八年级数学下册162二次根式的乘除课标解读素材新人教版
八年级数学下册 16.2 二次根式的乘除课标解读素材 (新版)新人教版

二次根式的乘除课标解读1.上一节引入了二次根式概念,研究二次根式的性质.由算术平方根的意义可知,,,…都是实数.当a 取某个非负数值时,就是这个非负数的算术平方根,也是一个实数.既然是实数,就应该可进行四则运算,那么其运算满足怎样的运算法则?如何进行二次根式的加、减、乘、除运算?就是我们要讨论的问题.2.由于二次根式的乘除比二次根式的加减运算简单,而且二次根式的加减要以二次根式的乘除作为基础,特别是最简二次根式.我们要先探究二次根式的乘除并了解最简二次根式的概念.3.《课标》要求“了解”最简二次根式的概念,就是要求学生通过运算结果的比较,归纳出有些二次根式有两个特点:一是被开方数不含分母;二是被开方数中不含开得尽方的因数或因式.同时要求在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.4.二次根式的乘除法运算法则,考虑到学生的年龄特征和认知水平,要从二次根式的实例出发,先让学生计算,发现结果的规律,由特殊到一般地归纳出二次根式的乘除法法则,从而理解二次根式乘除法法则的合理性,在此基础上,运用乘除法法则进行二次根式的乘除运算,同时,在进行二次根式的乘法运算时,要用到积的算术平方根的性质,教学时要注意提醒学生注意,并注意使运算简单.5.二次根式的乘除法运算法则的逆运算,可以用于二次根式的化简.在化简过程中,主要还要用到积的算术平方根的性质,在化简时,一般要先将被开方数进行因数分解,然后将能开得尽方的因数或因式开出来.6.《课标》的要求将本章的学习对象限定在“根号下为数的二次根式”.为了使学生更全面地了解二次根式的运算,提高运算能力,也为今后的学习打下必要的基础,教材在正文中设置了“选学例题”,采用举例的方式,让学有余力的学生能够学到“根号下为字母的二次根式”的运算.7.本节内容要更加注重运算能力的培养,具体地落实在运算技能的训练上.8.鉴于“探索、发现、归纳,然后定义,再运用”是解决代数问题的基本过程,教材中乘除法法则都是采用从特殊到一般的归纳方式得出的;本章内容与实数内容有较多联系,在思考问题的方法上与整式的内容又有很多相通之处,教学中应引导学生充分体会代数问题的基本思想和基本研究方法.1。
人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿

人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿一. 教材分析《二次根式的乘法》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行教授的。
二次根式的乘法是数学中基本的运算之一,它在数学问题的解决中有着广泛的应用。
通过学习这部分内容,可以使学生进一步理解和掌握二次根式的性质,提高他们的数学运算能力。
二. 学情分析在八年级的学生已经具备了一定的数学基础,对于二次根式的性质和加减法运算已经有了一定的了解。
但是,学生在进行二次根式的乘法运算时,可能会对如何正确处理根号下的乘法运算感到困惑。
因此,在教学过程中,需要引导学生正确理解二次根式的乘法运算规则,并通过大量的练习来巩固他们的理解。
三. 说教学目标1.知识与技能目标:使学生理解和掌握二次根式的乘法运算规则,能够正确进行二次根式的乘法运算。
2.过程与方法目标:通过教师的引导和学生的自主探究,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 说教学重难点1.教学重点:使学生理解和掌握二次根式的乘法运算规则。
2.教学难点:如何引导学生正确理解二次根式的乘法运算规则,并能够灵活运用。
五. 说教学方法与手段在教学过程中,我将采用讲授法和探究法相结合的教学方法。
在讲解二次根式的乘法运算规则时,我将通过生动的例子和清晰的解释,帮助学生理解和掌握。
同时,我将引导学生进行自主探究,通过解决实际问题,来加深他们对二次根式乘法运算的理解。
此外,我还将运用多媒体教学手段,如PPT等,来辅助教学,使教学内容更加生动和直观。
六. 说教学过程1.导入:通过一个实际问题,引发学生对二次根式乘法运算的思考,激发他们的学习兴趣。
2.讲解:讲解二次根式的乘法运算规则,并通过大量的例子来解释和巩固。
3.练习:让学生进行二次根式乘法运算的练习,及时发现和纠正他们的错误。
16.2二次根式的乘除 课件 人教版数学八年级下册

= =
-a(a<0),
a(a≥0).
文字表述:一个数的平方的算术平方根等于这个数的
绝对值.
代数式:用基本运算符号(基本运算包括加、减、乘、
除、乘方和开方)把数或表示数的字母连接起来的式
子叫做代数式.
当 a, x 取怎样的实数时,下列各式在实数范围内有意义?
(1) + 5+ 1 − ;
=
22 × 32 × 32 × 2
= 2 × 3 × 3 × 2 = 18 2 .
(2)原式 = − 6 × 15= − 3 × 2 × 3 × 5
= − 32 × 2 × 5 = −3 10 .
2.化简 : 16 2 3
解:原式 = 16 ∙ ∙ 2 ∙ 3
=4 ∙ ∙ ∙ c
边,只要ab≥0即可.
计算:(1)
解:(1)方法一
方法二
3
5
3 6
(2)
.
27
;
3
5
3
=
3
=
5
3×5
=
5×5
3×5
15
15
;
=
52
5
15
=
=
=
.
5
5
5 × 5 ( 5)2
在方法二中,式子变形
3
5
15
=
中的根号(分母有理化).
3×5
是为了去掉分母
5× 5
计算: (1)
解:(2)
3
5;
3 6
27
=
(2)
简二次根式.
(1)被开方数不含分母;
即被开方数必须是整数(式)
八年级数学下册162二次根式的乘除第1课时教材分析与重难点突破素材新人教版

二次根式的乘除教材分析与重难点突破第1课时一、教材分析本节主要内容是二次根式的乘法运算和二次根式的化简,通过本节学习应使学生掌握根式的乘法运算法则和化简二次根式的常用方法.建立起比较完善的代数式及其运算的知识结构,并为勾股定理、一元二次方程、二次函数等内容的学习做好准备.探究二次根式的乘法法则,教材从具体例子出发,由特殊到一般、由具体到抽象地归纳给出二次根式的运算法则.通过“探究”栏目,引导学生利用二次根式的性质,从具体数字的运算中发现规律,进而得出二次根式的乘法法则.“探究”栏目中的两个问题是两个不同层次的探究活动.首先是让学生通过计算发现规律,然后是让学生对发现的规律进行类比,得出乘法法则的具体内容.为了使学生更全面地了解二次根式的运算,提高学生的运算能力,也为今后的数学学习打下必要的基础,教材在正文中设置了“选学例题”,采用举例的方式,让学有余力的学生能够学到“根号下为字母的二次根式”的运算。
由于数式通性,只要将二次根式中的实数看成字母,二次根式的运算实际上就是整式的运算.将二次根式的乘法法则反过来,就得到积的算术平方根的性质.利用这条性质可以对二次根式进行化简.通过学习,应该使学生对化简二次根式的基本要求有所认识,即在化简时,一般先将被开方数进行因数分解或因式分解,然后再将能开得尽方的因数或因式开出来,这一点教材利用了一个小贴士加以说明.本节课的教学重点是,二次根式的乘法法则;教学难点是,在理解二次根式的性质和运算法则的基础上,养成良好的运算习惯.二、重难点分析1.二次根式的乘法法则的理解突破建议1.教材对本节内容的处理,仍然沿用“从具体数字的算术平方根的运算中观察规律,经历从特殊到一般的过程,归纳得出二次根式的乘法运算法则”的方式展开,教学时,应充分根据教材的编写意图,让学生通过观察:比较两个二次根式的乘法中两个因式的异同,通过计算,得出两者的结果相等.通过思考、讨论,得出:二次根式的乘法法则是:.2.对于中被开方数的要求,要让学生讨论得出的取值范围.3.在运用进行计算时,要让学生说明先做什么,后做什么,如果还能开方的,要运用算术平方根的性质()进行开方.4.二次根式的乘法运算法则的逆运用,是二次根式化简的依据,利用它可以对二次根式进行化简,教学时,要让学生清楚互逆运算常常是运算的用到的,化简要分步进行,同时,要结合运用算术平方根的性质()进行化简.例1.化简:解析:本题在被开方数相乘的时候,就可以讨论因数分解,而不必先写成再分解.5.虽然教材以“让学生理解二次根式性质和运算,并会熟练运用法则进行运算”为重点,以突出二次根式的性质和法则的数学本质,但教学时应当适当加强含有字母的二次根式的化简.当然,题目不能复杂化,不应过分关注运算技巧.2.养成良好的运算习惯突破建议1.本章训练学生运算技能的“训练点”有两个方面:一是“用二次根式的运算法则进行运算”,核心是有效地利用二次根式的性质和乘法法则,其中,将各式转化为最简二次根式是关键步骤;二是运算习惯的培养,与“数感”“符号意识”等相关,具体可以从“先观察,后计算”“先化简二次根式,后计算”“利用乘法公式进行计算”等等.2.本章内容与以前所学的实数内容有较多的联系,在思考问题的方法上与整式的内容也有很多相通之处,因此,教学时,应多注意前后知识的联系性,引导学生发现整式中的乘法公式在二次根式的运算中也成立.3.要注意算理,说明过程,书写规范.。
新人教版初中数学八年级下册第16章 二次根式《16.2二次根式的乘除》优质课件

3 2
6
2 5
3
6 5
.
如果根号前有系数,就 把系数相除,作为 商的系数.
最简二次根式
上述几个例题中运算的最后结果,都有如下两个特点: (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式;
满足上述两个条件的二次根式,叫做最简二次根式.
说明:二次根式的运算中,一般要把最后结果化为最 简二次根式,并且分母中不含二次根式.
6 52 2 65 2
30 2;
含系数的二次根 式相乘,将系数 相乘作为积的系 数,被开方数相 乘作为积的被开
方数.
(3) 3x 1 xy 3x 1 xy x2 y
3
3
x2 y x y .
本章中二次根式相 乘时,如没有特别 说明,所有的字母
都表示正数.
归纳
(1) 16 81; (2) 4a2b3 .
这样运算的作用: 化简二次根式
. 解:(1)16 81 16 81 4 9 36 ;
(2) 4a2b3 4 a 2 b3
2a b2 b 2ab b .
a2 a可以看作公式 ab a b 在 a b 时
2 2 3 6.
3 3 3 3
利用第(1)题中解 法2的方法去掉分 母中的根号.
(3) 8 8 2a 4 a 2 a .
2a 2a 2a 2a a
二次根式的运算中, 最后结果分母一般 不含二次根式.
应用(2)
例4 计算: (1) 4 1 7 ;
5 10
(2) 2
的算术平方根.
有何作用?
人教版数学八年级下册16.2《二次根式的乘法》(第1课时)说课稿

人教版数学八年级下册16.2《二次根式的乘法》(第1课时)说课稿一. 教材分析人教版数学八年级下册16.2《二次根式的乘法》(第1课时)是本册教材中的一个重要内容。
在此之前,学生已经学习了二次根式的概念、性质以及加减法运算。
本节课主要引导学生学习二次根式的乘法运算,进一步巩固二次根式的基本运算规则。
教材通过例题和练习题的形式,帮助学生掌握二次根式乘法的基本方法,提高解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对二次根式的概念和性质有了初步的了解。
但学生在进行二次根式乘法运算时,容易出错,对乘法运算的规则理解不够深入。
因此,在教学过程中,需要关注学生对二次根式乘法规则的理解和运用,引导学生逐步掌握乘法运算的方法。
三. 说教学目标1.知识与技能目标:让学生掌握二次根式的乘法运算规则,能够熟练地进行二次根式乘法运算。
2.过程与方法目标:通过观察、讨论、归纳等方法,引导学生自主发现二次根式乘法的规律,提高学生的推理能力。
3.情感态度与价值观目标:培养学生积极参与数学学习的兴趣,增强学生克服困难的信心,培养学生团队合作的精神。
四. 说教学重难点1.教学重点:二次根式的乘法运算规则。
2.教学难点:二次根式乘法运算中,如何正确处理根号下的乘法运算。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究二次根式乘法的规律。
2.运用多媒体教学手段,展示二次根式乘法的动画过程,帮助学生直观理解。
3.小组讨论,让学生在合作中思考,提高学生的参与度。
六. 说教学过程1.导入:通过一个实际问题,引入二次根式的乘法运算,激发学生的学习兴趣。
2.探究:引导学生观察、讨论二次根式乘法的规律,让学生自主发现乘法运算的规则。
3.讲解:对二次根式乘法运算的规则进行讲解,重点讲解根号下的乘法运算。
4.练习:设计一系列练习题,让学生巩固二次根式乘法运算的方法。
5.总结:对本节课的主要内容进行总结,加深学生对二次根式乘法运算规则的理解。
八年级数学下册第十六章二次根式16.2二次根式的乘除教案新版新人教版

16.2二次根式的乘除(1)◆模式介绍“探究式教学”是以自主探究为主的教学.它是指教学过程是在教师的启发诱导下,以学生独立自主探究或合作讨论为前提,以现行教材为基本探究内容,以学生周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的一种教学形式.学生对当前教学内容中的主要知识点进行自主学习、深入探究并进行小组合作交流,以自我获取,自我求证的方式深化知识的理解和运用.从而较好地达到课程标准中关于认知目标与情感目标要求的一种教学模式.其中认知目标涉及与学科相关知识、概念、原理与能力的掌握;情感目标注重科学素养与道德品质的培养.探究式教学的课程环节:创设情境——启发思考——自主探究——协作交流——总结提高◆思路说明由数据引出·=(),并利用逆向思维=·()让学生感受到到等式的可逆性,从而形成结论是否可逆的思考方式,加深学生对数学的思考深度,提高对数学学习的兴趣.◆教材分析本章内容“二次根式”是《数学课程标准》中“数与代数”领域的重要内容,它与已学内容“实数”“整式”“勾股定理”紧密联系,同时也是以后将要学习的“解直三角形”、“一元二次方程”、“二次函数”等内容的重要基础,并为学习高中数学的不等式、函数以及解析几何等大部分做好准备.通过本章通过对二次根式的概念、性质和运算法则、运算规律等探究,发现学生的思维能力,有效改变学生的学习方式,使学生掌握认识事物的一般规律。
本章内容无论在知识、数学思考方法上,还是在对学生的能力培养上都是非常重要的.◆教学目标【知识与能力目标】1.理解·=(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简.2.利用逆向思维=·()并运用它进行解题和化简.3.法则可以推广到多个二次根式相乘的运算.【过程与方法】1. 学生在探索过程中,学会观察、分析、总结归纳,学会思考问题,进一步培养学生观察能力、归纳概括的能力.2. 通过二次根式的乘法运算,提高学生分析问题、解决问题的能力.【情感态度与价值观】1. 学生通过分析、总结、归纳学会二次根式的乘除运算,并能灵活运算,感受成功.2.体验数学探究学习活动充满着好奇与创造,并懂得在探究学习活动中学会与他人合作交流,培养学生求实创新和集体协作的精神.◆教学重难点【教学重点】理解·=(),=·()并运用它进行计算.【教学难点】·=()的相关计算.◆课前准备教学PPT◆课时安排1课时◆教学过程(一)知识回顾1、你认为什么样的式子是二次根式?试举一例2、二次根式有哪些基本性质?(二)情境引入1.一个长方形的长是cm,宽是cm,这个长方形的面积是多少?解:长方形的面积为思考:这个结果能否化简?如何化简?(三)探索新知计算:上述结果具有什么规律?利用规律进行计算思考:是否成立?归纳:一般地,对二次根式的乘法规定为文字语言:二次根式与二次根式相乘,等于各个被开数的积的算术平方根. 推广:解决问题×(四)例题讲解例1 .计算二次根式的乘法法则·=(a≥0,b≥0),反过来,可以得到=·(a≥0,b≥0)文字叙述:积的算术平方根,等于积中各因式的算术平方根的积. 利用这个等式可以化简一些根式.例2 .化简注意根式运算的结果中,被开方数应不含能开得尽方的因数或因式.(五)总结分享1.本节课学习了算术平方根的积和积的算术平方根·=(a≥0,b≥0),=·(a≥0,b≥0)2.化简二次根式的步骤:(1)将被开方数尽可能分解成几个平方数.(2)应用公式·=(a≥0,b≥0),(3)将平方项应用二次根式的性质化简.(六)巩固新知1. 将化简,正确的结果是()A. B. C. D.2.对于任意实数a,下列各式中一定成立的是( )A.B.C.D.3.下列计算中,正确的是()A.B.C.D.4.设,用含的式子表示= .5.对于任意不相等的两个实,定义运算※如下:,那么= .6.若.7.计算;7.如何比较和的大小?板书设计16.2.1 二次根式的乘法一、二次根式的乘法法则:·=(a≥0,b≥0)反过来,可以得到=·(a≥0,b≥0)二.化简二次根式的步骤:(1)将被开方数尽可能分解成几个平方数.(2)应用公式·=(a≥0,b≥0),(3)将平方项应用二次根式的性质化简.◆教学反思在探究二次根式乘法的过程中,使学生在探究时,经历了观察、实验、归纳、总结以及由具体到抽象、由特殊到一般的学习过程,体会到了研究问题、解决问题的方法,加深了对二次根式乘法法则的理解。
人教版数学八年级下册16.2《二次根式的乘除》说课稿1

人教版数学八年级下册16.2《二次根式的乘除》说课稿1一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这一节主要让学生掌握二次根式相乘、相除的法则,并能灵活运用这些法则解决实际问题。
教材通过例题和练习,让学生在具体的情境中体会二次根式乘除的运算规律,培养学生的运算能力和逻辑思维能力。
二. 学情分析八年级的学生已经学习了实数、有理数和无理数的基本概念,对二次根式有一定的了解。
但学生在运算二次根式时,可能会遇到复杂的根式,难以化简。
因此,在教学过程中,我需要引导学生掌握二次根式乘除的法则,提高他们的运算速度和准确性。
三. 说教学目标1.知识与技能目标:让学生掌握二次根式相乘、相除的法则,能熟练进行二次根式的乘除运算。
2.过程与方法目标:通过实例分析,让学生理解二次根式乘除的运算规律,培养学生的运算能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。
四. 说教学重难点1.教学重点:二次根式相乘、相除的法则及运用。
2.教学难点:如何引导学生理解并运用二次根式乘除法则解决实际问题。
五. 说教学方法与手段1.教学方法:采用引导发现法、合作学习法、实践操作法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、黑板、粉笔等传统与现代教学手段,结合具体实例,生动展示二次根式乘除的运算过程。
六. 说教学过程1.导入新课:通过复习实数、有理数和无理数的相关知识,为学生导入二次根式乘除的概念。
2.知识讲解:讲解二次根式相乘、相除的法则,并结合实例进行分析。
3.课堂练习:安排一些具有代表性的练习题,让学生巩固所学知识。
4.应用拓展:引导学生运用二次根式乘除法则解决实际问题,提高学生的应用能力。
5.课堂小结:总结本节课的主要内容,强调二次根式乘除的运算规律。
七. 说板书设计板书设计要简洁明了,突出二次根式乘除的法则。
可以设计如下板书:二次根式乘除法则:1.二次根式相乘:将根号内的数相乘,根指数不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的乘除课标解读
1.上一节引入了二次根式概念,研究二次根式的性质.由算术平方根的意义可知,
,
,…都是实数.当a 取某个非负数值时,就是这个非负数的算术平方根,也是一个实数.既然是实数,就应该可进行四则运算,那么其运算满足怎样的运算法则?如何进行二次根式的加、减、乘、除运算?就是我们要讨论的问题.
2.由于二次根式的乘除比二次根式的加减运算简单,而且二次根式的加减要以二次根式的乘除作为基础,特别是最简二次根式.我们要先探究二次根式的乘除并了解最简二次根式的概念.
3.《课标》要求“了解”最简二次根式的概念,就是要求学生通过运算结果的比较,归纳出有些二次根式有两个特点:一是被开方数不含分母;二是被开方数中不含开得尽方的因数或因式.同时要求在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.
4.二次根式的乘除法运算法则,考虑到学生的年龄特征和认知水平,要从二次根式的实例出发,先让学生计算,发现结果的规律,由特殊到一般地归纳出二次根式的乘除法法则,从而理解二次根式乘除法法则的合理性,在此基础上,运用乘除法法则进行二次根式的乘除运算,同时,在进行二次根式的乘法运算时,要用到积的算术平方根的性质,教学时要注意提醒学生注意,并注意使运算简单.
5.二次根式的乘除法运算法则的逆运算,可以用于二次根式的化简.在化简过程中,主要还要用到积的算术平方根的性质,在化简时,一般要先将被开方数进行因数分解,然后将能开得尽方的因数或因式开出来.
6.《课标》的要求将本章的学习对象限定在“根号下为数的二次根式”.为了使学生更全面地了解二次根式的运算,提高运算能力,也为今后的学习打下必要的基础,教材在正文中设置了“选学例题”,采用举例的方式,让学有余力的学生能够学到“根号下为字母的二次根式”的运算.
7.本节内容要更加注重运算能力的培养,具体地落实在运算技能的训练上.
8.鉴于“探索、发现、归纳,然后定义,再运用”是解决代数问题的基本过程,教材中乘除法法则都是采用从特殊到一般的归纳方式得出的;本章内容与实数内容有较多联系,在思考问题的方法上与整式的内容又有很多相通之处,教学中应引导学生充分体会代数问题的基本思想和基本研究方法.
1。