椭圆习题
(完整版)椭圆的简单性质练习题及答案

椭圆一、选择题(本大题共10小题,每小题5分,共50分) 1.下列命题是真命题的是( )A .到两定点距离之和为常数的点的轨迹是椭圆B .到定直线ca x 2=和定点F(c ,0)的距离之比为ac 的点的轨迹是椭圆C .到定点F(-c ,0)和定直线ca x 2-=的距离之比为ac (a >c>0)的点的轨迹 是左半个椭圆D .到定直线ca x 2=和定点F (c ,0)的距离之比为ca (a >c 〉0)的点的轨迹是椭圆2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x3.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)4.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段 5.椭圆12222=+by a x 和k b y a x =+2222()0>k 具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴6.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为 ( )A .41B .22 C .42 D . 217.已知P 是椭圆13610022=+y x 上的一点,若P 到椭圆右准线的距离是217,则点P 到左焦点的距离是( )A .516B .566C .875D .8778.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .109.在椭圆13422=+y x 内有一点P (1,-1),F 为椭圆右焦点,在椭圆上有一点M ,使|MP|+2|MF|的值最小,则这一最小值是 ( )A .25B .27C .3D .410.过点M (-2,0)的直线m 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为 ( )A .2 B .-2 C .21 D .-21 二、填空题(本题共4小题,每小题6分,共24分) 11.离心率21=e ,一个焦点是()3,0-F 的椭圆标准方程为 ___________ 。
椭圆练习题

椭圆练习题(一)1.对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分必要条件 D 、既不充分也不必要条件2.设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 453.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += 4.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为A.14 B. C. 12 D.5.椭圆2221(5x y a a +=为定值,且a >的的左焦点为F ,直线x m =与椭圆相交于点A 、B ,FAB ∆的周长的最大值是12,则该椭圆的离心率是______。
6.设椭圆C : ()222210x y a b a b+=>>过点(0,4),离心率为35.(1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.7.已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率. (Ⅰ)求椭圆2C 的方程;(Ⅱ)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2=求直线AB 的方程.8.已知椭圆1422=+y x 及直线m x y +=(1) 当直线和椭圆有公共点时,求实数m 的取值范围 (2) 求被椭圆截得的最长弦所在的直线方程。
(完整版)椭圆练习题(含答案)

解析几何——椭圆精炼专题一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A . 22B . 2C . 2D . 16.已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( ) A .112814422=+y x 或114412822=+y x B . 14622=+y x C .1323622=+y x 或1363222=+y x D . 16422=+y x 或14622=+y x 7. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴8.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .89.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍B .5倍C .7倍D .3倍10.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.过点M (-2,0)的直线M 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( )A .2B .-2C .21 D .-21 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m +=的离心率为12,则m = . 14.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 . 15.直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .16.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 .三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.) 17.已知三角形ABC 的两顶点为(2,0),(2,0)B C ,它的周长为10,求顶点A 轨迹方程.18.椭圆的一个顶点为A (2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.19.点P 到定点F (2,0)的距离和它到定直线x =8的距离的比为1:2,求点P 的轨迹方程,并指出轨迹是什么图形.20.中心在原点,一焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点横坐标是21,求此椭圆的方程.21.已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程22.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.(1)求2211b a +的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.椭圆练习题参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDDABD13、3或316 14、 4 , 1 15、5382 16、121425422=+yx17、3)(x 15922±≠=+y x 18、解:(1)当A (2,0)为长轴端点时,a =2 , b =1,椭圆的标准方程为: ;(2)当为短轴端点时,,,椭圆的标准方程为: ;19.解:设P (x ,y ),根据题意,|PF|=(x-2)2-y 2,d=|x-8|,因为|PF|d =12 ,所以 (x-2)2-y 2 |x-8| = 12 .化简,得3x 2+4y 2=48,整理,得x 216 +y 212=1,所以,点P 的轨迹是椭圆。
完整版)椭圆经典练习题两套(带答案)

完整版)椭圆经典练习题两套(带答案)A组基础过关1.选择题1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于多少?A。
2B。
2/3C。
1/2D。
1/3解析:由题意得2a=2b,所以a=b,又a²=b²+c²,所以b=c,所以a=2c,e=c/a=1/2,答案为C。
2.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是什么?A。
(x²/81)+(y²/72)=1B。
(x²/81)+(y²/9)=1C。
(x²/81)+(y²/45)=1D。
(x²/81)+(y²/36)=1解析:依题意知2a=18,所以a=9,2c=3×2a,所以c=3,所以b=a-c=81-9=72,所以椭圆方程为(x²/81)+(y²/72)=1,答案为A。
3.椭圆x²+4y²=1的离心率是多少?A。
2/3B。
2C。
1/2D。
3解析:先将x²+4y²=1化为标准方程,得(x/1)²+(y/(1/2))²=1,所以a=1,b=1/2,所以c=√(a²-b²)=√(3)/2,所以e=c/a=√(3)/2,答案为A。
2.解答题1.设F₁、F₂分别是椭圆4x²+y²=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF₁⊥PF₂,则点P的横坐标为多少?解析:由题意知,点P即为圆x²+y²=3与椭圆4x²+y²=1在第一象限的交点,解方程组x²+y²=3和4x²+y²=1,得点P的横坐标为√(2/3),答案为√(2/3)。
2.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为2,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程是什么?解析:依题意设椭圆G的方程为a²x²+b²y²=1(a>b>0),因为椭圆上一点到其两个焦点的距离之和为12,所以2a=12,所以a=6,又因为椭圆的离心率为2,所以c=a/2=3,所以b=√(a²-c²)=3√5,所以椭圆G的方程为36x²+45y²=1,答案为C。
椭圆练习题(含答案)

椭圆练习题一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.)1.椭圆的焦距是()A.2 B .C .D .2.F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()A.椭圆B.直线C.线段D.圆3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点,则椭圆方程是()A .B .C .D .4.方程暗示焦点在y轴上的椭圆,则k的取值范围是()A .B.(0,2)C.(1,+∞)D.(0,1)5.过椭圆的一个焦点的直线与椭圆交于、两点,则、与椭圆的另一焦点构成,那么的周长是()A . B. 2 C . D. 16.已知椭圆的对称轴是坐标轴,离心率为,长轴长为12,则椭圆方程为()A .或B .C .或????????????????????????????????D .或??.??已知<??,则曲线和有()A.相同的短轴 B.相同的焦点 C.相同的离心率 D.相同的长轴8.椭圆的焦点、,P 为椭圆上的一点,已知,则△的面积为()A.9 B.12 C.10 D.89.椭圆的焦点为和,点P 在椭圆上,若线段的中点在y 轴上,那么是的()A.4倍 B.5倍 C.7倍 D.3倍10.椭圆内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()A .B .C .D.11.椭圆上的点到直线的最大距离是()A.3 B .C .D .12.过点M(-2,0)的直线M 与椭圆交于P1,P2,线段P1P2的中点为P,设直线M 的斜率为k1(),直线OP的斜率为k2,则k1k2的值为()A.2 B.-2 C .D .-二、填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆的离心率为,则.14.设是椭圆上的一点,是椭圆的两个焦点,则的最大值为;最小值为.15.直线y=x -被椭圆x2+4y2=4截得的弦长为.16.已知圆为圆上一点,AQ的垂直平分线交CQ于M,则点M的轨迹方程为.三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步调.)17.已知三角形的两顶点为,它的周长为,求顶点轨迹方程.18.椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的尺度方程.19.点P到定点F(2,0)的距离和它到定直线x=8的距离的比为1:2,求点P的轨迹方程,并指出轨迹是什么图形.20.中心在原点,一焦点为F1(0,5)的椭圆被直线y=3x-2截得的弦的中点横坐标是,求此椭圆的方程.21.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=,求椭圆方程22.椭圆>>与直线交于、两点,且,其中为坐标原点. (1)求的值;(2)若椭圆的离心率满足≤≤,求椭圆长轴的取值范围. 椭圆练习题参考答案 题号1 2 3 4 5 6 7 8 9 10 11 12 答案 A C D D AB D13、3或 14、 4 , 1 15、16、17、18、解:(1)当A(2,0)为长轴端点时,a=2 , b=1,椭圆的尺度方程为:;(2)当为短轴端点时,,,椭圆的尺度方程为:;19.解:设P (x ,y ),根据题意,|PF|=(x2)2y2 ,d=|x8|,因为|PF|d =12 ,所以 (x2)2y2 |x8| = 12 .化简,得3x2+4y2=48,整理,得x216 +y212=1,所以,点P 的轨迹是椭圆。
椭圆方程练习题

椭圆方程练习题椭圆方程练习题椭圆方程是数学中的一个重要概念,广泛应用于物理、工程和计算机科学等领域。
它描述了一个平面上所有点的集合,这些点到两个给定点的距离之和等于一个常数。
在本文中,我们将通过一些练习题来加深对椭圆方程的理解和应用。
练习题1:考虑一个椭圆方程:(x/2)^2 + (y/3)^2 = 1。
请回答以下问题:1. 这个椭圆的中心在哪里?2. 椭圆的长轴和短轴分别是多少?3. 椭圆的离心率是多少?解答:1. 这个椭圆的中心在原点(0, 0)。
2. 椭圆的长轴是2,短轴是3。
3. 椭圆的离心率是√(1 - (3/2)^2) ≈ 0.866。
练习题2:给定一个椭圆方程:(x/5)^2 + (y/4)^2 = 1。
请回答以下问题:1. 这个椭圆的中心在哪里?2. 椭圆的长轴和短轴分别是多少?3. 椭圆的离心率是多少?解答:1. 这个椭圆的中心在原点(0, 0)。
2. 椭圆的长轴是5,短轴是4。
3. 椭圆的离心率是√(1 - (4/5)^2) ≈ 0.6。
练习题3:给定一个椭圆方程:(x - 2)^2/4 + (y + 1)^2/9 = 1。
请回答以下问题:1. 这个椭圆的中心在哪里?2. 椭圆的长轴和短轴分别是多少?3. 椭圆的离心率是多少?解答:1. 这个椭圆的中心在点(2, -1)。
2. 椭圆的长轴是6,短轴是4.5。
3. 椭圆的离心率是√(1 - (4.5/6)^2) ≈ 0.75。
通过以上的练习题,我们可以看到椭圆方程的一些特点。
首先,椭圆的中心可以通过方程中的常数项得到。
其次,长轴和短轴的长度可以通过方程中的系数得到。
最后,离心率可以通过长轴和短轴的长度计算得到。
椭圆方程在现实生活中有着广泛的应用。
例如,当我们研究天体运动时,可以使用椭圆方程描述行星绕太阳的轨道。
此外,椭圆方程还可以用于设计汽车、船只和飞机的轨迹,以及计算机图形学中的曲线绘制等。
总结起来,椭圆方程是数学中一个重要的概念,具有广泛的应用价值。
高中数学椭圆练习题(含答案)

椭圆练习题一、 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中有只有一项是符合题目要求的.) 1.椭圆63222=+y x 的焦距是( )A .2B .)23(2-C .52D .)23(2+2.F 1、F 2是定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( ) A .椭圆 B .直线 C .线段 D .圆 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x yB .161022=+x yC .18422=+x yD .161022=+y x4.方程222=+ky x 表示焦点在y 轴上的椭圆,则k 的取值范围是( )A .),0(+∞B .(0,2)C .(1,+∞)D .(0,1)5. 过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点2F 构成2ABF ∆,那么2ABF ∆的周长是( )A . 22B . 2C . 2D . 16.已知椭圆的对称轴是坐标轴,离心率为31,长轴长为12,则椭圆方程为( ) A .112814422=+y x 或114412822=+y x B . 14622=+y x C .1323622=+y x 或1363222=+y x D . 16422=+y x 或14622=+y x 7. 已知k <4,则曲线14922=+y x 和14922=-+-k y k x 有( ) A . 相同的短轴 B . 相同的焦点 C . 相同的离心率 D . 相同的长轴8.椭圆192522=+yx 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为( ) A .9 B .12 C .10 D .89.椭圆131222=+y x 的焦点为1F 和2F ,点P 在椭圆上,若线段1PF 的中点在y 轴上,那么1PF 是2PF 的( )A .4倍B .5倍C .7倍D .3倍10.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,那么这弦所在直线的方程为( ) A .01223=-+y x B .01232=-+y xC .014494=-+y xD . 014449=-+y x11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( )A .3B .11C .22D .1012.过点M (-2,0)的直线M 与椭圆1222=+y x 交于P 1,P 2,线段P 1P 2的中点为P ,设直线M 的斜率为k 1(01≠k ),直线OP 的斜率为k 2,则k 1k 2的值为( ) A .2 B .-2C .21 D .-21 二、 填空题:(本大题共4小题,每小题4分,共16分,把答案填在题中横线上.)13.椭圆2214x y m +=的离心率为12,则m = . 14.设P 是椭圆2214x y +=上的一点,12,F F 是椭圆的两个焦点,则12PF PF 的最大值为 ;最小值为 .15.直线y =x -21被椭圆x 2+4y 2=4截得的弦长为 .16.已知圆Q A y x C ),0,1(25)1(:22及点=++为圆上一点,AQ 的垂直平分线交CQ 于M ,则点M 的轨迹方程为 .三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.) 17.已知三角形ABC 的两顶点为(2,0),(2,0)B C -,它的周长为10,求顶点A 轨迹方程.18.椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.19.点P到定点F(2,0)的距离和它到定直线x=8的距离的比为1:2,求点P的轨迹方程,并指出轨迹是什么图形.20.中心在原点,一焦点为F1(0,52)的椭圆被直线y=3x-2截得的弦的中点横坐标是21,求此椭圆的方程.21.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭圆交于P和Q,且OP⊥OQ,|PQ|=210,求椭圆方程22.椭圆12222=+byax(a>b>)0与直线1=+yx交于P、Q两点,且OQOP⊥,其中O为坐标原点.(1)求2211ba+的值;(2)若椭圆的离心率e满足33≤e≤22,求椭圆长轴的取值范围.椭圆练习题参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDDABD13、3或316 14、 4 , 1 15、5382 16、121425422=+yx17、3)(x 15922±≠=+y x 18、解:(1)当A (2,0)为长轴端点时,a =2 , b =1,椭圆的标准方程为: ;(2)当为短轴端点时,,,椭圆的标准方程为: ;19.解:设P (x ,y ),根据题意,|PF|=(x-2)2-y 2,d=|x-8|,因为|PF|d =12 ,所以 (x-2)2-y 2 |x-8| = 12.化简,得3x 2+4y 2=48,整理,得x 216 +y 212=1,所以,点P 的轨迹是椭圆。
椭圆的方程练习题

椭圆的方程练习题椭圆是平面上非常重要的几何图形,许多数学问题和应用都与椭圆有关。
为了帮助大家更好地理解椭圆的方程及其相关性质,本文将为大家提供一些椭圆的方程练习题。
通过解决这些练习题,相信对于椭圆的方程会有更深入的理解。
练习题1:给定椭圆的焦点为F₁(-2,0)和F₂(2,0),离心率为3/4。
求椭圆的方程。
解答:首先,我们可以根据定义得知焦点之间的距离为2ae,离心率e的定义为c/a。
因此,我们可以得到下列方程:2ae = 2 × (3/4)aa = 3/2c/a = 3/4c = (3/4)ac = (3/4) × (3/2)c = 9/8根据椭圆的方程模板(x-h)^2/a^2 + (y-k)^2/b^2 = 1,我们可以得到以下方程:(x-0)^2/(9/2)^2 + (y-0)^2/(√[(9/2)^2 - (9/8)^2])^2 = 1对上式进行化简,我们得到椭圆的方程为:4x^2/9 + 64y^2/81 = 1练习题2:已知椭圆的焦点为F₁(-1,0)和F₂(1,0),离心率为√2/2。
求椭圆的方程。
解答:根据定义可得:2ae = 2 ×(√2/2)a = √2a√2a = 2a = 2/√2a = √2c/a = √2/2c = (√2/2)ac = (√2/2) × (√2)c = 1根据椭圆的方程模板,我们有:(x-0)^2/(√2)^2 + (y-0)^2/b^2 = 1化简上式得到:x^2/2 + y^2/b^2 = 1由于焦点位于y轴上,根据对称性可知焦点关于椭圆对称,因此焦点 F₁' 为 (-1, 0),根据焦点的性质可知 c = 1,因此焦点 F₁'的坐标为 (-1, 0)。
练习题3:已知椭圆的长轴长度为12,焦点到直径的距离为4。
求椭圆的方程。
解答:由于焦点到直径的距离为4,我们可以根据定义得知2ae = 4a,即2e = 4。