《信息光学》第四章章透镜的位相调制和傅里叶变换性质

合集下载

4透镜的Fourier变换性质

4透镜的Fourier变换性质
k
2 2
z u 2 ( x2 , y 2 ) e i d 0 d i
i
k1 z (1 )( x 2 y 2 ) z di di
U ( x , y )e
t 1 1

i
k z (1 ) 2 d0 d0
e
i 2 [
z ( xx yy )] d0 d1 1 1
dxdy
S
d
S
0
U ( x, y )
i
di
透镜的透过率函数为
2 2 k 1 1 U t ( x, y ) i ( )( x y ) t l ( x, y ) e 2 di d0 U i ( x, y )
1 1 由f (n 1)( )薄透镜物像关系公式 R1 R2 和tl ( x, y )=e
2
x . f y . f
fx
fy
结论 : 平面波照射下, 正入射, 在透镜焦面上得 到t ( x1 , y1 )的d0 , 不论d0为何值, 导致一个二次位 相因子.但位相弯曲不影响光强.观察焦面上的 强度分布没有影响,仍为功率谱.
三、单色球面波照射孔径平面
a0 k 2 2 球面光场U i ( x1 , y1 ) exp{i ( x1 y1 )} 2 透射场U t ( x1 , y1 ) U i ( x1 , y1 )t ( x1 , y1 )代入 * 式 z k z 2 2 焦面光场U 2 ( x2 , y2 ) exp{i (1 )( x2 y2 )} t ( x1 , y1 ) i d i d 0 2d i d0 k z d0 z exp[i (1 )]exp[i 2 ( x1 x2 y1 y2 )]dx1dy1} 2 d d0 di

信息光学之透镜的傅里叶变换特性

信息光学之透镜的傅里叶变换特性

r0 l
1
2
1 2
e jar02
e jar02 2
c irc
r0 l
1
2
1 4
exp[
ja(x2
y2
)]
1 4
exp[
ja(x2
y2
) ]c irc
x2 y2 l
#
§4-1 透镜的位相调制作用: 例 (续)
t(
x,
y)
1 2
1 4
exp[
ja(x2
y
2
)]
1 4
exp[
0 R1 1
1
(
x
2
y R12
2
)
R2
1
1
(
x
2
R22
y
2
)
取近轴近似, x,y足够小, (1-)1/21-/2 成立
透镜的厚度函数
(x,
y)
0
x2
2
y2
1 R1
1 R2
代入光程方程后再代入透过率方程, 得透镜的复振幅透过率函数:
tl (x, y) exp[ jkL(x, y)] exp( jk0 ) exp[ jk (n 1)(x, y)]
∴透镜的复振幅透过率:
tl
(x,
y)
Ul '(x, y) Ul (x, y)
exp[
j (x,
y)]
exp[
jk L( x,
y)]
#
§4-1 透镜的位相调制作用
光程函数
L(x,y) = n(x,y)+[0-(x,y)]=0 + (n-1)(x,y)
适合于任意形状的薄位相物体

第四章 透镜的位相调制 和傅里叶变换

第四章 透镜的位相调制 和傅里叶变换

傍轴近似下单色点光源的发散球面波在平面上造成的光场分布为
U 1 ( x, y ) = A exp( jkp ) exp[ j k ( x 2 + y 2 )] 2p
球面波经透镜变换后向点会聚,在平面上造成的复振幅分布为
k U 1' ( x,y )= Aexp( jkq )exp j (x 2 + y 2 ) 2q
照明光源和观察平面的位置始终保持共轭关系,因此观察平面位 照明光源和观察平面的位置始终保持共轭关系 置由照明光源位置决定(当照明光源位于光轴上无穷远,即平面 波垂直照明时,这时观察平面位于透镜后焦面上) 输入平面位于透镜前焦面,由于 d 0 = f ,衍射物体的复振幅透 输入平面位于透镜前焦面 过率与衍射场的复振幅分布存在准确的傅里叶变换关系,而且只 要照明光源和观察平面满足共轭关系,与照明光源的具体位置无 关。也就是说,不管照明光源位于何处,均不影响观察面上空间 频率与位置坐标的关系
= mm
50 = 463mm 3 0.6 10 180
( f d0 )(x2 + y2 ) ∞ f (x0 x + y0 y) ′ exp jk U(x, y) = c ]dx0dy0 ∫∫ t(x0 , y0 ) exp[ jk q( f d0 ) + fd0 2[q( f d0 ) + fd0 ]∞
两个特殊位置的讨论 两个特殊位置的讨论
( f d 0 )(x 2 + y 2 ) ∞ d0 d0 U ( x,y )=c ′exp jk ∫ ∫t (x0 ,y 0 )P x 0 + x,y 0 + 2f 2 f f ∞ x0 x+ y 0 y exp jk dx0 dy 0 f y ×

第四章 透镜的位相调制和FT变换性质

第四章 透镜的位相调制和FT变换性质

理解透镜位相因子的物理意义 可通过考察透镜对垂直入射的单位振幅平面波的 效应,来理解透镜位相因子的物理意义
U 设: l x, y 为紧贴透镜前面的平面波光场分布, U lx, y 为紧贴透镜后面的平面上的光场复 振幅分布,
二者之间有关系如下:
U lx, y U l x, y tl x, y , 或 tl x, y U lx, y U l x, y
2 1 2 2


x2 y2 D 2 x, y D 02 R2 R x y D 02 R2 1 1 2 R2
2 2 2 2


x2 y2 x2 y2 Dx, y D 0 R1 1 1 2 R2 1 1 2 R1 R2 其中: D 0 D 01 D 02
在傍轴近似条件下: 考虑在透镜轴附近的那部分波前,即(x2+y2) 值足够小,则下列近似式成立。
x2 y2 x2 y2 1 1 2 R1 2 R12 x2 y2 x2 y2 1 1 2 R2 2 R22
上式相当于用抛物面来近似透镜傍轴区域的球面。 厚度函 数变成
x2 y2 x2 y2 R2 1 1 Dx, y D 0 R1 1 1 2 2 2 R1 2 R2 x2 y2 1 1 D0 2 R1 R2
A I f x f , y f f yy f dxdy
T0 u , v
2

2
二、 物体位于透镜之前
At0 x0 , y0 U l x, y U l x, y
1 P x, y 0 透镜孔径内 其他

信息光学中的傅里叶变换

信息光学中的傅里叶变换

为了克服这些局限性,未来的研究将更加注重发展新型的 光学器件和技术,如光子晶体、超表面和量子光学等。这 些新技术有望为傅里叶光学的发展带来新的突破和机遇, 推动光学领域的技术进步和应用拓展。同时,随着人工智 能和机器学习等领域的快速发展,将人工智能算法与傅里 叶光学相结合,有望实现更高效、智能的光波信号处理和 分析。
信息光学中的傅里叶变换
目录
• 傅里叶变换基础 • 信息光学基础 • 信息光学中的傅里叶变换 • 傅里叶变换在信息光学中的应用
实例 • 傅里叶变换的数学工具和软件包
01
傅里叶变换基础
傅里叶变换的定义
傅里叶变换是一种数学工具,用于将 一个信号或函数从时间域或空间域转 换到频率域。在信息光学中,傅里叶 变换被广泛应用于图像处理和通信系 统的 编程语言,具有广泛的应 用领域。
R语言是一种统计计算语 言,广泛应用于数据分析 和可视化。
ABCD
C的开源科学计算软件包 如FFTW等可用于计算傅 里叶变换,并支持并行计 算以提高效率。
R语言的科学计算库如 fftw等可用于计算傅里叶 变换,并支持多种数据类 型和可视化方式。
光的波动理论
光的波动理论认为光是一种波动现象,具有波长、频率、相 位等特征,能够发生干涉、衍射等现象。
光的波动理论在光学领域中具有基础性地位,是研究光的行 为和性质的重要工具。
光的量子理论
光的量子理论认为光是由粒子组成的,这些粒子被称为光子。该理论解释了光的 能量、动量和角动量等物理量的本质。
光的量子理论在量子力学和量子光学等领域中具有重要应用,为现代光学技术的 发展提供了理论基础。
04
傅里叶变换在信息光学中的 应用实例
图像处理中的傅里叶变换
图像去噪

信息光学傅里叶变换的基本性质和有关定理

信息光学傅里叶变换的基本性质和有关定理

1.7.3复振幅分布的空间频谱
任意的平面波可以用空间频率表示
(x, y)面上的平面波具有如下形式
在相干光照明下g(x,y)是xy面上复振幅分布
指数基元
表示传播方向余弦(cosα=λξ,cosβ=λη)
的单位振幅的单色平面波。而g(x,y)可看成无数基元函数代表的平 面波叠加。
空间频谱可用方向余弦表示
exp(i*x)=cos(x)+i*sin(x)
a (P)和φ(P)是P点的振幅和初相位。
通常用指数函数表示一点的光振动
优点:可以将与位置有关的φ(P)和与时间有关的2πνt分开。 定义复振幅 为单色波场P点的复振幅。它与时间无关,仅是空间的函数。 即描述了光振动的空间分布。而时间因子exp(2πνt)对各点均相 同,可省略。
3. 4.实函数

由于输入余弦函数的频率是任意的,上式可写为
说明在线性不变系统中,在有实值脉冲的响应情况下,余弦函 数将产生同频率的余弦输出。但有衰减和相移。其改变程度由传递 函数的模和辐角决定。
1.7 二维光场分析
光波的数学描述。 1.7.1. 单色光波场的复振幅表示 单色光波场中某点P在时刻t的振动为
1.5.2
傅里叶变换的基本定理
1. 卷积定理 如果 则
பைடு நூலகம்
2.相关定理 (1)互相关定理 如果 则 ☆ ,
称F*(ξ,η)G(ξ,η)为函数f(x,y)和g(x,y)的互谱能量密度(互谱密度)
(2)自相关定理 设 则 ☆
(3)巴塞伐定理 设 且积分
存在,则 表示能量守恒。
1.4.4.广义巴塞伐定理 设
称ξ为沿x方向的空间频率。 y方向的周期为无穷。
同样对y方向,当cosβ≠0也可得到 ,空间频率 在z方向 空间频率

信息光学-----第4章 光学成像系统的频率特性

信息光学-----第4章 光学成像系统的频率特性

只要傍轴条件满足,薄透镜就会以上述形式对Ul(x,y)进行相位变换。
§4-1 透镜的相位变换作用: 广义透镜
任何衍射屏,若其复振幅透过率可写为 的形式,都可看成一个焦距为 f 的透镜
exp
jk
x2 y2 2f
屏的复振幅透过率:
t ( x,
y)
t(r)
1 2
1 2
cos(ar
2
)circ
U (x, y) c
t(x0 ,
y0 ) exp
j2p
x
lf
x0
y
lf
y0 dx0dy0
c'
t(x0, y0 )
fx
x lf
,
f
y
y lf
c'T ( fx,
f )y
f
x
x lf
,
f
y
y lf
只要照明光源和观察平面满足共轭关系,衍射场的复振幅分 布是物函数的准确的傅里叶变换。观察面上空间频率与位置
)
从输入平面出射的光场传播到透镜平面P1,为菲涅耳衍射:
U l(x, y)
A0
jld0 0
t(x0 , y0 ) exp[ jk
x02 2( p
y02 ]exp[ d0 )
jk
(x
x0 )2 ( y' y0 )2 2d 0
]dx0 dy0
略去常数相位因子,Σ0为物函数所在的范围
P2 平面(紧靠透镜后)光场复振幅:
略去常数位相因子 透镜的复振幅透过率或相 位变换因子为:
Ul
' ( x,
y)
Aexp(
jkq) exp
j
k 2q

傅立叶光学第四章总结

傅立叶光学第四章总结

第四章透镜的位相调制和傅里叶变换性质透镜的复振幅透过率:用于研究透镜对于入射波前的作用——使发散球面波变换为会聚球面波。

定义()() (),,,lllU x yt x yU x y'=P点单色点光源发出发散球面波,经过透镜作用变成会聚球面波。

透镜的位相调制作用:()()()()()()222222exp exp2,exp2exp exp2iilikA jkd j x yd kt x y j x yfkA jkd j x yd⎡⎤--+⎢⎥⎡⎤⎣⎦==-+⎢⎥⎡⎤⎣⎦+⎢⎥⎣⎦厚度函数:(),x y ∆光程差:()()()0,1,L x y n x y =∆+-∆()()()()()0,exp ,exp exp 1,l t x y jkL x y jk jk n x y ==∆-∆⎡⎤⎡⎤⎣⎦⎣⎦傍轴近似下:引入焦距()121111n f R R ⎛⎫=-- ⎪⎝⎭,化简复振幅透过率函数为()()()220,exp exp 2l k t x y jkn j x y f ⎡⎤=∆-+⎢⎥⎣⎦,常忽略第一项位相因子。

由于透镜的有限孔径大小,引入光瞳函数:(),P x y()()()22,,exp 2l k t x y P x y j x y f ⎡⎤=-+⎢⎥⎣⎦三种不同位置: ○1物体紧靠透镜()()()()(),,0,,,l t x y t x y l l l l f f f U AU At x y U U t x y U x y '===⇒⇒⇒物体透过率透镜透过率菲涅耳衍射()()22,exp ,2f f f f f f f x y Ak U x y j x y T j f f f f λλλ⎛⎫⎡⎤=+ ⎪⎢⎥⎣⎦⎝⎭透镜后焦面上的光场分布正比于物体的傅里叶变换。

()22,,f f f f f x y A I x y T f f f λλλ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭透镜后焦面上的光强分布正好是物体的功率谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

tl x, y exp jk 0 exp jk n 1 x, y
x, y 0
x
2
y2 1 1 2 R1 R2
x2 y 2 1 1 tl x, y exp jkn0 exp jk n 1 2 R1 R2
f

f
f

j f



2f

2
2
f
f


k 2 U 2 x, y exp j x 2 y 2 exp j xx f yy f dxdy 2f f
?
2、透镜的傅里叶变换性质
后焦面上的场分布为
透镜的复振幅透过率:
tl x , y
U l x, y U x, y
在旁轴近似下,忽略透镜对光波振幅的影响,紧靠透镜前后的平面上产生的 复振幅分布为
k U l x, y A exp jkd 0 exp j x 2 y 2 2d 0
y2 2 R12 2 2 x y 1 2 2 R2
2
x, y 0
x
2
y2 1 1 2 R1 R2
1、透镜的位相调制作用
1.3 透镜的复振幅透过率 根据厚度函数的表达式,可得到在旁轴近似下,光波通过透镜时在(x,y)点发生 的位相延迟
1、透镜的位相调制作用
因此,透镜的位相调制因子:
Ul x, y k 2 2 tl x, y exp jk d d exp j x y 0 i 2f Ul x, y
结论:通过上面的分析可知,透镜对透射的光波具有位相调制的功 能。但是,透镜为什么会具有这种能力呢?
k 2 1 2 1 exp jk d d exp j x y d d 0 i 2 0 i
(常数项) 对空间分布,分析时可忽略掉。
(调制项)
对于常数项,它改变的是光波整体的位相分布,并不影响平面上位相的相 对于调制项,它改变了平面上位相的相对空间分布,能把发散球面波变换
U f xf , yf xf yf Af k 2 2 exp j x y T , f f j d 2 2 d d d
2 2
对应的强度分布为
Af x f y f I f xf , yf 2 T , d d d
f
透镜为什么具有这种功能呢? *** 根本原因在于它具有能对入射波前施加位相调制的功能,或者说是透镜的 二次位相因子在起作用。
下面将具体分析一下这种作用发生的具体过程,并深入讨论透镜实现傅里 叶变换的一些性质。
2、透镜的傅里叶变换性质
2.1 物体放置在透镜前d处
U0 Ul U2 Uf
t(x0,y0)
k exp j x 2 y 2 表示透镜对入射波前的位相调制; 2f
其中,
P x, y 表示透镜对于入射波前大小范围的限制。
2、透镜的傅里叶变换性质
回顾一下:利用透镜实现夫琅和费衍射,可以在透镜的焦平面上得到 入射场的空间频谱,即实现傅里叶变换的运算。

tl x, y exp jk 0 exp jk n 1 x, y
上式具有普遍意义,对于任意面形的薄位相物体,一旦知道其厚度函数(x,y), 就可以根据该式得到其位相调制。
1、透镜的位相调制作用
下面具体分析一下厚度函数(x,y)和透镜主要结构参数(构成透镜的两个球 面的曲率半径R1和R2)之间的关系。
d
f
透镜后焦面上的场是透镜前端场U1(x,y)的傅立叶变换(空间频谱)
根据透镜的位相调制功能,透镜后端场U2(x,y)为:
k U 2 x, y U1 x, y exp j x 2 y 2 2f
从透镜后端到后焦面光的传播属于菲涅耳衍射,利用菲涅耳衍射公式,后焦 面上的场U(x,y)为:U x , y 1 exp jkf exp j k x y
2、透镜的傅里叶变换性质
如果d=f,物体在透镜前 焦面,二次位相弯曲消失, 后焦面的光场分布是物体准 确的傅里叶变换。
如果d=0,物体在透镜前端面, 由于变换式前的二次位相因子, 使物体的频谱也产生一个位相 弯曲。
2、透镜的傅里叶变换性质
2.2 物体放置在透镜后方
沿光波传播方向逐面进行计算,最终可获得透镜后焦面上的场分布为
导出来的。
透镜的作用: 将入射平面波变换为会聚(发散)球面波 ,如下图所示。
入射平面波变换为球面波,这正是由于透镜具有 能够对入射波前施加位相调制的结果。
k exp j x 2 y 2 的位 2f
相因子,
1、透镜的位相调制作用
1)若在非旁轴近似条件下,即使透镜表面是理想球面,透射光波也将 偏离理想球面波,即透镜产生波像差。
本章主要内容
1、透镜的位相调制作用
2、透镜的傅里叶变换性质 3、光学频谱分析系统
0、序 言
透镜是一种非常重要的光学元件,其主要功能包括:成像和傅里 叶变换。 1)透镜的成像功能 2)透镜的傅里叶变换功能 (夫琅和费衍射)
f
f
f
Question: 透镜为什么具有这样的功能?
1、透镜的位相调制作用
1.1 透镜对入射波前的作用
x 1
2
y2 R12
x 1
x2 y 2 1 2 R2 2 2 x y 2 x, y 02 R2 R2 2 x 2 y 2 02 R2 1 1 2 仅考虑旁轴光 R2
Answer: 透镜本身的厚度变化,使得入 射光波在通过透镜的不同部位 时,经过的光程差不同,即所 受时间延迟不同,从而使得光 波的等相位面发生弯曲。
等相位面
1、透镜的位相调制作用
1.2 透镜的厚度函数 主要考虑薄透镜的情况 (忽略了折射效应) 如果进一步忽略光在透镜表面的反射以及透镜内部 吸收造成的损耗,认为通过透镜的光波振幅分布不 发生变化,只是产生一个大小正比于透镜各点厚度 的位相变化,于是透镜的位相调制可以表示为: L(x,y)
x, y 1 x, y 2 x, y
将透镜一剖为二
x2 y 2 1 x, y 01 R1 R12 x 2 y 2 01 R1 1 1 R12
1
焦面场是透镜前端场的傅里叶变换(空间频谱)。 如上图所示,距离透镜前端有一物体,其透过率为t(x0,y0)。若用振幅为A 的平面波垂直照明物体,则物体的透射光场为:
U0 x0 , y0 A t x0 , y0
根据角谱理论,透镜前端场的角谱为:
F U1 x, y F U 0 x0 , y0 H f x , f y
2、透镜的傅里叶变换性质
U f xf , yf k exp jkf exp j x f 2 y f 2 exp jd f x2 f y2 F U 0 x0 , y0 j f 2f k d 2 xf yf A 2 exp j 1 x y T , f f j f 2 f f f f A
k U l x, y A exp jkd i exp j x 2 y 2 2d i
1、透镜的位相调制作用
则透镜复振幅透过率表示为:
k A exp jkdi exp j x 2 y 2 U x, y 2d i tl x, y l U l x, y k 2 2 A exp jkd 0 exp j x y 2d 0
1 1 1 n 1 f R1 R2
(n为透镜材料的折射率)
k tl x, y exp jkn0 exp j x 2 y 2 2f
常数项
透镜位相因子
1、透镜的位相调制作用
以上推导的关系适用于各种形式的薄透镜,而且是在旁轴近似条件下推
tl x, y exp jk x, y exp jkL x, y
L(x,y)是Q到Q’之间的光程:
L x, y n x, y 0 x, y 0 n 1 x, y
2 2 Hቤተ መጻሕፍቲ ባይዱ f x , f y exp j d f x f y
则有:
U f xf , yf
k exp jkf exp j x f 2 y f 2 F t x0 , y0 H f x , f y j f 2f A
2、透镜的傅里叶变换性质
总结一下: 在单色平面波照明下,无论物体位于透镜前方、后方还是紧靠透镜, 在透镜的后焦面上都可以得到物体的功率谱;对于这样的照明方式,透 镜后焦面常称为傅里叶变换平面或(空间)频谱面。 如果采用球面波照明时,透镜还能进行傅里叶变化吗?那频谱面还是 焦平面吗? Answer: 透镜还能其傅里叶变换作用,但是频谱面不再是焦平面,而是点光源的像 面位置。具体推导过程可参考有关参考书,这里不再赘述。
2)实际透镜总是有大小的,即存在一个有限大小的孔径。引入光瞳函 数P(x,y)来表示透镜的有限孔径,即
1 P x, y 0 透镜孔径内 其他
相关文档
最新文档