2016年秋季学期新版新人教版八年级数学上册期末章末复习试卷(3)第十三章轴对称(含答案)
人教版八年级数学上册 第十三章 章末复习与小结

专题选讲—— 等腰三角形中的分类讨论
类型三 针对锐角三角形和钝角三角形进行分类
例 在△ABC中,AB=AC,AB的垂直平分线与AC所
在直线相交所得的锐角为40°,则底角∠B等于(C )
A.20° B.60°或20° C.65°或25° D.60°
专题选讲—— 等腰三角形中的分类讨论
类型三 针对锐角三角形和钝角三角形进行分类
∴△DCE≌△FBE(AAS).∴BE=CE
(2)由(1)知AD=AF,△DCE≌△FBE, ∴DE=EF,∴AE⊥DE.
(3)由(1)知AD=AF,由(2)知DE=EF,∴AE平分∠DAF.
专题选讲—— 特殊三角形中常见辅助线的作法
类型五 用“倍长中线法”构造等腰三角形
例 如图,在△ABC中,AD为中线,点E为AB上一点
专题选讲—— 两类重要的平分线
类型 角平分线与垂直平分线的综合
例1 如图,在△ABC中,∠BAC=90°,∠ABC=2∠C ,BE平分∠ABC交AC于点E,AD⊥BE交BE于点D,交 BC于点F,有下列结论:①AC-BE=AE;②点E在线段 BC的垂直平分线上;③∠DAE=∠C.其中正确的①有②③ _______(填序号即可).
∵AE=EF,∴∠EAF=∠AFE=∠GFD,
G
∴∠G=∠GFD,∴CG=CF,∴AB=CF.
专题选讲—— 特殊三角形中常见辅助线的作法
方法归纳
已知在△ABC中,2∠ACB=∠ABC. ①如图1,作∠ABC的平分线BD,则可构造等腰△BDC ; ②如图2,作∠BCE=2∠ACB,交BA的延长线于点E, 则可构造等腰△BCE;
AE=AB,
∠EAF=∠BAD, AF=AD,
∴△AEF≌△ABD(SAS).∴BD=EF.
初中数学人教版八年级上册第十三章《轴对称》练习册(含答案)13.2 画轴对称图形

初中数学人教版八年级上册实用资料13.2画轴对称图形基础巩固1.(知识点2)将平面直角坐标系中的某个图形各个点的横坐标都乘-1,纵坐标不变,所得图形与原图形的关系是()A.关于原点对称B.关于x轴对称C.关于y轴对称D.重合2.(题型二)如图13-2-1,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在的直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()图13-2-1A.点AB.点BC.点CD.点D3.(知识点2)点A(-3,2)关于x轴的对称点A′的坐标为.4.(题型一)如图13-2-2,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品.图13-2-2 图13-2-35.(易错点1)图13-2-3是李华在镜中看到身后墙上的钟表,你认为实际时间是.6.(题型一)如图13-2-4,在正方形方格中,阴影部分是涂黑的7个小正方形所形成的图案.将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.图13-2-47.(题型一)如图13-2-5的3×3网格都是由9个相同的小正方形组成,每个网格图中都有3个小正方形已涂上阴影,请在剩下的6个空白小正方形中,按下列要求涂上阴影:选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形(给出三种方法)(1)(2)(3)图13-2-58.(题型一)如图13-2-6,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位长度,再向下平移5个单位长度,画出平移后得到的线段A2C2,并以它为一条边作一个格点三角形A2B2C2,使A2B2=C2B2.图13-2-69.(题型二)如图13-2-7,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,-3),E(0,-4).写出点D,C,B关于y轴的对称点F,G,H的坐标,并在图13-2-7中作出点F,G,H.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形,说明它具有怎样的性质,像我们熟知的什么图形.图13-2-710.(题型二)图13-2-8中的“鱼”是将坐标分别为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段依次连接而成的.(1)利用轴对称变换,画出原图案关于x轴的对称图形,形成美丽的“双鱼座”;(2)求两个图案的公共部分的面积(直接写结果).图13-2-8能力提升11.(题型四)如图13-2-9,将长方形纸片首先沿虚线AB按箭头方向对折,接着将对折后的纸片沿虚线CD按箭头方向对折,然后剪下一个小三角形,最后将纸片打开,则打开后的图形是()图13-2-912.(题型三)如图13-2-10,在平面直角坐标系中,线段OA与线段OA′关于直线l:y=x对称.已知点A的坐标为(2,1),则点A′的坐标为.图13-2-1013.(题型一)如图13-2-11,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,请在下面所给的格纸中一一画出(所给的六个格纸未必全用).图13-2-1114.(题型三)如图13-2-12,在平面直角坐标系中,△ABO的顶点坐标分别为O(0,0),A (2a,0),B(0,-a),线段EF两端点的坐标分别为E(-m,a+1),F(-m,1)(2a>m>a).直线l∥y轴,交x轴于点P(a,0),且线段EF与CD关于y轴对称,线段CD与MN关于直线l对称.(1)求点M,N的坐标(用含m,a的代数式表示).(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明理由,若能,请你说出一种平移方案(平移的长度用m,a表示).图13-2-12答案基础巩固1. C 解析:将各个点的横坐标都乘-1,纵坐标不变,即各个点的横坐标变成它的相反数,纵坐标不变,所以所得图形与原图形关于y轴对称.故选C.2. B 解析:如图D13-2-1,以B为原点建立平面直角坐标系,此时存在两个点A,C关于y轴对称.故选B.图D13-2-13.(-3,-2)4. 书解析:如图D13-2-2,这个单词所指的物品是书.图D13-2-25. 7:45 解析:由镜面对称性可知,实际时间应该是7:45.6. 3 解析:在1,2或3处(如图D13-2-3)涂黑都可得到一个轴对称图形,故涂法有3种.图D13-2-37. 解:如图D13-2-4.图D13-2-48. 解:(1)如图D13-2-5,△A1B1C1即为所求.图D13-2-5(2)如图D13-2-5,△A2B2C2即为所求.(答案不唯一)9. 解:由题意,得F(-2,-3),G(-4,0),H(-2,4).如图D13-2-6,这个图形关于y轴对称,是我们熟知的轴对称图形.图D13-2-610. 解:(1)如图D13-2-7.(2)两个图案的公共部分的面积为1/2×3×2×2+1/2×2×2=6+2=8.图D13-2-7能力提升11. D 解析:∵第三个图形中剪去的是三角形,∴将第三个图形展开,可得A项不符合题意.再展开可知三角形的短边正对着,且在内侧,∴B,C项不符合题意.故选D.12.(1,2)解析:图D13-2-8如图D13-2-8,过点A作AC⊥x轴于点C,过点A′作A′C′⊥y轴于点C′,连接AA′,交直线l于点D.∵线段OA与线段OA′关于直线l:y=x对称,∴△ODA′≌△ODA,∠C′OD=∠COD,∴∠A′OD=∠AOD,A′O=AO.∴∠A′OC′=∠AOC.在△AC O和△A′C′O中,∠AOC=∠A′OC′,∠ACO=∠A′C′O=90°,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵点A 的坐标为(2,1),∴点A′的坐标为(1,2).13解:与△ABC成轴对称且以格点为顶点的三角形如图D13-2-9.图D13-2-9`14. 解:(1)∵线段EF与CD关于y轴对称,线段EF两端点的坐标分别为E(-m,a+1),F(-m,1),∴C(m,a+1),D(m,1).设CD与直线l之间的距离为x.∵CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a-x.又∵x=m-a,∴点M的横坐标为a-(m-a)=2a-m.∴M(2a-m,a+1),N(2a-m,1).(2)能重合.理由如下:由(1)知EM=2a-m-(-m)=2a=OA,EF=a+1-1=a=OB.∵EF∥y轴,EM∥x轴,∴∠MEF=∠AOB=90°,∴△ABO≌△MFE(SAS),∴△ABO与△MFE通过平移能重合.平移方案:先将△ABO向上平移(a+1)个单位长度,再向左平移m 个单位长度,即可重合.。
第13章轴对称含辅助线证明题专题训练1 人教版数学八年级上册

人教版数学八年级上册第十三章轴对称含辅助线证明题专题训练11.如图所示,等边△ABC中,AD⊥BC于D,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC,垂足为点E,过点E作EF⊥AC,垂足为点F.(1)求证:2BD=2CF+BE;(2)若AB=4,过F作FQ⊥AB,垂足为Q,PQ=1,求BP的长.2.如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.(1)求证:△CBE为等边三角形;(2)若AD=5,DE=7,求CD的长.3.已知等边△ABC的边长为4cm,点P,Q分别是直线AB,BC上的动点.(1)如图,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动时,它们的速度都为1cm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.(i)当t=2时,求∠AQP的度数;(ii)当t为何值时,△PBQ是直角三角形?(2)如图,当点P在BA的延长线上,Q在BC上时,若PQ=PC,请探究AP,CQ和AC之间的数量关系,并说明理由.4.如图,在直角坐标系中,△ABC的三个顶点都在坐标轴上,A,B两点关于y轴对称,点C是y轴正半轴上一个动点,AD是角平分线.(1)如图1,若∠ACB=90°,直接写出线段AB,CD,AC之间数量关系;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图2,若∠ACB=100°,求证:AB=AD+CD.5.如图,∠ABC=∠BCD=90°,AB=BD,BD平分∠ABC,AE⊥BD于E,P为线段AD上一动点.(1)求∠DAE;(2)当P到BD的距离为1,到AB的距离为2时,求AE的长;(3)当P运动至CE延长线上时,连结BP,求证:BP⊥AD.6.如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数;(2)判断△ABE的形状并加以证明;(3)连接DE,若DE⊥BD,DE=8,求AD的长.7.如图,△ABC中,AB=AC,点D为△ABC外一点,DC与AB交于点O,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)作AM⊥CD于M,求证:BD+DM=CM.8.如图,△ABC是等边三角形,D、E为AC上两点,且AE=CD,延长BC至点F,使CF=CD,连接BD.(1)如图1,当D、E两点重合时,求证:BD=DF;(2)延长BD与EF交于点G.①如图2,求证:∠BGE=60°;②如图3,连接BE,CG.若∠EBD=30°,BG=4,则△BCG的面积为______.9.已知:如图,在△ABC中,∠ABC的平分线BP与AC边的垂直平分线PQ交于点P,过点P分别作PD⊥AB于点D,PE⊥BC于点E,若BE=10cm,AB=6cm,求CE的长.10.(12分)在ΔABC中,∠B=60∘,D是BC上一点,且AD=AC.(1)如图1,延长BC至E,使CE=BD,连接AE.求证:AB=AE;(2)如图2,在AB边上取一点F,使DF=DB,求证:AF=BC;(3)如图3,在(2)的条件下,P为BC延长线上一点,连接PA,PF,若PA=PF,猜想PC与BD的数量关系并证明.11.(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE的长.(2)【类比探究】老师引导同学继续研究:1)等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE的长.2)已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为___(①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ 交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)12.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结OB,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.13.已知,在等边△ABC中,E为BC上一点,连接AE并延长,在AE的延长线取一点D,连接BD、CD,使得∠BDC=120°.(1)如图1,求证:DA平分∠BDC;(2)如图2,在AC上取点F,使得CE=AF,连接BF交AD于点G,点M为GD 的中点,当ME=FG时,BD=8,求AD的长.14.如图,在四边形ABCD中,∠BAD=α,∠BCD=180∘−α,BD平分∠ABC.(1)如图,若α=90∘,根据教材中一个重要性质直接可得DA=CD,这个性质是_______(2)问题解决:如图,求证AD=CD;(3)问题拓展:如图,在等腰ΔABC中,∠BAC=100∘,BD平分∠ABC,求证:BD+AD=BC.15.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图,若BC=BD,求证:CD=DE;(2)如图,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.16.已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠FAC的度数;(2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G 为线段EF的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.第10页,共1页。
人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选(含答案)

人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选一.填空题(共30小题)1.(2020春•渝中区校级期末)如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为.2.(2020春•沙坪坝区期末)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=6,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为.3.(2019秋•九龙坡区校级期末)已知△ABC为等腰三角形,AB=AC=10,BC=8,BD为∠ABC的平分线,点P 为线段BD上的一动点,过点P作线段AB的垂线,垂足为点M,连接AP,则PM+P A的最小值为.4.(2020春•沙坪坝区校级期末)如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB 上,∠AED=73°,若点P是等腰△ABC的腰上的一点,则当△EDP为以DE为腰的等腰三角形时,∠EDP的度数是.5.(2019秋•渝中区校级期末)如图所示,在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于.6.(2019秋•渝中区校级期末)在平面直角坐标系中,若点A(a,b)与点B(1,﹣2)关于y轴对称,则a+b=.7.(2019秋•巴南区期末)如图,△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,点E,F分别在线段BD、CD上,点G在EF的延长线上,△EFD与△EFH关于直线EF对称,若∠A=60°,∠BEH=84°,∠HFG=n°,则n=.8.(2019秋•开州区期末)如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=4cm,△ADC的周长为10cm,则△ABC的周长是cm.9.(2019秋•两江新区期末)如图,在△ABC中,DB和DC分别平分∠ABC和∠ACB,过D作EF∥BC,分别交AB、AC于点E、F,若EF=5,BE=3,则线段CF的长为.10.(2019秋•江津区期末)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE= 12∠ACB,则∠A的度数是.11.(2019秋•九龙坡区期末)在平面直角坐标系中,点P(1,﹣5)关于x轴对称点的点的坐标是.12.(2019秋•梁平区期末)如图,△ABC是等边三角形,D,E分别是BC,AB的中点,且AD=4cm.F是AD上一动点,则BF+EF的最小值为cm.13.(2019秋•江北区期末)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=7,则CE的长为.14.(2019秋•万州区期末)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=.15.(2019秋•长寿区期末)在线段、直角、等腰三角形、直角三角形中,成轴对称图形的是.16.(2019秋•长寿区期末)等腰三角形一边长为4,另一边长为9,则它的周长是.17.(2019春•南岸区期末)如图,在△ABC中,过A作DE∥BC交∠ABC的平分线BD于点D、交∠ACB的平分线CE于点E.若BC=7,DE=9,则△ABC的周长为.18.(2018秋•南岸区期末)如图,在平面直角坐标系中,将△ABC三个顶点的横坐标分别乘以﹣1,而纵坐标保持不变,得到△A′B′C′,则△A′B′C′和△ABC关于对称(横线上填“x轴”、“y轴”或“原点”).19.(2019春•渝中区校级期末)如图,△ABC中,AC=BC,CE为△ABC的中线,BD为AC边上的高,BF平分∠CBD交CE于点G,连接AG交BD于点M,若∠AFG=63°,则∠AMB的度数为°.20.(2018秋•渝中区期末)如图,已知∠BAC=65°,D为∠BAC内部一点,过D作DB⊥AB于B,DC⊥AC于C,设点E、点F分别为AB、AC上的动点,当△DEF的周长最小时,∠EDF的度数为.21.(2018秋•合川区期末)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,若BD=3cm,则AD=cm.22.(2018秋•渝北区期末)如图,∠ABC=20°,点D,E分别在射线BC,BA上,且BD=3,BE=3,点M,N 分别是射线BA,BC上的动点,求DM+MN+NE的最小值为.23.(2018秋•巴南区期末)如图,BE、CD分别是等边△ABC的高和角平分线,点O是它们的交点,若∠BOC=m°,则m=.24.(2018秋•江北区期末)在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为.25.(2019春•沙坪坝区校级期末)如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=度.26.(2019春•南岸区校级期末)如图,在等腰△ABC中,AB=BC,∠B=120°,线段AB的垂直平分线分别交AB、AC于点D、E,若AC=12,则DE=.27.(2019春•沙坪坝区校级期末)如图,在直角三角形ABC中,∠A=90°,AB=8,AC=15,BC=17.D,P分别是线段AC,BC上的动点,则BD+DP的最小值是.28.(2019春•渝中区校级期末)在△ABC中,AB=AC,AC的垂直平分线与AB所在直线相交所得的锐角为40°,∠C=.29.(2019春•渝中区校级期末)如图,△ABC中,AC=BC=5,AB=6,CD=4,CD为△ABC的中线,点E、点F分别为线段CD、CA上的动点,连接AE、EF,则AE+EF的最小值为.30.(2018秋•九龙坡区校级期末)在平面直角坐标系中,点P(﹣2,﹣3)关于x轴对称点的坐标为.参考答案一.填空题(共30小题)1.【解答】解:∵∠ABC =80°,∴∠BMN +∠BNM =100°,∵M 、N 分别在P A 、PC 的中垂线上,∴MA =MP ,NP =NC ,∴∠MP A =∠MAP =12∠BMN ,∠NPC =∠NCP =12∠BNM ,∴∠MP A +∠NPC =12×100°=50°,∴∠APC =180°﹣50°=130°, 故答案为:130°.2.【解答】解:如图所示,作点M 关于BD 的对称点M ',连接PM ',则PM '=PM ,BM =BM '=1, ∴PN +PM =PN +PM ',当N ,P ,M '在同一直线上,且M 'N ⊥AC 时,PN +PM '的最小值等于垂线段M 'N 的长,此时,∵Rt △AM 'N 中,∠A =30°,∴M 'N =12AM '=12(6﹣1)=52,∴PM +PN 的最小值为52, 故答案为:52.3.【解答】解:如图,过点P 作PK ⊥BC 于K ,过点A 作AH ⊥BC 于H .∵AB =AC =10,AH ⊥BC ,∴BH =CH =4,∴∠AHB =90°,∴AH =√AA 2−AA 2=√102−42=2√21,∵BD 平分∠ABC ,PM ⊥AB ,PK ⊥BC ,∴PM =PK ,∴P A +PM =P A +PK ≥AH ,∴P A +PM ≥2√21,∴P A +PM 的最小值为2√21.4.【解答】解:∵AB =AC ,∠B =50°,∠AED =73°,∴∠EDB =23°,∵当△DEP 是以DE 为腰的等腰三角形,①当点P 在AB 上,∵DE =DP 1,∴∠DP 1E =∠AED =73°,∴∠EDP 1=180°﹣73°﹣73°=34°,②当点P 在AC 上,∵AB =AC ,D 为BC 的中点,∴∠BAD =∠CAD ,过D 作DG ⊥AB 于G ,DH ⊥AC 于H ,∴DG =DH ,在Rt △DEG 与Rt △DP 2H 中,{AA =AA 2AA =AA, ∴Rt △DEG ≌Rt △DP 2H (HL ),∴∠AP 2D =∠AED =73°,∵∠BAC =180°﹣50°﹣50°=80°,∴∠EDP 2=134°,③当点P 在AC 上,同理证得Rt △DEG ≌Rt △DPH (HL ),∴∠EDG =∠P 3DH ,∴∠EDP 3=∠GDH =180°﹣80°=100°,④当点P 在AB 上,EP =ED 时,∠EDP =12(180°﹣73°)=53.5°.故答案为:34°或53.5°或100°或134°.5.【解答】解:∵在△ABC 中,∠ACB =90°,∠B =15°,∴∠BAC=90°﹣15°=75°,∵DE垂直平分AB,BE=6cm,∴BE=AE=6cm,∴∠EAB=∠B=15°,∴∠EAC=75°﹣15°=60°,∵∠C=90°,∴∠AEC=30°,∴AC=12AE=12×6cm=3cm,故答案为:3cm.6.【解答】解:∵点A(a,b)与点B(1,﹣2)关于y轴对称,∴a=﹣1,b=﹣2,∴a+b=﹣3,故答案为:﹣3.7.【解答】解:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠ABD=∠DBC,∠ACD=∠DCM,设∠ABD=∠DBC=x,∠ACD=∠DCM=y,∵∠A+∠ABC=∠ACM,∴12∠A+12∠ABC=12∠ACM,即30°+x=y,∵∠D+∠DBC=∠DCM,∴∠D+x=y,∴∠D=30°,∵EFD与△EFH关于直线EF对称,∠BEH=84°,∴∠DEG=∠HEG=180°−84°2=48°,∴∠HFG=n°=∠DFG=48°+30°=78°则n=78.故答案为:78.8.【解答】解:∵DE是△ABC中边AB的垂直平分线,∴AD=BD,AB=2AE=2×4=8(cm),∵△ADC的周长为10cm,即AD+AC+CD=BD+CD+AC=BC+AC=10cm,∴△ABC的周长为:AB+AC+BC=8+10=18(cm).故答案为:18.9.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴BE=ED,同理DF=CF,∴EF=3+CF=5,∴CF=2,故答案为:2.10.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B=20°∴∠A=4x=80°故答案为:80°11.【解答】解:点P(1,﹣5)关于x轴对称点的点的坐标是:(1,5).故答案为:(1,5).12.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CE,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB =∠CEB =90°,在△ADB 和△CEB 中,{∠AAA =∠AAAAAAA =AAAA AA =AA,∴△ADB ≌△CEB (AAS), ∴CE =AD =4cm ,即BF +EF =4cm .故答案为:4.13.【解答】解:∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,{∠AAA =∠AAA AA =AAAA =AA ,∴△BAD ≌△CAE (ASA ),∴BD =CE =7,故答案为:7.14.【解答】解:连接CD ,BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE ,∠F =∠DEB =90°,∠ADF =∠ADE , ∴AE =AF ,∵DG 是BC 的垂直平分线,∴CD =BD ,在Rt △CDF 和Rt △BDE 中,{AA =AA AA =AA, ∴Rt △CDF ≌Rt △BDE (HL ),∴BE =CF ,∴AB =AE +BE =AF +BE =AC +CF +BE =AC +2BE , ∵AB =6,AC =3,∴BE =1.5.故答案为:1.5.15.【解答】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意;直角的角平分线所在的直线就是对称轴,是轴对称图形,符合题意;等腰三角形底边中线所在的直线是对称轴,是轴对称图形,符合题意;直角三角形不一定是轴对称图形,不符合题意.故成轴对称图形的是:线段、直角、等腰三角形.故答案为:线段、直角、等腰三角形.16.【解答】解:当等腰三角形的三边为:4、4、9时,不符合三角形三边关系,因此这种情况不成立;当等腰三角形的三边为:4、9、9时,符合三角形三边关系,则三角形的周长为:4+9+9=22.因此等腰三角形的周长为22.故填22.17.【解答】解:∵DE∥BC,∴∠E=∠ECB,∠D=∠DBC,∵CE平分∠ACB,BD平分∠ABC,∴∠ECB=∠ACE,∠DBC=∠ABD,∴∠E=∠ACE,∠D=∠ABD,∴AE=AC,AB=AD,∵AB+AC=AD+AE=DE=9,BC=7,∴△ABC的周长为AB+AC+BC=DE+BC=9+7=16.故答案为16.18.【解答】解:∵横坐标乘以﹣1,∴横坐标相反,又纵坐标不变,∴关于y轴对称.故答案为:y轴.19.【解答】解:∵BD为AC边上的高,∴BD⊥AC,∴∠BDF=90°,∵∠AFG=63°,∴∠DBF=90°﹣63°=27°,∵BF平分∠CBD交CE于点G,∴∠CBD=2∠DBF=54°,∴∠ACB=90°﹣∠CBD=36°,∵AC=BC,∴∠CAB=∠CBA=12(180°﹣36°)=72°,∴∠ABD=72°﹣54°=18°,∴∠ABG=27°+18°=45°,∵CE为△ABC的中线,∴CE⊥AB,∴CE垂直平分AB,∴AG=BG,∴∠GAB=∠GBA=45°,∴∠AMB=180°﹣45°﹣18°=117°,故答案为:117.20.【解答】解:如图所示:延长DB和DC至M和N,使MB=DB,NC=DC,连接MN交AB、AC于点E、F,连接DE、DF,此时△DEF的周长最小.∵DB⊥AB,DC⊥AC,∴∠ABD=∠ACD=90°,∠BAC=65°,∴∠BDC=360°﹣90°﹣90°﹣65°=115°,∴∠M+∠N=180°﹣115°=65°根据对称性质可知:DE=ME,DF=NF,∴∠EDM=∠M,∠FDN=∠N,∴∠EDM+∠FDN=65°,∴∠EDF=∠BDC﹣(∠EDM+∠FDN)=115°﹣65°=50°.故答案为50°.21.【解答】解:∵在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,BD=3cm,∴BC=2CD,可得:BC2﹣CD2=4CD2﹣CD2=9,解得:CD=√3cm,∴BC=2√3cm,∴AC=AA√3=2cm,∴AB=4cm,∴AD=4﹣3=1cm.故答案为:122.【解答】解:如图所示:作点D关于AB的对称点G,作点E关于BC的对称点H,连接GH交AB于点M、交BC于点N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:DB=BG=3,∠GBE=∠DBE=20°,BH=BE=3,∠HBD=∠EBD=20°,∴∠GBH=60°,∴△BGH是等边三角形,∴GH=GB=HB=3,∴DM+MN+NE的最小值为3.故答案为3.23.【解答】解:∵BE、CD分别是等边△ABC的高和角平分线,∴∠ODB=90°,∠ABE=30°,∴∠BOC=∠ODB+∠DBE=90°+30°=120°,故答案为:12024.【解答】解:①∵AB=AC,∠ABD=26°,BD⊥AC,∴∠A=64°,∴∠ABC=∠C=(180°﹣64°)÷2=58°.②∵AB=AC,∠ABD=26°,BD⊥AC,∴∠BAC=26°+90°=116°∴∠ABC=∠C=(180°﹣116°)÷2=32°.故答案为:58°或32°.25.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CE=CD,∴∠CDE=30°,∠FDG=150°,∵DF=DG,∴∠F=15°.故答案为:15.26.【解答】解:连接BE,∵AB=BC,∠B=120°,∴∠A=∠C=30°,∵DE是线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∴∠CBE=90°,又∠C=30°,∴BE=12EC,∴AE=12EC,∴AE=13AC=4,在Rt△ADE中,∠A=30°,∴DE=12AE=2,故答案为:2.27.【解答】解:作B关于AC的对称点E,过E作EP⊥BC于P,交AD于D,则AE=AB=8,此时,BD+DP的值最小,BD+DP的最小值=EP,∵∠BAC=∠BPE=90°,∠C=∠E,∴△ABC∽△PBE,∴AAAA=AAAA,∴1617=AA 15,∴PE =24017, 故答案为:24017.28.【解答】解:当△ABC 为锐角三角形时,如图1,设AC 的垂直平分线交线段AB 于点D ,交AC 于点E ,∵∠ADE =40°,DE ⊥AC ,∴∠A =90°﹣40°=50°,∵AB =AC ,∴∠C =12(180°﹣∠A )=65°;当△ABC 为钝角三角形时,如图2,设AC 的垂直平分线交AC 于点E ,交AB 于点D ,∵∠ADE =40°,DE ⊥AC ,∴∠DAC =50°,∵AB =AC ,∴∠B =∠C ,∵∠B +∠C =∠DAB ,∴∠C =25°;综上可知∠C 的度数为65°或25°,故答案为:65°或25°.29.【解答】解:过B 作BF ⊥AC 于F ,交CD 于E , 则BF 的长即为AE +EF 的最小值,∵AC =BC =5,CD 为△ABC 的中线,∴AD =12AB =3,∵S △ABC =12AB •CD =12AC •BF ,∴BF =6×45=245, ∴AE +EF 的最小值为245, 故答案为:245.30.【解答】解:点P (﹣2,﹣3)关于x 轴对称点的坐标为:(﹣2,3). 故答案为:(﹣2,3).。
新人教版八年级数学上册期末试卷(三)及答案

新世纪教育网精选资料版权全部@新世纪教育网新人教版八年级数学上册期末试卷(三)及答案一、选择题:(每题 3 分,共 30 分)1、若一个数的算术平方根等于它的自己,这个数是()A、1B、0C、-1D、0或12、以下图案是轴对称图形有()A、1个B、2个C、3个D、4个3、以下各组数中互为相反数的是()A、 2与(2)22与38C、2与(2)22 与 2B 、 D 、4、、以下说法正确的选项是()A、0.25 是 0.5 的一个平方根B、正数有两个平方根,且这两个平方根之和等于 0的平方根是、负数有一个平方根C、7 27D5、如图, AB∥CD,AD∥BC, OE=OF,则图中全等三角形的组数是()A、3B、 4C、 5 D 、 66、如图,某同学把一块三角形的玻璃打坏成了三块,此刻要到玻璃店去配一配一块完全同样的玻璃,那么最省事的方法是()A、带①去B、带②去 C 、带③去D、带①和②去7、如图,∠ C=90°, AM均分∠ CAB, CM=20cm,那么 M到 AB的距离是()A、10cmB、 15cmC、20cmD、25cmA E DOBFC8、假如等腰三角形的两边长是6cm和 3cm,那么它的周长是()A、 9cmB、 12cmC、 12cm 或 15cm D 、15cm9、√9 的平方根是()A、 3B、√3C、±√3D、± 310、若√5χ+1 存心义,则χ 能取的最小整数是()A、 -1B、 0C、1D、2新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
版权全部@新世纪教育网11、已知,如:∠ ABC=∠DEF,AB=DE,要明ABC≌ΔDEF 要增添的条件______________。
(填一种即可)、12、如 , AC ⊥BC于 C , DE ⊥AC于 E , AD ⊥AB于 A , BC=AE.若 AB=5 ,AD=。
13、如:△ ABC中 ,DE 是 AC的垂直均分 ,AE=3cm,△ABD的周 13cm,△ ABC的周 ____________。
人教版八年级数学上册 第13章 对称轴及最值问题专项练习

对称轴及最值问题专项练习【例题1】轴对称和轴对称图形的性质下面四个京剧脸谱的剪纸中,是轴对称图形的是()A B C D【练1-1】下列说法正确的是()A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC与△A′B′C′成轴对称,则△ABC≌△A′B′C′D.点A,点B在直线1两旁,且AB与直线1交于点O,若AO=BO,则点A与点B•关于直线l对称【练1-2】如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB•的对称点,线段MN交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长为 .EABPMNF【练1-3】把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,折叠后的C点落在MB'或MB'的延长线上,那么∠EMF的度数是 .【练1-4】如图,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标.【例题2】对称点点P(-3,5)关于y 轴对称的点的坐标为,点P(3,-2)关于直线x=2对称点的坐标是 . 【练2-1】已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是 .【练2-2】已知A(-1,-2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.【练2-3】已知M(2a+b,3)和N(5,b﹣6a)关于y轴对称,则3a﹣b的值为 .【2-4】已知点A坐标为(3-2a,3a-9)在第三象限,且a为整数.根据要求完成下列各题:(1)a= ;A点坐标为;(2)A点关于x轴对称的点坐标为;A 点关于y轴对称的点坐标为;A点关于原点对称的点坐标为;(3)A点关于直线 x=2 对称的点坐标为;A点关于直线 x=-2 对称的点坐标为;(4)连接OA,将OA绕点O旋转90°,则旋转后A点对应坐标为 .【练2-5】在平面直角坐标系中,①点P(−2,1)与点Q(2,−1)关于x轴对称;②点M(-2,1)与点N(2,1)关于y轴对称;③与点(-3,3)关于y轴对称的点在第二象限;④点P(2,a)与点Q(b,-3)关于x轴对称,则a-b的值为1.其中正确的是()A.①②B.②③C.②④D.③④ 【练2-6】在平面直角坐标系中,过一点分别作x 轴,y 轴的垂线,若坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.给出以下结论:①点M (2,4)是和谐点;②不论a 为何值时,点P (2,a )不是和谐点;③若点P (a ,3)是和谐点,则a=6;④若点F 是和谐点,则点F 关于坐标轴的对称点也是和谐点. 正确结论的序号是 .【例题3】垂直平分线的性质与判定如图,已知线段AB ,BC 的垂直平分线l 1,l 2交于点M ,则线段AM ,CM 的大小关系是( ) A.AM >CM B.AM=CM C.AM <CM D.无法确定【练3-1】如图,在△ABC 中,分别以点A 和点C 为圆心,大于21AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E .若AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长为( ) A .16cm B .19cmC .22cmD .25cm【练3-2】如图,△ABC 和△ADE 关于直线L 对称,下列结论:①△ABC ≌△ADE ;②L 垂直平分DB ;③∠C=∠E ;④BC 与DE 的延长线的交点一定落在直线l 上.其中错误的有( )A.0个B.1个C.2个D.3个【练3-3】如图,在△ABC中AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF折叠,点C与点O恰好重合,则∠OEC为度【练3-4】如图,已知AB-AC=2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长为14cm,求AB,AC的长.【练3-5】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M.(1)若∠A=40°,求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)由(1)(2)你发现有什么样的规律,试证明.【例题4】尺规作图尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【练4-1】如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.【4-2】如图,某城市规划局为了方便居民的生活,计划在三个住宅小区A,B,C之间修建一个购物中心,试问:该购物中心应建于何处,才能使得它到三个小区的距离相等?【例题5】几何最值问题:两点之间,线段最短 (1)如图,在l 找一点P ,使PA+PB 最小.BAl(2)如图,在l 找一点P ,使PA+PB 最小.(3)如图,点P 在锐角∠AOB 的内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使△PCD 周长最小.(4)如图,点C 、D 在锐角∠AOB 的内部,在OB 边上求作一点F ,在OA 边上求作一点E ,使四边形CEFD 周长最小.三、温故知新1.下列说法正确的是( )lBADCA OA.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2.已知∠AOB=30°,点 P 在∠AOB 的内部,P1与 P 关于 OA 对称,P2与 P 关于 OB 对称,则△P1OP2是()A.含 30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形3.已知点 P 在线段 AB 的中垂线上,点 Q 在线段AB的中垂线外,则()A.PA+PB>QA+QBB.PA+PB<QA+QBC.PA+PB=QA+QBD.不能确定4.(1)若点(5﹣a,a﹣3)在第一、三象限角平分线上,求a的值;(2)已知两点A(﹣3,m),B(n,4),若AB∥x轴,求m的值,并确定n的范围;(3)点P到x轴和y轴的距离分别是3和4,求点P的坐标;(4)已知点A(x,4﹣y)与点B(1﹣y,2x)关于y轴对称,求y x的值.5.已知△ABC中∠BAC=130°,BC=18cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G.求:(1)∠EAF的度数;(2)求△AEF的周长.6.如图,在旷野上,一个人骑马从A出发,他先使马从A出发,他先使马到草地边l1吃草,再到河边l2饮水,最后返回A,他是怎样走才能使总路程最短?7.如图,已知Rt△ABC,∠ACB=900,AD平分∠BAC与BC交于D点,M、N分别在线段AD、AC上的动点,连接MN、MC,当MN+MC最小时,画出M、N的位置.已知△ABC的面积为12cm2,AB=6cm,求MN+MC的最小值.8.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值为多少?。
最新人教版八年级上册数学培优练习第十三章 轴对称第3课时线段的垂直平分线的性质(2)

谢谢观看
3.下列图形中,对称轴最多的是( B )
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
数学
4.如图,AC=AD,BC=BD,则( B ) A.CD垂直平分AB B.AB垂直平分CD C.CD平分∠ACB D.以上结论都不正确 5.如图,在△ABC中,AB=6 cm,AC=4 cm,BC的垂直平分线分 别交AB,BC于D,E,则△ACD的周长为 10 cm.
数学
6.如图,△ABC与△DEF关于某直线对称,请画出它们的对称 轴.
图略
数学
7.如图,作出下列轴对称图形的对称轴.
图略
数学
8.如图,在直线l上求作一点P,使PA=PB(不写作法,保留作图 痕迹).
解:作AB的垂直平分线交l于P,图略.
数学
9.如图,AB=AC,MB=MC.求证:直线AM是线段BC的垂直平 分线. 证明:∵AB=AC, ∴点A在BC的垂直平分线上. ∵BM=CM, ∴点M在BC的垂直平分线上, ∴直线AM是线段BC的垂直平分线.
数学
11.如图,A,B,C是三个村庄,现要修建一座变电站P,使变电站P 到三个村庄A,B,C的距离都相等,请用尺规作图作出点P的位 置(保留作图痕迹,不写作法).
解:依题意只要使PA=PB=PC,则P既在AB的垂直平分线上, 又在BC的垂直平分线上,故只需作出AB,BC的垂直平分线的 交点即为所求的点P,图略.
第十三章 轴对称
第3课时 线段的垂直平分线的性质(2)
数学
1.下列剪纸作品都是轴对称图形,其中对称轴条数最多的作品 是( D )
人教版 八年级上册 数学第13--14章 期末复习题(含答案)

人教版八年级上册第13章轴对称章末综合训练一、选择题1. 以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3C.2,2,1 D.2,2,52. 如图,△ABC是等边三角形,D是AC的中点,DE⊥BC于点E,CE=3,则AB的长为()A.11 B.12 C.13 D.143. 在△ABC中,与∠A相邻的外角是110°,要使△ABC为等腰三角形,则∠B 的度数是()A.70°B.55°C.70°或55°D.70°或55°或40°4. 如果点(m-1,-1)与点(5,-1)关于y轴对称,那么m的值为()A.4 B.-4 C.5 D.-55. 如图直线a∥b∥c,等边三角形ABC的顶点B,C分别在直线b和c上,边BC与直线c所夹的锐角为20°,则∠α的度数为()A.20°B.40°C.60°D.80°6. 若点A(2m,2-m)和点B(3+n,n)关于y轴对称,则m,n的值分别为()A.1,-1 B.5 3,13C.-5,7 D.-13,-737. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 108. 如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°9. 在平面直角坐标系中,已知在y轴与直线x=3之间有一点M(a,3).如果该点关于直线x=3的对称点N的坐标为(5,3),那么a的值为()A.4B.3C.2D.110. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°二、填空题11. 如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD ②∠BAD=∠CAD③AB+BD=AC+CD ④AB-BD=AC-CD12. 如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为________.13. 如图,等腰三角形ABC的底边BC的长为6,面积是24,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为________.14. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.15. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=________.16. 如图,点E在等边三角形ABC的边BC上,BE=6,射线CD⊥BC于点C,P是射线CD上一动点,F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC的长为________.三、解答题17. 如图,已知△ABC中,D为BC边上一点,且AB=AC=BD,AD=CD,求∠BAC的度数.18. 如图,在△ABC中,AB=BD,根据图中的数据,求∠BAC的度数.19. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.20. 如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴对称的图形是△A1B1C1,△A1B1C1关于直线l对称的图形是△A2B2C2,请直接写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.21. 如图①所示,A,B两地在一条河的两岸,现要在河岸上造一座桥MN,桥造在何处才能使从A地到B地的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)[思考1]如图②,如果A,B两地之间有两条平行的河流,我们要建的桥都是与河岸垂直的,我们应该如何找到这个最短的路径呢?[思考2]如图③,如果A,B两地之间有三条平行的河流呢?[拓展]如图④,如果在上述其他条件不变的情况下,两条河并不是平行的,又该如何建桥呢?请将你的思考在下面准备好的图形中表示出来,保留作图痕迹,将行走的路线用实线画出来.链接听P30例2归纳总结人教版八年级上册第13章轴对称章末综合训练-答案一、选择题1. 【答案】 C2. 【答案】B∴∠CDE=30°.∴CD=2CE=6.∵D是AC的中点,∴AC=2CD=12.∴AB=AC=12.3. 【答案】D 当∠B =55°时,可得∠C =55°,∠B =∠C ,△ABC 为等腰三角形;当∠B =40°时,可得∠C =70°=∠A ,△ABC 为等腰三角形.4. 【答案】B5. 【答案】D∵△ABC 是等边三角形,∴∠ACB =60°.∴∠α=∠ACE =∠ACB +∠BCE =60°+20°=80°.6. 【答案】C7. 【答案】C8. 【答案】C∵AC =BC ,∴CG 平分∠ACB ,∠A =∠B =40°.∵∠ACB =180°-∠A -∠B =100°, ∴∠BCG =12∠ACB =50°.9. 【答案】D又∵点M (a ,3)到直线x=3的距离为3-a ,∴3-a=2.∴a=1.10. 【答案】A∴∠E =180°-∠EAB =180°-120°=60°.又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.二、填空题12. 【答案】(2,3)13. 【答案】11 ∵△ABC 是等腰三角形,D 是BC 边的中点, ∴AD ⊥BC.∴S △ABC =12BC·AD =12×6×AD =24,解得AD =8.∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC. ∴MC +DM =MA +DM≥AD. ∴AD 的长为MC +DM 的最小值.∴△CDM 周长的最小值=(MC +DM)+CD =AD +12BC =8+12×6=8+3=11.14. 【答案】615. 【答案】85或14 ∴特征值k=80°50°=85.②当∠A 为底角时,顶角的度数为180°-80°-80°=20°, ∴特征值k =20°80°=14. 综上所述,特征值k 为85或14.16. 【答案】10如图,作点E 关于直线CD 的对称点G ,过点G 作GF ⊥AB 于点F ,交CD 于点P ,则此时EP +PF 的值最小.∵∠B =60°,∠BFG =90°,∴∠G =30°. ∵BF =7,∴BG =2BF =14.∴EG =8. ∴CE =CG =4.∴AC =BC =10.三、解答题17. 【答案】解:∵AD =CD ,∴设∠DAC =∠C =x°. ∵AB =AC =BD ,∴∠BAD =∠BDA =∠DAC +∠C =2x°, ∠B =∠C =x°.∴∠BAC =3x°.∵∠B +∠BAC +∠C =180°,∴5x =180, 解得x =36.∴∠BAC =3x°=108°.18. 【答案】解:∵∠ADB =30°+40°=70°,AB =BD , ∴∠BAD =∠ADB =70°.∴∠BAC =∠BAD +∠CAD =100°.19. 【答案】解:(1)证明:如图,过点D 作DM ∥AB ,交CF 于点M ,则∠MDF =∠E.∵△ABC 是等边三角形, ∴∠CAB =∠CBA =∠C =60°. ∵DM ∥AB ,∴∠CDM =∠CAB =60°,∠CMD =∠CBA =60°. ∴△CDM 是等边三角形. ∴CM =CD =DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF≌△EBF(ASA).∴DM=BE. ∴CD=BE.(2)∵ED⊥AC,∠CAB=∠CBA=60°,∴∠E=∠FDM=30°.∴∠BFE=∠DFM=30°.∴BE=BF,DM=MF.∵△DMF≌△EBF,∴MF=BF.∴CM=MF=BF.又∵BC=AB=12,∴BF=13BC=4.20. 【答案】解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2).(2)如图①,若0<a≤3,∵点P与点P1关于y轴对称,P(-a,0),∴P1(a,0).又∵点P1与点P2关于直线x=3对称,设P2(x,0),可得=3,即x=6-a.∴P2(6-a,0),则PP2=6-a-(-a)=6-a+a=6.如图②,若a>3,∵点P与点P1关于y轴对称,P(-a,0),∴P1(a,0).又∵点P1与点P2关于直线x=3对称,设P2(m,0),可得=3,即m=6-a.∴P2(6-a,0),则PP2=6-a-(-a)=6-a+a=6.综上,PP2的长为6.21. 【答案】如图①所示,MN即为所求.[思考1] 如图②所示,折线AMNEFB即为所求.[思考2] 如图③所示,折线AMNGHFEB即为所求.[拓展] 如图④所示,折线AMNEFB即为所求.人教版 八年级上册 第14章 整式的乘法与因式分解 章末综合训练一、选择题1. 化简(x 3)2,结果正确的是() A .-x 6 B .x 6C .x 5D .-x 52. 计算(x -1)2的结果是() A .x 2-x +1 B .x 2-2x +1 C .x 2-1D .2x -23. 计算(2x +1)(2x -1)的结果为( )A .4x 2-1B .2x 2-1C .4x -1D .4x 2+14. 若3×9m ×27m =321,则m 的值是( )A .3B .4C .5D .65. 下列各式中,能用完全平方公式计算的是()A .(x -y )(x +y )B .(x -y )(x -y )C .(x -y )(-x -y )D .-(x +y )(x -y )6. 下列各式中,计算正确的是()A .()222p q p q -=- B .()22222a b a ab b +=++ C .()2242121a a a +=++ D .()2222s t s st t --=-+7. 化简(-2x -3)(3-2x )的结果是( ) A .4x 2-9B .9-4x 2C .-4x 2-9D .4x 2-6x +98. 若(x +a )2=x 2+bx +25,则( )A .a =3,b =6B .a =5,b =5或a =-5,b =-10C .a =5,b =10D .a =-5,b =-10或a =5,b =109. 若n 为正整数,则(2n +1)2-(2n -1)2的值( )A .一定能被6整除B .一定能被8整除C .一定能被10整除D .一定能被12整除10. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ).A.大于零B.小于零 C 大于或等于零D .小于或等于零二、填空题11. 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=- 其中是因式分解的有 (填括号)12. 若x -y =6,xy =7,则x 2+y 2的值等于________.13. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.14. 填空:()()22552516a a a b +-=-15. 课本上,公式(a -b )2=a 2-2ab +b 2是由公式(a +b )2=a 2+2ab +b 2推导得出的.已知(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4,则(a -b )4=________________.16. 分解因式:432234232a a b a b ab b ++++=_______.三、解答题17. 计算:(41)(41)a a ---+18. 分解因式:44()()a x a x +--19. 分解因式:42231x x -+;20. 分解因式:222332154810ac cx ax c +--21. 分解因式:2222(3)2(3)(3)(3)x x x x -+--+-;人教版 八年级上册 第14章 整式的乘法与因式分解 章末综合训练-答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】A8. 【答案】D 所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.9. 【答案】B10. 【答案】B 【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<二、填空题11. 【答案】其中⑴是单项式变形,⑷是多项式的乘法运算,⑵中并没有写成几个整式的乘积的形式,只有⑶是因式分解12. 【答案】50 所以x 2+y 2=(x -y)2+2xy =62+2×7=50.13. 【答案】±314. 【答案】()()2254542516a b a b a b +-=-【解析】()()2254542516a b a b a b +-=-15. 【答案】a 4-4a 3b +6a 2b 2-4ab 3+b 4所以(a -b)4=[a +(-b)]4=a 4+4a 3(-b)+6a 2(-b)2+4a(-b)3+(-b)4=a 4-4a 3b +6a 2b 2-4ab 3+b 4.16. 【答案】222()a b ab ++【解析】4322342222222222232()2()()a a b a b ab b a b ab a b a b a b ab ++++=++++=++三、解答题17. 【答案】222(41)(41)(4)1161a a a a ---+=--=-【解析】222(41)(41)(4)1161a a a a ---+=--=-18. 【答案】228()ax a x +【解析】442222()()()()()()a x a x a x a x a x a x ⎡⎤⎡⎤+--=+--++-⎣⎦⎣⎦[][]22()()()()()()a x a x a x a x a x a x ⎡⎤=+--++-++-⎣⎦222222(22)8()x a a x ax a x =⋅⋅+=+19. 【答案】22(15)(15)x x x x +++-【解析】42422222222312125(1)(5)(15)(15)x x x x x x x x x x x -+=++-=+-=+++-20. 【答案】22(23)(165)c x a c --【解析】222323223215481032101548ac cx ax c ac c cx ax +--=-+- 22222(165)3(516)(23)(165)c a c x c a c x a c =-+-=--21. 【答案】22x x-+(2)(3)【解析】22222222 -+--+-=+-=-+;(3)2(3)(3)(3)(6)(2)(3)x x x x x x x x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末复习(三)轴对称
分点突破
命题点1轴对称与轴对称图形
1.(钦州中考)下列图形中,是轴对称图形的是( )
A B C D
2.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?
3.请作出图中四边形ABCD关于直线a的轴对称图形(要求:不写作法,但必须保留作图痕迹).
命题点2线段的垂直平分线
4.(遂宁中考)如图,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 c m,则BC的长为( )
A.1 cm
B.2 cm
C.3 cm
D.4 cm
命题点3等腰三角形与等边三角形
5.(苏州中考)如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠C的度数为( ) A.35°B.45°C.55°D.60°
6.如图,AD是等边△ABC的中线,AE=AD,则∠EDC=( )
A.30°B.20°C.25°D.15°
7.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有( )
A.5个
B.4个
C.3个
D.2个
命题点4含30°角的直角三角形的性质
8.如图所示,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=________.
9.如图所示,△ABC是等边三角形,AD∥BC,CD⊥AD,若AD=2 cm,则△ABC的周长为________cm.
命题点5最短路径问题
10.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( )
A.3
B.4
C.5
D.6
综合训练
11.如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,BE=6 cm,则AC等于( )
A .6 cm
B .5 cm
C .4 cm
D .3 cm
12.(云南模拟)如图,△ABC 中,∠C =90°,∠A =30°,分别以顶点A 、B 为圆心,大于1
2AB 为半径作弧,两
弧在直线AB 两侧分别交于M 、N 两点,过M 、N 作直线交AB 于点P ,交AC 于点D ,连接BD.下列结论中,错误的是( )
A .直线A
B 是线段MN 的垂直平分线 B .CD =1
2AD
C .B
D 平分∠ABC D .S △APD =S △BCD
13.(遵义中考)如图,四边形ABCD 中,∠C =50°,∠B =∠D =90°,E 、F 分别是BC 、DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为( )
A .50°
B .60°
C .70°
D .80°
14.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1; (2)△A 1B 1C 1的面积为________.
15.如图所示,若MP 和NQ 分别垂直平分AB 和AC. (1)若△APQ 的周长为12,求BC 的长;
(2)∠BAC=105°,求∠PAQ的度数.
16.(保山期末)如图,已知:AD平分∠CAE,AD∥BC.
(1)求证:△ABC是等腰三角形;
(2)当∠CAE等于多少度时,△ABC是等边三角形?证明你的结论.
参考答案
1.C 2.与1和3成轴对称,整个图形是轴对称图形,它共有2条对称轴. 3.如图所示,四边形A′B′C′D′即为所求. 4.C 5.C 6.D7.A8.39.1210.B11.D12.A13.D14.(1)如图所示,△A1B1C1即为所求.(2)4.5 15.(1)∵MP和NQ分别垂直平分AB和AC,∴AP=BP,AQ=CQ.∴△APQ的周长为AP+PQ+AQ=BP+PQ+CQ=BC.∵△APQ的周长为12,∴BC=12.(2)∵AP=BP,AQ=CQ,∴∠B=∠BAP,∠C=∠CAQ.
∵∠BAC=105°,∴∠BAP+∠CAQ=∠B+∠C=180°-∠BAC=180°-105°=75°.∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=105°-75°=30°.16.(1)证明:∵AD平分∠CAE,∴∠EAD=∠CAD.∵AD∥BC,∴∠EAD =∠B,∠CAD=∠C.∴∠B=∠C.∴AB=AC.∴△ABC是等腰三角形.(2)当∠CAE=120°时,△ABC是等边三角形.∵∠CAE=120°,∴∠BAC=60°.又∵△ABC是等腰三角形,∴△ABC是等边三角形.。