高一北师大版数学必修五同步导学案(表格版)2等差数列(1)

合集下载

北师大版高中数学必修5《一章 数列 2 等差数列 2.1等差数列》赛课导学案_18

北师大版高中数学必修5《一章 数列  2 等差数列  2.1等差数列》赛课导学案_18

《等差数列》教学设计一.教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(北师大版)第一章数列第二节等差数列第一课时。

借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式及其产生过程。

重点是理解等差数列的概念,难点是掌握等差数列的通项公式及应用。

本节课为以后学习等差数列的求和、等比数列奠定基础,起着承前启后的作用。

等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在思想方法上都具有积极的意义;是培养学生数学能力的良好题材。

因此它是本章的重点,也是高考考查的是重点内容之一,同时也是数学抽象、逻辑推理、数学建模、数学运算、数据分析等核心素养的落脚点。

二.学科素养1.知识素养:理解等差数列、等差中项的概念,掌握等差数列通项公式的推导过程及应用。

2.能力素养:通过实例理解并明确等差数列的定义;探索并掌握等差数列的通项公式,从中培养学生观察、归纳能力;会利用等差数列的通项公式解决相关的应用问题。

3.情感素养:体验从特殊到一般,又到特殊的认知规律,加强理论联系实际;培养学生善于观察的能力,进一步提高学生的推理、归纳以及计算能力;强化数学建模素养,渗透方程的数学思想;通过实际问题体会数学的价值。

三.学生学情分析本节内容高一下学期,经过高一上学期的学习,学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的认识,对数学公式的运用已具备一定的技能,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻。

他们的思维正从经验性的逻辑思维向抽象思维发展,但是思维的严密性还有待加强,实际应用意识不强,数学建模意识还较为浅薄。

因而在授课时从具体的实例出发,逐步提高学生的抽象思维能力、应用意识、建模能力。

四.教学策略分析数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程,结合学生的实际情况,及本节内容的特点,我采用的是“问题教学法”为主导,结合分组讨论等策略进行教学。

北师大版高中数学必修5《一章 数列 2 等差数列 2.1等差数列》赛课导学案_11

北师大版高中数学必修5《一章 数列  2 等差数列  2.1等差数列》赛课导学案_11
性质:若 ,

推广式:
求公差:
等差数列的前 项和 :
通项公式:
性质1: , , , 成等差数列
性质2:由 ,知 为等差数列
课后作业
1.等差数列{ }中,若 ,则 .
2.等差数列{ }中,若 , ,则公差 .
3.等差数列{ }的前 项和为 ,若 ,则公差 .
4.等差数列{ }的前 项和为 ,若 ,则 .
,二次函数 开口向下,对称轴为 ,所以当 或 时, 取最大值 .
思路二:由 ,得 ,
可知数列{ }为单调递减数列,令 , ,
当 时, ,当 时, ,
所以当 或 时, 取最大值 .
课堂练习设计意图
课堂练习的三道题由浅入深,第1题由学生口答,第2、3题由两位学生演板,其他学生独立完成.及时点评,规范学生解题步骤,给予学生及时的肯定和鼓励.注意在点评的过程中实现如下设计意图:
课堂练习
1.等差数列{ }中,若 , ,则 .
思路:由 ,解得 ,故 .
2.等差数列{ }的前 项和为 ,已知 , ,求 .
思路一:由 ,解得 ,
故 ,所以 .
思路二:由 ,解得 ,
故 , ,
所以 .
思路三:由 ,得 ,
由 所以 .
3.等差数列{ }中, ,求通项 及前 项和 的最大值.
思路一:由 ,得 ,
所以 .
思路三:由 , , 成等差数列,得
整理得 ,所以 .
巩固练习设计意图
巩固练习的三道题由浅入深,第1题由学生口答,第2、3题由两位学生演板.及时点评,规范学生解题步骤,给予学生及时的肯定和鼓励.注意在点评的过程中实现如下设计意图:
通过第1题的练习过程,使学生进一步掌握等差中项的概念和等差数列的重要性质;

高中数学 第1章 数列2等差数列同步教学案 北师大版必修5 学案

高中数学 第1章 数列2等差数列同步教学案 北师大版必修5 学案

2.1 等差数列(一)课时目标 1.理解等差数列的概念.2.掌握等差数列的通项公式.1.如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做________数列,这个常数叫做等差数列的________,公差通常用字母d 表示.2.若三个数a ,A ,b 构成等差数列,则A 叫做a 与b 的__________,并且A =________. 3.若等差数列的首项为a 1,公差为d ,则其通项a n =____________.4.等差数列{a n }中,若公差d >0,则数列{a n }为______数列;若公差d <0,则数列{a n }为________数列.一、选择题1.已知等差数列{a n }的通项公式a n =3-2n ,则它的公差d 为( ) A .2 B .3 C .-2 D .-3 2.△ABC 中,三内角A 、B 、C 成等差数列,则角B 等于( )A .30° B.60° C.90° D.120° 3.在数列{a n }中,a 1=2,2a n +1=2a n +1(n ∈N +),则a 101的值为( ) A .49B .50C .51D .52 4.一个等差数列的前4项是a ,x ,b,2x ,则a b等于( ) A.14 B.12 C.13 D.235.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2 C .4 D .66.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( ) A .a n =2n -2 (n ∈N +) B .a n =2n +4 (n ∈N +) C .a n =-2n +12 (n ∈N +) D .a n =-2n +10 (n ∈N +) 二、填空题7.已知a =13+2,b =13-2,则a 、b 的等差中项是__________.8.一个等差数列的前三项为:a,2a -1,3-a .则这个数列的通项公式为________.9.若m ≠n ,两个等差数列m 、a 1、a 2、n 与m 、b 1、b 2、b 3、n 的公差为d 1和d 2,则d 1d 2的值为________. 10.首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是________. 三、解答题11.已知成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.12.已知数列{a n }满足a 1=4,a n =4-4a n -1(n ≥2),令b n =1a n -2. (1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.能力提升13.一个等差数列的首项为a 1=1,末项a n =41 (n ≥3)且公差为整数,那么项数n 的取值个数是( ) A .6 B .7 C .8 D .不确定14.已知数列{a n }满足a 1=15,且当n >1,n ∈N +时,有a n -1a n =2a n -1+11-2a n ,设b n =1a n ,n ∈N +.(1)求证:数列{b n }为等差数列.(2)试问a 1a 2是否是数列{a n }中的项?如果是,是第几项; 如果不是,请说明理由.1.判断一个数列{a n }是否是等差数列,关键是看a n +1-a n 是否是一个与n 无关的常数.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1、d 、n 、a n 四个量中,只要知道其中任意三个 量,就可以求出另一个量.3.三个数成等差数列可设为:a -d ,a ,a +d 或a ,a +d ,a +2d ;四个数成等差数列可设为:a -3d ,a -d ,a +d ,a +3d 或a ,a +d ,a +2d ,a +3d .§2 等差数列2.1 等差数列(一) 答案知识梳理1.等差 公差 2等差中项 a +b23.a 1+(n -1)d 4.递增 递减作业设计 1.C 2.B 3.D4.C [⎩⎪⎨⎪⎧2x =a +b ,2b =x +2x ,∴a =x 2,b =32x . ∴a b =13.]5.B [设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d =12且a (a -d )(a +d )=48,解得a =4且d =±2,又{a n }递增,∴d >0,即d =2,∴a 1=2.]6.D [由⎩⎪⎨⎪⎧a 2·a 4=12,a 2+a 4=8,d <0,⇒⎩⎪⎨⎪⎧a 2=6,a 4=2,⇒⎩⎪⎨⎪⎧a 1=8,d =-2,所以a n =a 1+(n -1)d ,即a n =8+(n -1)×(-2),得a n =-2n +10.] 7. 3 8.a n =14n +1解析 ∵a +(3-a )=2(2a -1), ∴a =54.∴这个等差数列的前三项依次为54,32,74.∴d =14,a n =54+(n -1)×14=n4+1.9.43解析 n -m =3d 1,d 1=13(n -m ).又n -m =4d 2,d 2=14(n -m ).∴d 1d 2=13(n -m )14(n -m )=43. 10.83<d ≤3 解析 设a n =-24+(n -1)d ,由⎩⎪⎨⎪⎧a 9=-24+8d ≤0a 10=-24+9d >0解得:83<d ≤3.11.解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,∴⎩⎪⎨⎪⎧4a =26,a 2-d 2=40. 解得⎩⎪⎨⎪⎧ a =132,d =32或⎩⎪⎨⎪⎧a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.12.(1)证明 ∵a n =4-4a n -1(n ≥2),∴a n +1=4-4a n(n ∈N +).∴b n +1-b n =1a n +1-2-1a n -2=12-4a n-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12.∴b n +1-b n =12,n ∈N +.∴{b n }是等差数列,首项为12,公差为12.(2)解 b 1=1a 1-2=12,d =12. ∴b n =b 1+(n -1)d =12+12(n -1)=n2.∴1a n -2=n 2,∴a n =2+2n. 13.B [由a n =a 1+(n -1)d ,得41=1+(n -1)d , d =40n -1为整数,且n ≥3. 则n =3,5,6,9,11,21,41共7个.] 14.(1)证明 当n >1,n ∈N +时,a n -1a n =2a n -1+11-2a n ⇔1-2a n a n =2a n -1+1a n -1⇔1a n -2=2+1a n -1⇔1a n -1a n -1=4⇔b n -b n -1=4,且b 1=1a 1=5.∴{b n }是等差数列,且公差为4,首项为5.(2)解 由(1)知b n =b 1+(n -1)d =5+4(n -1)=4n +1. ∴a n =1b n =14n +1,n ∈N +.∴a 1=15,a 2=19,∴a 1a 2=145.令a n =14n +1=145, ∴n =11.即a 1a 2=a 11,∴a 1a 2是数列{a n }中的项,是第11项.2.1 等差数列(二)课时目标 1.进一步熟练掌握等差数列的通项公式.2.熟练运用等差数列的常用性质.1.等差数列的通项公式a n =a 1+(n -1)d ,当d =0时,a n 是关于n 的常函数;当d ≠0时,a n 是关于n 的一次函数;点(n ,a n )分布在以____为斜率的直线上,是这条直线上的一列孤立的点. 2.已知在公差为d 的等差数列{a n }中的第m 项a m 和第n 项a n (m ≠n ),则a m -a nm -n=____. 3.对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间的关系为______________.一、选择题1.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .102.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( ) A. 3 B .± 3 C .-33D .- 3 3.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12 B .8 C .6 D .44.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .355.设公差为-2的等差数列{a n },如果a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( ) A .-182 B .-78 C .-148 D .-826.若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q 为( ) A .p +q B .0 C .-(p +q ) D.p +q2二、填空题7.若{a n }是等差数列,a 15=8,a 60=20,则a 75=_____________________________. 8.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=________.9.已知⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 4=6,a 6=4,则a 10=___________________________.10.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=________.三、解答题11.等差数列{a n }的公差d ≠0,试比较a 4a 9与a 6a 7的大小.12.已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.能力提升13.在3与27之间插入7个数,使这9个数成等差数列,则插入这7个数中的第4个数值为( ) A .18 B .9 C .12 D .1514.已知两个等差数列{a n }:5,8,11,…,{b n }:3,7,11,…,都有100项,试问它们有多少个共同的项?1.在等差数列{a n }中,当m ≠n 时,d =a m -a nm -n为公差公式,利用这个公式很容易求出公差,还可变形为a m=a n +(m -n )d .2.等差数列{a n }中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列. 3.等差数列{a n }中,若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N +),特别地,若m +n =2p ,则a n +a m =2a p .2.1 等差数列(二)答案知识梳理1.d 2.d 3.a m +a n =a p +a q 作业设计1.C [由a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16,∴a 7-12a 8=12(2a 7-a 8)=12(a 6+a 8-a 8)=12a 6=8.]2.D [由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3.]3.B [由等差数列性质a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32, ∴a 8=8,又d ≠0, ∴m =8.]4.C [∵a 3+a 4+a 5=3a 4=12,∴a 4=4.∴a 1+a 2+a 3+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.] 5.D [a 3+a 6+a 9+…+a 99=(a 1+2d )+(a 4+2d )+(a 7+2d )+…+(a 97+2d ) =(a 1+a 4+…+a 97)+2d ×33 =50+2×(-2)×33=-82.] 6.B [∵d =a p -a q p -q =q -pp -q=-1,∴a p +q =a p +qd =q +q ×(-1)=0.] 7.24解析 ∵a 60=a 15+45d ,∴d =415,∴a 75=a 60+15d =20+4=24.8.1解析 ∵a 1+a 3+a 5=105,∴3a 3=105,a 3=35. ∴a 2+a 4+a 6=3a 4=99. ∴a 4=33,∴d =a 4-a 3=-2. ∴a 20=a 4+16d =33+16×(-2)=1. 9.125 解析1a 6-1a 4=14-16=2d ,即d =124. 所以1a 10=1a 6+4d =14+16=512,所以a 10=125. 10.12解析 由题意设这4个根为14,14+d ,14+2d ,14+3d .则14+⎝ ⎛⎭⎪⎫14+3d =2,∴d =12,∴这4个根依次为14,34,54,74,∴n =14×74=716,m =34×54=1516或n =1516,m =716,∴|m -n |=12.11.解 设a n =a 1+(n -1)d ,则a 4a 9-a 6a 7=(a 1+3d )(a 1+8d )-(a 1+5d )(a 1+6d ) =(a 21+11a 1d +24d 2)-(a 21+11a 1d +30d 2) =-6d 2<0,所以a 4a 9<a 6a 7.12.解 ∵a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15,∴a 4=5.又∵a 2a 4a 6=45,∴a 2a 6=9,即(a 4-2d )(a 4+2d )=9,(5-2d )(5+2d )=9,解得d =±2. 若d =2,a n =a 4+(n -4)d =2n -3; 若d =-2,a n =a 4+(n -4)d =13-2n .13.D [设这7个数分别为a 1,a 2,…,a 7,公差为d ,则27=3+8d ,d =3. 故a 4=3+4×3=15.]14.解 在数列{a n }中,a 1=5,公差d 1=8-5=3. ∴a n =a 1+(n -1)d 1=3n +2.在数列{b n }中,b 1=3,公差d 2=7-3=4, ∴b n =b 1+(n -1)d 2=4n -1.令a n =b m ,则3n +2=4m -1,∴n =4m3-1.∵m 、n ∈N +,∴m =3k (k ∈N +),又⎩⎪⎨⎪⎧0<m ≤1000<n ≤100,解得0<m ≤75.∴0<3k ≤75,∴0<k ≤25, ∴k =1,2,3,…,25∴两个数列共有25个公共项.2.2 等差数列的前n 项和(一)课时目标 1.掌握等差数列前n 项和公式及其性质.2.掌握等差数列的五个量a 1,d ,n ,a n ,S n 之间的关系.1.把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做____________________________. 例如a 1+a 2+…+a 16可以记作______;a 1+a 2+a 3+…+a n -1=______ (n ≥2).2.若{a n }是等差数列,则S n 可以用首项a 1和末项a n 表示为S n =__________;若首项为a 1,公差为d ,则S n 可以表示为S n =____________.3.等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为________.(2)S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列. (3)设两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,则a n b n =S 2n -1T 2n -1.一、选择题1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49 D .63 2.等差数列{a n }中,S 10=4S 5,则a 1d等于( ) A.12 B .2 C.14D .4 3.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( ) A .-9 B .-11 C .-13 D .-15 4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36.则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 5.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .6636.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1二、填空题7.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.8.两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,则a 5b 5的值是________.9.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 的值为________. 10.等差数列{a n }的前m 项和为30,前2m 项和为100,则数列{a n }的前3m 项的和S 3m 的值是________.三、解答题11.在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .12.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .能力提升13.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .2914.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n的个数是( )A .2B .3C .4D .51.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,通常已知其中三个量,可求另外两个量.在求等差数列的和时,一般地,若已知首项a 1及末项a n ,用公式S n =n (a 1+a n )2较好,若已知首项a 1及公2.2 等差数列的前n 项和(一)答案知识梳理1.S n S 16 S n -1 2.n (a 1+a n )2na 1+12n (n -1)d3.(1)d2作业设计1.C [S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.]2.A [由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ),∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.]3.D [由a 23+a 28+2a 3a 8=9得 (a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.]4.B [数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6),∵S 3=9,S 6-S 3=27,则S 9-S 6=45.∴a 7+a 8+a 9=S 9-S 6=45.]5.B [因a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.]6.B [由⎩⎪⎨⎪⎧a 1+a 3+…+a 2n -1=na 1+n (n -1)2×(2d )=90,a 2+a 4+…+a2n=na 2+n (n -1)2×(2d )=72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.] 7.15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24, 即2a 1+5d =8.由⎩⎪⎨⎪⎧a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15. 8.6512解析 a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512. 9.10解析 S 奇=(n +1)(a 1+a 2n +1)2=165,S 偶=n (a 2+a 2n )2=150.∵a 1+a 2n +1=a 2+a 2n ,∴n +1n =165150=1110, ∴n =10. 10.210解析 方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列. ∴30,70,S 3m -100成等差数列. ∴2×70=30+(S 3m -100),∴S 3m =210. 方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m成等差数列,∴2S 2m 2m =S m m +S 3m3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210. 11.解 由⎩⎪⎨⎪⎧a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d ,得⎩⎪⎨⎪⎧a 1+2(n -1)=11,na 1+n (n -1)2×2=35,解方程组得⎩⎪⎨⎪⎧n =5a 1=3或⎩⎪⎨⎪⎧n =7,a 1=-1.12.解 设等差数列{a n }的公差为d , 则S n =na 1+12n (n -1)d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =715a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n (n -1)2×12=14n 2-94n . 13.B [钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190. 当n =20时,S 20=210>200.∴n =19时,剩余钢管根数最少,为10根.]14.D [a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7(n +1)+12n +1=7+12n +1,∴n =1,2,3,5,11.]2.2 等差数列的前n 项和(二)课时目标 1.熟练掌握等差数列前n 项和的性质,并能灵活运用.2.掌握等差数列前n 项和的最值问题.3.理解a n 与S n 的关系,能根据S n 求a n .1.前n 项和S n 与a n 之间的关系对任意数列{a n },S n 是前n 项和,S n 与a n 的关系可以表示为a n =⎩⎪⎨⎪⎧(n =1),(n ≥2).2.等差数列前n 项和公式S n =____________=______________.3.等差数列前n 项和的最值(1)在等差数列{a n }中当a 1>0,d <0时,S n 有________值,使S n 取到最值的n 可由不等式组________ 确定; 当a 1<0,d >0时,S n 有________值,使S n 取到最值的n 可由不等式组____________确定.(2)因为S n =d2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有________值;当d <0时,S n 有________值;且n 取最接近对称轴的自然数时,S n 取到最值.一个有用的结论:若S n =an 2+bn ,则数列{a n }是等差数列.反之亦然.一、选择题1.已知数列{a n }的前n 项和S n =n 2,则a n 等于( ) A .n B .n 2C .2n +1D .2n -12.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( ) A .-2 B .-1 C .0 D .1 3.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( ) A .9 B .8 C .7 D .64.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310 B.13 C.18 D.195.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C . 2 D.126.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5D .S 6与S 7均为S n 的最大值二、填空题7.数列{a n }的前n 项和为S n ,且S n =n 2-n ,(n ∈N +),则通项a n =________. 8.在等差数列{a n }中,a 1=25,S 9=S 17,则前n 项和S n 的最大值是________.9.在等差数列{a n }中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n =________. 10.等差数列{a n }中,a 1<0,S 9=S 12,该数列在n =k 时,前n 项和S n 取到最小值,则k 的值是________.三、解答题11.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.12.已知等差数列{a n }中,记S n 是它的前n 项和,若S 2=16,S 4=24,求数列{|a n |}的前n 项和T n .能力提升13.数列{a n }的前n 项和S n =3n -2n 2(n ∈N +),则当n ≥2时,下列不等式成立的是( ) A .S n >na 1>na n B .S n >na n >na 1 C .na 1>S n >na n D .na n >S n >na 1 14.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0. (1)求公差d 的范围;(2)问前几项的和最大,并说明理由.1.公式a n =S n -S n -1并非对所有的n ∈N +都成立,而只对n ≥2的正整数才成立.由S n 求通项公式a n =f (n )时,要分n =1和n ≥2两种情况分别计算,然后验证两种情况能否用统一解析式表示,若不能,则用分段函数的形式表示.2.求等差数列前n 项和的最值(1)二次函数法:用求二次函数的最值方法来求其前n 项和的最值,但要注意n ∈N +,结合二次函数图像的对称性来确定n 的值,更加直观.(2)通项法:当a 1>0,d <0,⎩⎪⎨⎪⎧a n ≥0,a n +1≤0时,S n 取得最大值;当a 1<0,d >0,⎩⎪⎨⎪⎧a n ≤0,a n +1≥0时,S n 取得最小值.3.求等差数列{a n }前n 项的绝对值之和,关键是找到数列{a n }的正负项的分界点.2.2 等差数列的前n 项和(二)答案知识梳理1.S 1 S n -S n -1 2.n (a 1+a n )2na 1+n (n -1)2d3.(1)最大 ⎩⎪⎨⎪⎧a n ≥0a n +1≤0 最小 ⎩⎪⎨⎪⎧a n ≤0a n +1≥0 (2)最小 最大作业设计 1.D2.B [等差数列前n 项和S n 的形式为:S n =an 2+bn , ∴λ=-1.]3.B [由a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2,∴a n =2n -10.由5<2k -10<8,得7.5<k <9,∴k =8.]4.A [方法一S 3S 6=3a 1+3d 6a 1+15d =13⇒a 1=2d ,S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13,得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列,公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3,S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.]5.A [由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59,∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1.]6.C [由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0. 由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5.] 7.2n -2 8.169解析 方法一 利用前n 项和公式和二次函数性质.由S 17=S 9,得25×17+172×(17-1)d =25×9+92×(9-1)d ,解得d =-2,所以S n =25n +n2(n -1)×(-2)=-(n -13)2+169,由二次函数性质可知,当n =13时,S n 有最大值169. 方法二 先求出d =-2,因为a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0, 得⎩⎪⎨⎪⎧n ≤1312,n ≥1212.所以当n =13时,S n 有最大值.S 13=25×13+13×(13-1)2×(-2)=169. 因此S n 的最大值为169.方法三 由S 17=S 9,得a 10+a 11+…+a 17=0, 而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14,故a 13+a 14=0.由方法一知d =-2<0, 又因为a 1>0,所以a 13>0,a 14<0,故当n =13时,S n 有最大值.S 13=25×13+13×(13-1)2×(-2)=169. 因此S n 的最大值为169. 9.10解析 由已知,a 1+a 2+a 3=15,a n +a n -1+a n -2=78,两式相加,得 (a 1+a n )+(a 2+a n -1)+(a 3+a n -2)=93,即a 1+a n =31. 由S n =n (a 1+a n )2=31n2=155,得n =10.10.10或11解析 方法一 由S 9=S 12,得d =-110a 1,由⎩⎪⎨⎪⎧a n =a 1+(n -1)d ≤0a n +1=a 1+nd ≥0,得⎩⎪⎨⎪⎧1-110(n -1)≥01-110n ≤0,解得10≤n ≤11.∴当n 为10或11时,S n 取最小值, ∴该数列前10项或前11项的和最小. 方法二 由S 9=S 12,得d =-110a 1,由S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,得S n =⎝ ⎛⎭⎪⎫-120a 1·n 2+⎝ ⎛⎭⎪⎫2120a 1·n =-a 120⎝ ⎛⎭⎪⎫n -2122+44180a 1 (a 1<0),由二次函数性质可知n =212=10.5时,S n 最小.但n ∈N +,故n =10或11时S n 取得最小值. 11.解 (1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n . (2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2.因为S n =-(n -5)2+25, 所以当n =5时,S n 取得最大值.12.解 由S 2=16,S 4=24,得⎩⎪⎨⎪⎧2a 1+2×12d =16,4a 1+4×32d =24.即⎩⎪⎨⎪⎧2a 1+d =16,2a 1+3d =12. 解得⎩⎪⎨⎪⎧a 1=9,d =-2.所以等差数列{a n }的通项公式为a n =11-2n (n ∈N +).(1)当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n . (2)当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n =2×(-52+10×5)-(-n 2+10n )=n 2-10n +50,故T n =⎩⎪⎨⎪⎧-n 2+10n (n ≤5),n 2-10n +50 (n ≥6).13.C [由a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1 (n ≥2),解得a n =5-4n .∴a 1=5-4×1=1,∴na 1=n , ∴na n =5n -4n 2,∵na 1-S n =n -(3n -2n 2)=2n 2-2n =2n (n -1)>0.S n -na n =3n -2n 2-(5n -4n 2)=2n 2-2n >0.∴na 1>S n >na n .]14.解 (1)根据题意,有:⎩⎪⎨⎪⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3.(2)∵d <0,∴a 1>a 2>a 3>…>a 12>a 13>…, 而S 13=13(a 1+a 13)2=13a 7<0,∴a 7<0.又S 12=12(a 1+a 12)2=6(a 1+a 12)=6(a 6+a 7)>0,∴a 6>0.∴数列{a n }的前6项和S 6最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年级高一
学科数学 课题 等差数列(1) 授课时间
撰写人 学习重点
等差数列的概念 学习难点 能运用通项公式求等差数列的首项、公差、项数




1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;
2. 探索并掌握等差数列的通项公式;
3. 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.
教 学 过 程 一 自 主 学 习 1.等差数列:一般地,如果一个数列从第 项起,每一项与它 一项的 等于同一个
常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 , 常用字母 表示.
2.等差中项:由三个数a ,A , b 组成的等差数列,
这时数 叫做数 和 的等差中项,用等式表示为A =
若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:
21a a -= ,即:21a a =+
32a a -= , 即:321a a d a =+=+ 43a a -= ,即:431a a d a =+=+
……
由此归纳等差数列的通项公式可得:n a =
∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a .
二 师 生 互动
例1 ⑴求等差数列8,5,2…的第20项;
⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
例2 已知数列{n a }的通项公式n a pn q =+,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是多少?
变式:已知数列的通项公式为61n a n =-,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?
练1. 等差数列1,-3,-7,-11,…,求它的通项公式和第20项.
练2.在等差数列{}n a 的首项是51210,31a a ==, 求数列的首项与公差.
三 巩 固 练 习
1. 等差数列1,-1,-3,…,-89的项数是( ).
A. 92
B. 47
C. 46
D. 45
2. 数列{}n a 的通项公式25n a n =+,则此数列是( ).
A.公差为2的等差数列
B.公差为5的等差数列
C.首项为2的等差数列
D.公差为n 的等差数列
3. 等差数列的第1项是7,第7项是-1,则它的第5项是( ).
A. 2
B. 3
C. 4
D. 6
4. 在△ABC 中,三个内角A ,B ,C 成等差数列,则∠B = .
5. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a = ,b = .
6、已知12a =,d =3,n =10,求n a ;
四 课 后 反 思
五课后巩固练习
1、已知
13
a=,21
n
a=,d=2,求n;
2、已知
112
a=,
627
a=,求d;
3、已知d=-1
3

7
8
a=,求
1
a.。

相关文档
最新文档