =+.……2分 又因为12a a ,,3a 是等比数列,所以2213a a a =. 所以123a a a ==,这与1q ≠矛盾,从而假设不成立.所以数列123c c c ,,不是等差数列.……4分 (2)因为11a =,2q =,所以12n n a -=.因为2213c c c =,所以()()()2222214b b d b d +=+-++,即223b d d =+,……6分 由2220c b =+≠,得2320d d ++≠,所以1d ≠-且2d ≠-.又0d ≠,所以223b d d =+,定义域为{}120d d d d ∈≠-≠-≠R ,,.……8分 (3)方法一:设c 1,c 2,c 3,c 4成等比数列,其公比为q 1, 则1111111221111331111=2=3=.a b c a q b d c q a q b d c q a q b d c q +=⎧⎪++⎪⎨++⎪⎪++⎩①②③④,,,……10分将①+③-2×②得,()()2211111a q c q -=-,⑤将②+④-2×③得,()()22111111a q q c q q -=-,⑥……12分 因为10a ≠,1q ≠,由⑤得10c ≠,11q ≠. 由⑤⑥得1q q =,从而11a c =.……14分 代入①得10b =.再代入②,得0d =,与0d ≠矛盾. 所以c 1,c 2,c 3,c 4不成等比数列.……16分方法二:假设数列1234c c c c ,,,是等比数列,则324123c c c c c c ==.……10分 所以32432132c c c c c c c c --=--,即32432132a a d a a d a a d a a d -+-+=-+-+. 两边同时减1得,321432213222a a a a a a a a d a a d-+-+=-+-+.……12分 因为等比数列a 1,a 2,a 3,a 4的公比为q ()1q ≠,所以()321321213222q a a a a a a a a d a a d-+-+=-+-+. 又()23211210a a a a q -+=-≠,所以()2132q a a d a a d -+=-+,即()10q d -=. ……14分这与1q ≠,且0d ≠矛盾,所以假设不成立.所以数列1234c c c c ,,,不能为等比数列.……16分20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(2)设1()()ln 1(0)2a g x f xb x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <. 解:(1)由题意,()1cos 0f x a x '=-≥对x ∈R 恒成立,因为0a >,所以1cos x a≥对x ∈R 恒成立,因为()max cos 1x =,所以11a ≥,从而01a <≤.……3分(2)①()1sin ln 12g x x x b x =-++,所以()11cos 2b g x x x '=-+.若0b <,则存在02b ->,使()()11cos 0222b b g '-=---<,不合题意,所以0b >.……5分 取30e bx -=,则001x <<.此时()30000111sin ln 11ln 10222b g x x x b x b e -=-++<+++=-<.所以存在00x >,使()00g x <.……8分 ②依题意,不妨设120x x <<,令21x t x =,则1t >. 由(1)知函数sin y x x =-单调递增,所以2211sin sin x x x x ->-. 从而2121sin sin x x x x ->-.……10分因为()()12g x g x =,所以11122211sin ln 1sin ln 122x x b x x x b x -++=-++,所以()()()2121212111ln ln sin sin 22b x x x x x x x x --=--->-. 所以212120ln ln x x b x x -->>-.……12分下面证明2121ln ln x x x x ->-1ln t t ->()ln 0t <*.设())ln 1h t t t =>,所以()210h t -'=<在()1+∞,恒成立.所以()h t 在()1+∞,单调递减,故()()10h t h <=,从而()*得证.所以2b ->2124x x b <.……16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=. 证明:延长AO 交⊙O 于点E ,则()()DB DC DE DA OD OE OA OD ⋅=⋅=+⋅-.……5分因为OE OA =,所以()()22DB DC OA OD OA OD OA OD ⋅=+⋅-=-. 所以22DB DC OD OA ⋅+=.……10分B .[选修4-2:矩阵与变换](本小题满分10分)在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变换1T ,2T 对应的矩 阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积. 解:依题意,依次实施变换1T ,2T 所对应的矩阵=NM 201020010202⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ……5分则20000200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20360200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20240224⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 所以(00)(30)(22)A B C ,,,,,分别变为点(00)(60)(44)A B C ''',,,,,. 从而所得图形的面积为164122⨯⨯=.……10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.解:以极点为原点,极轴为x 轴的非负半轴,建立平面直角坐标系xOy .ABDC(第21—A 题)EO则点P的直角坐标为()1.……2分将直线l :()sin 23ρθπ-=的方程变形为:sin cos cos sin 233ρθρθππ-=,40y -+=.……5分所以()1P 到直线l40y -+=2=.故所求圆的普通方程为()(2214x y -+=.……8分化为极坐标方程得,()π4sin 6ρθ=+.……10分D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2. 证明:因为a ,b ,c 为正实数,=2=(当且仅当a b c ==取“=”).……10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应 写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X 元. (1)求概率()600P X =;(2)求X 的概率分布及数学期望()E X .解:(1)从3⨯3表格中随机不重复地点击3格,共有39C 种不同情形. 则事件:“600X =”包含两类情形: 第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含34C 种情形,第二类包含111144C C C ⋅⋅种情形.所以()3111414439C C C C 560021C P X +⋅⋅===.……3分 (2)X 的所有可能值为300,400,500,600,700.则()3439C 413008421C P X ====,()121439C C 242400847C P X ⋅====, ()1212144439C C C C 3055008414C P X ⋅+⋅====,()121439C C 637008442C P X ⋅====. 所以X 的概率分布列为:……8分所以()12553300400500600700500217142142E X=⨯+⨯+⨯+⨯+⨯=(元). ……10分23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除. 解:由二项式定理,得21C i i n a +=(i =0,1,2,…,2n +1).(1)210221055535C 3C 5C 30T a a a =++=++=;…… 2分(2)因为()()()()()12121!1C 11!!n kn n n k n k n k n k ++++++=++⋅++-()()()()212!!!n n n k n k +⋅=+-()221C n kn n +=+, …… 4分所以()021nn n k k T k a -==+∑()21021C nn kn k k -+==+∑ ()121021C nn k n k k +++==+∑ ()()12102121C nn k n k n k n +++==++-+⎡⎤⎣⎦∑ ()()112121021C21C nnn kn kn n k k n k n ++++++===++-+∑∑()()12210221C21C nnn k n knn k k n n ++++===+-+∑∑()()()2212112212C 21222n n n n n n +=+⋅⋅+-+⋅⋅ ()221C n n n =+. …… 8分()()()()1221212121C 21C C 221C n n n nn n n n n T n n n ----=+=++=+. 因为21C n n *-∈N ,所以n T 能被42n +整除.…… 10分。
江苏省南通市通州区2020届高三第二次调研抽测数学试题

江苏省南通市通州区2020届高三第二次调研抽测数学试题 参考公式:柱体的体积公式V sh =柱体,其中s 为柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在等答题卡相应位置.1. 己知复数z 满足z(l + 2i) = 3 + 4i (i 为虚数单位),则z =▲ 。
2. 己知集合{}{}21,,4,2,0A a B a ==, 若A B ≠∅,则实数a 的值为 ▲ .3. 如图是九位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均分为▲ .4. 执行如图所示的伪代码,则输出的结果为▲ .5. 甲、乙、丙、丁 4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为▲ 。
6.函数()f x =的定义域为▲ 。
7. 己知双曲线221412x y -=的右准线与渐近线的交点在抛物线22y px =上,则实数p 的值为 ▲ .8. 己知高为3的圆柱内接于一个直径为5的球内,则该圆柱的体积为 ▲ .9. 己知等比数列{}n a 的各项均为正数,若32a =,则15 2a a +的最小值为 ▲ .10. 在平面直角坐标系xOy 中,己知圆,圆. 直线l : 3y kx =+与圆C 相切,且与圆C'相交于,A B 两点、,则弦AB 的长为 ▲ .11. 己知函数()()21x f x x =-,若关于x 的不等式()2(22)30f x x a f ax --+-≤对任意 的[]1,3x ∈恒成立,则实数a 的取值范围是▲ .12. 在ABC ∆中,己知,,a b c 分别是角,,A B C 的对边.若,,a b c 成等比数列,且()()223b c b c a ac +-=-,则11tan tan A C+的值为▲ . 13. 如图,己知半圆。
的直径 8AB =,点P 是弦AC :(包含端点,A C )上的动点,点Q在弧BC 上.若OAC ∆是等边三角形,且满足0OQ OP ⋅=,则OP BQ ⋅的最小值为▲ .14. 若函数()2(),f x x ax b a b R =++∈在区间(]0,1上有零点0x ,则0011493x ab x ⎛⎫+- ⎪⎝⎭的最大值为▲ . 二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)如图, 在平面直角坐标系xOy 中, A 为单位圆与x 轴正半轴的交点,P 为单位圆上一点,且AOP α∠=,将点P 沿单位圆按逆时针方向旋转角β后到点(),Q a b ,其中2,63ππβ⎡⎤∈⎢⎥⎣⎦(1) 若点P 的坐标为34,55⎛⎫ ⎪⎝⎭,4πβ=时,求ab 的值; (2) 若6πα=,求22b a -的取值范围.16. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥ABCD ,且 PA AD =, ,E F 分别是棱, AB PC 的中点.求证:(1)EF 平面PAD ;(2) 平面PCE ⊥平面PCD .17. (本小题满分14分)中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.己知某条高铁线路通车后,发车时间间隔t (单位:分钟)满足525,t t N *≤≤∈.经测算,高铁的载客量与发车时间间隔r 相关:当2025t ≤≤时高铁为满载状态,载客量为1000人;当520t ≤≤时,载客量会在满载基础上减少,减少的人数与()220t -成正比,且发车时间为5分钟时的载客量为100人.记发车间隔时间为t 分钟时,高铁载客量为()P t .(1) 求()P t 的表达式;(2) 若该线路发车时间间隔t 分钟时的净收入()2()4065020004t Q t P t t t =-+-(元),当发车时间间隔为多少时,单位时间的净收益()Q t t最大.18. (本小题满分16分) 在平面直角坐标系中,己知椭圆()2222:10x y C a b a b +=>>的离心率为12,右焦点F 到右准线的距离为3.(1)求椭圆C 的方程;(2)过点F 作直线l (不与x 轴重合)和椭圆C 交于, M N 两点,设点5,02A ⎛⎫ ⎪⎝⎭ ① 若AMN ∆,求直线l 方程; ② 过点M 作与y 轴垂直的直线'l 和直线NA 交于点P ,求证:点P 在一条定直线上.19. (本小题满分16分)已知函数()2()ln 2,()12()f x x ax a R g x x f x =+∈=+-(1)当1a =-时,① 求函数()f x 在点()1,(1)A f 处的切线方程;② 比较()f m 与1f m ⎛⎫ ⎪⎝⎭的大小; (2)当0a >时,若对()1,x ∀∈+∞时,()0g x ≥,且()g x 有唯一零点, 证明:34a <.20. (本小题满分16分)己知数列{}n a 的前项积为n T ,满足()(1)23n n n T n N -*=∈.数列{}nb 的首项为2, 且满足()11n n nb n b +=+ ()n N *∈(1) 求数列{}n a ,{}n b 的通项公式;(2) 记集合{}()1105,n n n M n a b b n n N λ*+=≤+∈,若集合M 的元素个数为2,求实数λ的取值范围;(3) 是否存在正整数,, p q r ,使得12q p q a a a b r a ++⋅⋅⋅+=+⋅成立?如果存在,请写出,,p q r 满足的条件;如果不存在,请说明理由.2020届高三第二次调研抽测数学II (附加题)21.本题包括A, B 共2小题,每小题10分,共20分.把答案写在答题卡相应的位置上.解答时应写出文字说明' 证明过程或演算步骤.A. 选修4—2:矩阵与变换设点(),x y 在矩阵M 对应变换作用下得到点2,x x y +(). (1) 求矩阵M ;(2) 若直线l :2 5x y -=在矩阵M 对应变换作用下得到直线'l ,求直线'l 的方程.B. 选修4一4 :极坐标与参数方程在平面直角坐标系xOy 中,己知直线l 的参数方程为3143x t y t =+⎧⎨=+⎩(t 为参数),曲线C 的参数方程为cos sin x a a y a θθ=+⎧⎨=⎩(θ为参数,0a ≠).若直线l 与曲线C 恒有公共点,求实数a 的取值范围.22. 【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.某校高一年级模仿《中国诗词大会》节目举办学校诗词大会,进入正赛的条件为:电脑随机抽取10首古诗,参赛者能够正确背诵6首及以上的进入正赛.若学生甲参赛,他背诵每一首古诗的正确的概率均为12. (1) 求甲进入正赛的概率;(2) 若进入正赛,则采用积分淘汰制,规则是:电脑随机抽取4首古诗,每首古诗背 诵正确加2分,错误减1分.由于难度增加,甲背诵每首古诗正确的概率为25, 求甲在正赛中积分X 的概率分布列及数学期望. 23. 【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.已知抛物线2:2C y x =的焦点为F ,准线为l ,P 为抛物线C 上异于顶点的动点.(1) 过点P 作准线l 的垂线,垂足为H ,若P H F ∆,与POF ∆的面积之比为2:1,求点P 的坐标;(2) 过点1,02M⎛⎫-⎪⎝⎭任作一条直线m与抛物线C交于不同的两点,A B.若两直线,PA PB斜率之和为2,求点P的坐标.。