二元合金相图与结晶
二元相图(匀晶,共晶)(精)

三)固溶体的非平衡凝固
不平衡结晶的过程分析 假定:不平衡结晶时,液相成分借助扩散、对流或搅拌等 作用完全均匀化,固相内却来不及扩散。
三)固溶体的非平衡凝固
① 将各温度下固溶体和液相的平均成分点连接成线,得 到固溶体和液相的平均成分线。
② 不平衡凝固时,液固相在各温度时的相平衡成分仍然 在平衡凝固时的液固相线上,只是其平均成分线偏离 了平衡凝固时的液固相线。
四、杠杆定律
在二元合金相图的两相区内,温度一定时,两相的重量比是一定的。 合金成分为C0,总重量为1, 在T 温度时,由液相和固相组成,液 相的成分为CL,重量为WL,固 相成份为Cα,重量为Wα。
1 = WL +Wa
1 C0 WL CL W C
WL = Ca - C0 Wa C0 - CL
固溶体凝固与纯金属凝固的比较
固溶体的凝固与纯金属的凝固相比有两个显著特点:
⑴ 固溶体合金凝固时结晶出来的固相成分与原液相成分不 同。结晶出的晶体与母相化学成分不同的结晶称为异分结晶 (又称选择结晶);纯金属凝固结晶时结晶出的晶体与母相化 学成分完全一样称为同分结晶。
固溶体的结晶属于异分结晶,在结晶时的溶质原子必然要在 液相和固相之间重新分配。
的相图上有极小点;
在Pb-Tl、Al-Mn等合金的相图上 有极大点。
二)固溶体的平衡凝固
平衡凝固:从液态无限缓慢冷却,在相变过程中充分进行组元间互相 扩散,达到平衡相的均匀成分,这种凝固过程叫平衡凝固。
x合金凝固过程及组织
冷至T1时
开始凝固出α1成分的固相 α1中的含Ni量比x合金高, α1旁的液体中含Ni量降 低,扩散平衡后液体成分 为L1
一、 二元系相图的表示法
二元系物质有成分的变化,在反映它的 状态随成分、温度和压力变化时,必须用一 个坐标轴的三维立体相图。由于二元合金的 凝固是在一个大气压下进行,所以二元系相 图的表示多用一个温度坐标和一个成分坐标 表示,即用一个二维平面表示。
第四章__二元合金相图

固溶体的分类
•按溶质原子在溶剂晶格中的位置分:
置换固溶体与间隙固溶体
•按溶质原子在溶剂中的溶解度分:
有限固溶体和无限固溶体
•按溶质原子在固溶体中分布是否有规律分:
无序固溶体和有序固溶体
• 1、置换固溶体 • (substitutional solid solution) • 溶剂原子被溶质原子所置换
杠杆定律
杠杆定律是确定状态图中两相区内两平衡相
的成分和相对重量的重要工具
由杠杆定律可算出合金中平衡两相的相对质
量(即质量分数)
二元合金系,杠杆定律只适用于相图中的两
相区, 且只能在平衡状态下使用。杠杆的两个
端点为给定温度时两相的成分点, 而支点为合
金的成分点。
4、合金的不平衡结晶与树枝状偏析
成的固溶体。
形成条件:溶剂与溶质原子尺寸相近,直径
差别较小,容易形成置换固溶体。
置换固溶体中原子的分布通常是任意的,称
之为无序固溶体。在某些条件下,原子成为 有规则的排列,称为有序固溶体。
固溶体的溶解度
浓度:溶质原子在固溶体中所占的百分比 溶解度:在一定条件下的极限浓度 置换固溶体中,影响溶解度的因素有原子
2、间隙固溶体(interstitial solid solution)
溶质原子溶入溶剂晶格的间隙而形成的固溶体 晶体结构类型
晶格畸变(lattice distortion)
由于溶质原子的介入,原子的排 列规律受到局部的破坏,使晶格 发生扭曲变形。
溶质原子的溶入,使固溶体的晶格发生畸变,变形抗力增 大,金属的强度及硬度升高的现象------固溶强化
T,C 1500 1400 a1 1300 1200 1100 a 1083 1000 Cu L 1455
二元相图及合金的凝固

第三章二元相图及合金的凝固3-1 二元相图概论如前所述,合金的组织要比纯金属复杂,为了研究合金的组织与性能间的关系,必须了解合金的结晶过程,了解合金中各种组织的形成及变化规律。
状态图(state diagram)表明了合金系中合金的状态与温度、成分间的关系,表示合金系在平衡条件(即缓慢加热或冷却条件)下,不同温度、成分下的各相的关系,因此又称为平衡图(equilibrium diagram)、相图。
利用相图,我们可以了解不同成分的合金,在不同温度时的平衡条件下的状态,由哪些相组成,每个相的成分及相对含量等,还能了解合金在加热冷却过程中可能发生的转变。
因此,相图是进行微观分析,制定铸造、锻造、热处理工艺的重要依据。
在常压下,二元合金的相状态决定于温度与成分,因此二元合金相图可用温度—成分坐标系的平面图来表示。
一、相律相律是描述系统的组元数、相数和自由度间关系的法则。
相律有多种,其中最基本的是吉布斯(Gibbs)相律,其通式如下:f=C一P十2式中,C为系统的组元数,P为平衡共存的相的数目,f为自由度,自由度是在平衡相数不变的前提下,给定系统中可以独立变化的、决定体系状态的(内部、外部)因素的数目。
自由度f不能为负值。
利用相律可以判断在—定条件下系统最多可能平衡共存的相数目。
从上式可以看出,当组元数C给定时,自由度f越小,平衡共存的相数便越多。
由于f不能为负值,其最小值为零。
取其最小值f=0,从上式可以得出:P=C十2若压力给定,应去掉一个自由度,上式可写为P=C十1上式表明:在压力给定的情况下,系统中可能出现的最多平衡相数比组元数多1。
例如:一元系C=1,P=2,即最多可以两相平衡共存。
如纯金属结晶时,其温度固定不变,同时共存的平衡相为液相和固相。
二元系C=2,P=3,最多可以三相平衡共存;三元系C=3,P=4,最多可以四相平衡共存;依此类推,n元系,最多可以n十1相平衡共存。
应当注意,相律具有如下限制性:1)相律只适用于热力学平衡状态。
合金的晶体结构与相图

固溶体,其Ni含量高于合金平均成分。 随温度下降, 固溶体重量增加, 液相重量减少。同 时,液相成分沿液 相线变化,固相成
分沿固相线变化。
1﹑二元匀晶相图
成分变化是通过原子扩散完成的。当合金冷却到t3时,最
后一滴L3成分的液体也转变为固溶体,此时 固溶体的成分又变回
到合金成分3上来。
液固相线不仅 是相区分界线, 也是 结晶时两相的成分变 化线;匀晶转变是变
2.金属化合物
金属化合物主要性能:
(1)具有一定程度的金属性质 (2)具有较高的熔点 (3)硬度较高 (4)脆性高
3.机械混合物
机械混合物:纯金属,固溶体,金属化合物均是组成合金 的基本相,有两相或两相以上组成的多相组织。 性能: 1)﹑介于各组成相性能之间,各组成相晶格类型和 性能不变。 2)﹑和单一固溶体合金相比,强度﹑硬度高,但塑 性﹑可锻性低。
固溶体类型
置 换 固 溶 体 Z
置换原子
Z
间 隙 固 溶 体
间隙原子
Y Y
X X
2.金属化合物
金属化合物:是合金各组元原子按一定整数比形成 的具有金属性质的一种新相。
结构特点:具有原子整数倍的关系,可用分子式表
示:如Fe3C。
溶剂A+溶质B = C bcc 例如: 3Fe 体心 HB δ 80 50% fcc + C 六方 3 0% cph = Fe3C 复杂结构 800 0%
x x1 Qα x 2 x1
这种在一个晶粒内化学成分不均匀的现象,叫晶内偏析。 因为金属通常以枝晶方式结晶,先形成的主干和后形成的支 干就会有化学成分之差,所以也称枝晶偏析。
(2)枝晶偏析: 出现枝晶偏析后,使 合金材料的机械性能﹑ 耐蚀性能和加工工艺性 能变坏。 消除枝晶偏析的措施: 均匀化退火(扩散退火):把有枝晶偏析的合金放在低于固相 线100~200℃的温度下进行较长时间的加热,通过原子的相互 扩散而使成分趋于均匀。
第四章-二元合金相图

G
t/s
70% Sn的过共晶合金的结晶过程分析
概括起来,过共晶合金平衡结晶过程为:
t1温度以上: 液态 L70 L
19
t1~ t2温度: 液相中析出 , t2温度时发生共晶反应: L61.9 t2温度以下: 初 Ⅱ
97.5
室温组织: 初 + Ⅱ + (+)共晶
一、相律
在恒压下,在纯固态或纯液态情况下,出现的相数 小于等于主元数。在液固共存(恒温)条件下出现 的相数小于等于主元数加一。因而,对二元合金, 固态下出现的相数为1或2,液固共存(恒温)条件 下恒温下出现的相数为2或3。
二、二元匀晶相图的分析
匀晶转变:在一定温度范围内由液相结 晶出单相的固溶体的结晶过程。 二元匀晶相图:指两组元在液态和固态 均无限互溶时的二元合金相图。 具有这类相图的合金系主要有Ni-Cu、 Cu-Au、Au-Ag、Mg-Cd、W-Mo等。
标注在温度— 成分坐标中 无限缓冷下测各 合金的冷却曲线 连接各相变点
确定各合金 的相变温度
确定相
如:0%Cu、20%Cu、40%Cu、60%Cu、80%Cu、100%Cu 六组合金。
Cu20% Cu60%Cu80% Cu Ni Cu40%
1600
1500
1400
1400 1300
L
(L+ )
T
Ni
WCu(%)
Cu
将铸件加热到低于固相线100~200℃的温 度,进行长时间保温,使偏析元素充分进行扩 散,以达到成分均匀化。
设A、B组元的熔点分别为1450℃和1080℃,它们 在液态和固态都无限互溶,则这两种组元组成的 二元相图叫作二元 相图;先结晶的固溶体 中含 组元多,后结晶的固溶体中含 组元多,这种成分不均匀现象称为 , 通过 工艺可以减轻或消除这种现 象。
二元合金相图(1)

第二章二元合金相图纯金属在工业上有一定的应用,通常强度不高,难以满足许多机器零件和工程结构件对力学性能提出的各种要求;尤其是在特殊环境中服役的零件,有许多特殊的性能要求,例如要求耐热、耐蚀、导磁、低膨胀等,纯金属更无法胜任,因此工业生产中广泛应用的金属材料是合金。
合金的组织要比纯金属复杂,为了研究合金组织与性能之间的关系,就必须了解合金中各种组织的形成及变化规律。
合金相图正是研究这些规律的有效工具。
一种金属元素同另一种或几种其它元素,通过熔化或其它方法结合在一起所形成的具有金属特性的物质叫做合金。
其中组成合金的独立的、最基本的单元叫做组元。
组元可以是金属、非金属元素或稳定化合物。
由两个组元组成的合金称为二元合金,例如工程上常用的铁碳合金、铜镍合金、铝铜合金等。
二元以上的合金称多元合金。
合金的强度、硬度、耐磨性等机械性能比纯金属高许多,这正是合金的应用比纯金属广泛得多的原因。
合金相图是用图解的方法表示合金系中合金状态、温度和成分之间的关系。
利用相图可以知道各种成分的合金在不同温度下有哪些相,各相的相对含量、成分以及温度变化时所可能发生的变化。
掌握相图的分析和使用方法,有助于了解合金的组织状态和预测合金的性能,也可按要求来研究新的合金。
在生产中,合金相图可作为制订铸造、锻造、焊接及热处理工艺的重要依据。
本章先介绍二元相图的一般知识,然后结合匀晶、共晶和包晶三种基本相图,讨论合金的凝固过程及得到的组织,使我们对合金的成分、组织与性能之间的关系有较系统的认识。
2.1 合金中的相及相图的建立在金属或合金中,凡化学成分相同、晶体结构相同并有界面与其它部分分开的均匀组成部分叫做相。
液态物质为液相,固态物质为固相。
相与相之间的转变称为相变。
在固态下,物质可以是单相的,也可以是由多相组成的。
由数量、形态、大小和分布方式不同的各种相组成合金的组织。
组织是指用肉眼或显微镜所观察到的材料的微观形貌。
由不同组织构成的材料具有不同的性能。
二元合金相图

(二)枝晶偏析
在平衡条件下结晶时,由于冷速缓慢,原子可充分进行扩散,能够 得到成分均匀的固溶体。但在实际生产条件下,由于冷速较快(不平衡 结晶),从液体中先后结晶出来的固相成分不同,使得一个晶粒内部化 学成分不均匀,这种现象称为晶内偏析。由于固溶体一般都以树枝状方 式结晶,先结晶的树枝晶轴含高熔点的组元较多;后结晶的晶枝间含低 熔点组元较多,因此晶内偏析又称为枝晶偏析。通常冷却速度越大,实 际结晶温度越低,原子扩散能力越弱,枝晶偏析越严重。
图2-20 杠杆定律的应用
若要确定某合金(Ⅰ)在某温度(t)时两平衡相的相对质量,则可进行如下的 运算。
设合金(Ⅰ)的总质量为 1,温度 t 时液相的质量为 QL ,固相的质量为 Qα 。又 已知液相的含 Ni 量为 xL ,固相的含 Ni 量为 xα ,合金(Ⅰ)的含 Ni 量为 x,则
QQLL
结晶终了温度/℃ 1 083 1 130 1 195 1 270 1 360 1 455
(2)如图2-18(a)所示,测定每一合金在缓冷条件下的冷却曲线, 得到转变开始和转变终了的临界点温度,其数据如表2-1所示。
(3)建立一个以温度为纵轴,Ni的质量分数为横轴的直角坐标系。 从横轴上的成分点向上作垂线,把临界点分别标在成分垂线上。
(4)将转变开始点和转变终了点分别用平滑的曲线连接起来,根据已 知条件和实际分析结果标上数字、字母和各区内相(或组织)的名称,便得 到了一个完整的Cu-Ni二元合金相图,如图2-18(b)所示。
(a)冷却曲线
(b)相图
图2-18 Cu-Ni合金的冷却曲线及合金相图
二、二元合金相图的分析
两组元在液态和固态均能无限互溶时所形成的二元合金相图称为匀晶相 图,它是相图中最简单的一种。除此之外,还有二元共晶相图、二元包晶相图 等。现以Cu-Ni二元匀晶合金相图为例进行分析。
二元匀晶相图

3、匀晶相图的特点
二组元在液态和固态都能够完全相互溶解,所有成分(Ni:
0~100%)的合金在固态只有一种晶体结构,相图中只有一个固
相区。
因此,能够形成匀晶合金系的两种组元必须具有相同的晶体
结构,相同的原子价,原子半径接近(相差不超过15%),相互
具有匀晶相图的二元合金系统有Cu-Ni, Fe-Cr, Ag-Au, Nb-Ti, Cr-Mo, W-Mo等。
右图所示Cu-Ni相图是最常 见的二元匀晶相图,以此相图 为例进行讨论,其它匀晶相图 与此类似。
.
1
一、相图分析
1、相图的坐标
纵坐标是温度坐标,横坐 标是成分坐标:左端线是表 示100%的Cu,右端线表示 100%的Ni,从左至右Ni的含 量增加(直至100%)、Cu的含 量减少(直至0%)。
采用均匀化热处理(Homogenizing heat treatment)可以消除枝 晶偏析。
匀晶合金的 非平衡组织
.
9
.
10
1、液-固两相成分的变化
合金从液态开始缓慢冷却,当温度 降低到液相线(1点)时,结晶开始。此 时结晶出来的极少量固相成分为S1, 液相的成分基本未变。随着温度降低, 固相逐渐增多,液相不断减少。
液相的成分沿液相线变化,固相的 成分沿固相线变化。
.
动画
6
温度降低到1300℃时,液相成分为45%Ni, 固相成分为58%Ni。 当温度降低到2点,即固相线温度时,液相的成分为L2,固相的 成分为合金的平均成分(53%Ni)。此时液相实际上已经不存在了, 都已结晶成为固相。
QQLQS QxQLxL QS xS