基于proteus仿真的信号发生器
基于Proteus的多波形信号发生器仿真设计

满 足实 际应 用 需 要 。 实验 结果 表 明 , 使用 P r o t e u s 仿 真 与 硬 件 电 路 实 验 结 果 基 本 一 致 。信 号 发 生 器 各 波 形 的 输 出为 :
方 波( O ~1 0 V) 、 三角波( 4 ~2 0 V) 、 正弦波 ( 6 ~2 0 V) ; 输 出频 率 范 围 为 : 5 0 5 Hz  ̄4 9 k Hz 。该 信 号 发 生 器 具 有 简 单 、 实
信号发生器在教学和电子测量中具有广泛的应用为了更好地对信号发生器的实现方法进行研究采用仿真的方法对信号发生器的实现进行模拟
删
E I E C T R O N I C 电子 M E A S 测量技术 U R E M E N T T E C H N O L O G Y
第 2 0 3 6 1 3 卷 年 第 3 月 3 期
h a r d wa r e c i r c u i t . Th e o u t p u t v a l u e o f t h e wa v e f o r ms o f t h e s i g n a l g e n e r a t o r a r e : s q u a r e wa v e ( 0  ̄1 0 V), t r i a n g l e wa v e
s i gna l ampl i f yi n g c i r c u i t .The c i r c ui t i s s i m ul a t e d i n Pr o t e us s o f t wa r e e n vi r onm e nt 。 an d t he h a r d wa r e c i r c ui t i s v a l i da t e d . T he e xpe r i me nt a l r e s u l t s s h ow t ha t us i n g Pr ot e u s s i mu l a t i o n e x pe r i me nt a l r e s ul t s ar e ba s i c a l l y c o ns i s t e nt w i t h t he
基于proteus仿真的信号发生器

摘要数字信号发生器是在电子设计,自动控制系统和仪表测量校正调试中应用很多的一种信号发生装置和信号源。
本文采用AT89C51单片机构成的数字信号发生器,通过波形变换,可以产生方波,三角波,锯齿波等多种波形,波形的周期可通过程序来改变,并可以根据需要选择单极性输出或者双极性输出。
具有线路简单,性能优越,结构紧凑等特点。
关键词:AT89C51;数字信号发生器;波形变换ABSTRACTDigital signal generator in the electronic design、Automatic control system and instrumentation correction in debugging application a lot of signal generator and signal source。
This paper uses the AT89C51chip microprocessor digital signal generator,Through waveform conversion, can produce square wave, triangle wave, sawtooth wave and other wave,Waveform cycle can be programmed to change。
And can be based on the need to select the output unipolar or bipolar output,With simple lines, superior performance, compact structure.Key words:AT89C51; Digital signal generator; Wave transformation目录绪论 (1)1单片机的概述及信号发生器 (2)1.1单片机的概述 (2)1.2信号发生器的分类 (2)1.3研究内容 (2)1.4P ROTUES软件的介绍 (2)2 实验设计原理及芯片简介 (4)2.1实验设计原理 (4)2.2AT89C51的简介 (4)2.3DAC0832芯片的简介 (6)2.4DAC0832的工作方式 (8)3 实验硬件实现及单元电路的设计 (10)3.1硬件设计流程框图 (10)3.2信号发生器的外围结构 (10)3.3单片机最小系统设计 (11)3.4波形产生模块设计 (11)4 实验仿真结果及调试 (17)结论 (20)参考文献 (21)致谢 (22)绪论电子测量及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类增多,性能提高。
基于Proteus多波形信号发生器的仿真设计

基于Proteus多波形信号发生器的仿真设计Proteus是一款可模拟和设计电子电路的电子设计自动化软件。
在Proteus中,多波形信号发生器可以产生多种波形信号。
本文将介绍如何基于Proteus多波形信号发生器进行仿真设计。
1. Proteus多波形信号发生器的使用在Proteus选择“元件模式”,搜索“MULTIWAVE GENERATOR”可以找到多波形信号发生器。
将其拖到工作区中,双击打开“Edit Component Properties”(编辑元件属性)窗口。
该窗口包含了多种波形类型、频率、幅度等参数。
可以根据需要选择不同的波形类型、频率和幅度。
2. 基于Proteus多波形信号发生器的仿真设计本文以一个简单的LED闪烁电路为例进行仿真设计。
LED的正极连接到MCU的P0.0口,负极连接到地。
MCU的P0.0口跟多波形信号发生器连接,以此来产生高低电平。
步骤如下:1)选择元件在Proteus中选择元件,包括MCU、LED、多波形信号发生器等。
2)连线用连线工具将元件连接起来,形成电路。
3)设置多波形信号发生器双击多波形信号发生器,在“Edit Component Properties”窗口中设置波形类型、频率和幅度。
4)编写程序在MCU中编写LED闪烁程序。
为了简化程序,只需使用一个P0.0口来驱动LED。
程序如下:#include<reg51.h>void delay(int i);void main(){while(1){P0=0x01;delay(500);P0=0x00;delay(500);}}void delay(int i){int j,k;for(j=0;j<i;j++)for(k=0;k<125;k++);}5)进行仿真在Proteus中进行仿真。
仿真时可以看到LED的亮灭与多波形信号的高低电平一致。
可以通过修改多波形信号发生器的参数观察LED闪烁的变化。
仿真信号发生器实训报告

一、实训目的本次实训旨在通过使用仿真软件Proteus和Keil uVision,学习并掌握信号发生器的设计与仿真方法,加深对信号发生器原理和电路设计的理解,提高实际操作能力。
二、实训内容1. 信号发生器原理信号发生器是一种产生各种标准信号的设备,广泛应用于通信、测量、科研等领域。
本次实训主要设计以下四种波形发生器:正弦波、方波、三角波和锯齿波。
2. 信号发生器电路设计(1)正弦波发生器:采用STM32F103单片机作为核心控制单元,通过查找正弦波查表法生成正弦波数据,经DAC0832数模转换芯片转换为模拟信号输出。
(2)方波发生器:利用STM32F103单片机的定时器产生方波信号,通过改变定时器的计数值来调整方波频率。
(3)三角波发生器:通过STM32F103单片机的定时器产生方波信号,再经过积分电路转换为三角波信号。
(4)锯齿波发生器:利用STM32F103单片机的定时器产生方波信号,再经过微分电路转换为锯齿波信号。
3. 信号发生器仿真(1)使用Proteus软件搭建信号发生器电路,并进行仿真测试。
(2)通过调整电路参数,观察输出波形的变化,验证电路设计的正确性。
(3)将仿真结果与理论分析进行对比,分析仿真结果与理论分析的一致性。
三、实训步骤1. 设计信号发生器电路原理图根据信号发生器原理,设计电路原理图,包括单片机、DAC0832数模转换芯片、矩阵键盘、LCD12864液晶屏幕等元件。
2. 编写程序使用C语言编写信号发生器程序,包括初始化配置、按键扫描、波形生成、LCD显示等功能。
3. 仿真测试(1)在Proteus软件中搭建电路,将程序编译生成的hex文件烧录到STM32F103单片机中。
(2)运行仿真,观察输出波形,验证电路设计及程序的正确性。
(3)根据仿真结果,调整电路参数,优化波形输出。
四、实训结果与分析1. 仿真结果通过仿真测试,成功实现了正弦波、方波、三角波和锯齿波的产生,波形输出稳定,符合设计要求。
Proteus数电仿真序列信号发生器电路设计

(Proteus数电仿真)序列信号发生器电路设计————————————————————————————————作者:————————————————————————————————日期:实验8 序列信号发生器电路设计一、实验目的:1.熟悉序列信号发生器的工作原理。
2.学会序列信号发生器的设计方法。
3.熟悉掌握EDA软件工具Proteus 的设计仿真测试应用。
二、实验仪器设备:仿真计算机及软件Proteus 。
74LS161、74LS194、74LS151三、实验原理:1、反馈移位型序列信号发生器反馈移位型序列信号发生器的结构框图如右图所示,它由移位寄存器和组合反馈网络组成,从寄存器的某一输出端可以得到周期性的序列码。
设计按一下步骤进行:(1)确定位移寄存器位数n ,并确定移位 寄存器的M 个独立状态。
CP将给定的序列码按照移位规律每 n 位一组,划分为M 个状态。
若M 个状态中出现重复现象,则应增加移位寄存器的位数。
用n+1位再重复上述过程,直到划分为M 个独立状态为止。
(2)根据M 各不同状态列出寄存器的态序表和反馈函数表,求出反馈函数F 的表达式。
(3)检查自启动性能。
(4)画逻辑图。
2、计数型序列信号发生器计数型序列信号发生器和组合的结构框图如图 所示。
它由计数器和组合输出网络两部分 组成,序列码从组合输出网络输出。
设计 过程分为以下两步: CP(1)根据序列码的长度M 设计模M 计数器,状态可以自己定。
(2)按计数器的状态转移关系和序列码的要求组合输出网络。
由于计数器的状态设置和输出序列没有直接关系,因此这种结构对于输出序列的更改比较方便,而且还能产生多组序列码。
四、计算机仿真实验内容及步骤、结果:1、设计一个产生100111序列的反馈移位型序列信号发生器。
1、根据电路图在protuse 中搭建电路图 组合反Q1 Q2Qn组合输Q1 Q2 Qn⑴选中protuse最左侧的compenent mode工具栏⑵选择电路所需的元器件摆放到原理图的画布上,virtual instrument mode中选择示波器摆放到画布上观察电路输出波形,然后连接线路搭建电路,如图1:仿真电路图如图1所示图1⑶打开仿真开关,观察示波器的波形,如图2:实验结果如图2所示图2图中第一个波形为所需要产生的序列,第二个为时钟信号图中黄色波形为输出波形,蓝色波形为输入时钟的波形,可以观察到输出的脉冲波形为100111。
基于proteus的占空比可调的方波和三角波发生器设计报告书

基于proteus的占空比可调的方波和三角波发生器设计报告书武汉理工大学《基础强化训练》课程设计说明书摘要Proteus是一个完整的嵌入式系统软硬件设计仿真平台,其中我们经常用的ISIS为功能强大的原理布线工具,ARES PCB设计为PCB设计系统,由于其强大的功能,灵活方便的使用方法,越来越受到电子工程师的青睐,其最大的特色在于可以提供嵌入式系统单片机应用系统、ARM应用系统的仿真实验,这也是其它任何仿真软件无力所及的。
这次基础强化,我们将用proteus实现占空比可调的方波信号发生器的仿真设计及实验。
关键字: proteus,占空比可调,方波发生器I武汉理工大学《基础强化训练》课程设计说明书 1 proteus软件简介及应用1.1 proteus软件介绍Proteus是一个完整的嵌入式系统软硬件设计仿真平台,其中我们经常用的ISIS为功能强大的原理布线工具,ARES PCB设计为PCB设计系统,软件已有近20年的历史,在全球拥有庞大的企业用户群,是目前唯一能够对各种处理器进行实时仿真、调试与测试的EDA工具,真正实现了在没有目标原型时就可对系统进行设计、测试与验证。
由于Proteus软件包括逼真的协同仿真功能,得到了包括剑桥大学在内的众多大学用户作为电子学或嵌入式系统的课程教学、实验和水平考试平台。
目前,Proteus在国内单片机开发者及单片机爱好者之中已开始普及,有很多开发者已经开始用此开发环境进行仿真。
Proteus 软件性能完善而且功能强大,使用起来也非常方便,充分考虑了人机之间的交互,采用了windows应用界面,对操作者来说容易上手,它是一种功能强大的电子设计自动化软件,提供智能原理图设计系统、SPICE模拟电路、数字电路及MCU器件混合仿真系统和PCB设计系统功能。
其不仅可以仿真传统的电路分析实验、模拟电子线路实验、数字电路实验等,而且可以仿真嵌入式系统的实验,其最大的特色在于可以提供嵌入式系统(单片机应用系统、ARM 应用系统)的仿真实验,这也是其它任何仿真软件无力所及的。
基于proteus的信号发生器的设计教材

基于proteus的信号发生器的设计摘要信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器,其频率范围可从几个微赫到几十兆赫,除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。
本设计是使用集成运算放大器设计的一种宽度可调的矩形波发生器。
它主要由反相输入的滞回比较器和RC电路组成,通过RC充、放电实现输出状态的自动转换。
而使电容的正向和反向充电时间常数不同,利用二极管的单向导电性引导电流流经不同的通路,就形成占空比可调的矩形波发生电路。
高频、低频和超低频信号发生器,大多使用文氏桥振荡电路,即RC振荡电路,通过改变电容和电阻值,改变频率。
用以上原理设计的信号发生器,其输出波形一般只有两种,即正弦波和脉冲波,其零点不可调。
而且价格也比较贵,一般在几百元左右。
在实际应用中,超低频波和高频波一般是不用的,一般用中频,即几十赫兹到几十千赫兹。
关键字:信号发生器、宽度可调、矩形波、锯齿波、时间常数1.概述在电子技术日新月异的形势下,信息技术随之迅猛发展。
信息是存在于客观世界的一种事物现象,人们正是通过信息的获取、存储、传输和处理等来不断认识和改造世界的。
而信号作为信息的载体,是指带有信息的随时间或其他自变量变化的物理量或物理现象,信号时使用极为广泛的基本概念,无论是在自然科学领域,还是在社会科学领域都存在大量的应用研究问题。
信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器,其频率范围可从几个微赫到几十兆赫,除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
proteus怎么加频率信号?

在Proteus 软件中,可以通过信号发生器组件来生成频率信号。
以下是一般的步骤:
1. 打开Proteus 软件,并创建一个新的电路设计文件。
2. 在元件库中找到"Sources"(信号源)分类,接着找到"Voltage/Signal Generator"(电压/信号发生器)组件。
3. 将"Voltage/Signal Generator" 组件拖放到你的电路设计中,然后双击该组件,可以打开其属性对话框。
4. 在属性对话框中,你可以设置该信号发生器的参数,包括信号类型(比如正弦波、方波、三角波等)、频率、振幅、偏移等。
要生成频率信号,需要设置频率参数为你所需要的数值。
5. 设置完成后,关闭属性对话框,接着可以连接信号发生器到你的电路中其他元件的输入端或其他连接器上。
6. 最后,你可以对电路进行仿真,观察频率信号在电路中的表现和相应元件的反应。
通过上述步骤,你可以在Proteus 中加入一个频率信号并将其应用到你的电路设计中。
希望这些信息能够帮助到你!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要数字信号发生器是在电子设计,自动控制系统和仪表测量校正调试中应用很多的一种信号发生装置和信号源。
本文采用AT89C51单片机构成的数字信号发生器,通过波形变换,可以产生方波,三角波,锯齿波等多种波形,波形的周期可通过程序来改变,并可以根据需要选择单极性输出或者双极性输出。
具有线路简单,性能优越,结构紧凑等特点。
关键词:AT89C51;数字信号发生器;波形变换ABSTRACTDigital signal generator in the electronic design、Automatic control system and instrumentation correction in debugging application a lot of signal generator and signal source。
This paper uses the AT89C51chip microprocessor digital signal generator,Through waveform conversion, can produce square wave, triangle wave, sawtooth wave and other wave,Waveform cycle can be programmed to change。
And can be based on the need to select the output unipolar or bipolar output,With simple lines, superior performance, compact structure.Key words:AT89C51; Digital signal generator; Wave transformation目录绪论 (1)1单片机的概述及信号发生器 (2)1.1单片机的概述 (2)1.2信号发生器的分类 (2)1.3研究内容 (2)1.4P ROTUES软件的介绍 (2)2 实验设计原理及芯片简介 (4)2.1实验设计原理 (4)2.2AT89C51的简介 (4)2.3DAC0832芯片的简介 (6)2.4DAC0832的工作方式 (8)3 实验硬件实现及单元电路的设计 (10)3.1硬件设计流程框图 (10)3.2信号发生器的外围结构 (10)3.3单片机最小系统设计 (11)3.4波形产生模块设计 (11)4 实验仿真结果及调试 (17)结论 (20)参考文献 (21)致谢 (22)宿州学院2012届本科生毕业设计绪论绪论电子测量及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类增多,性能提高。
尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。
现在,许多信号发生器带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能,可以和控制计算机及其他测量仪器一起方便的构成自动测试系统。
当前信号发生器总的趋势是想着款频率覆盖、低功耗、高频率精度、多功能、自动化和智能化方向发展。
信号发生器广泛应用于电子工程,通信工程,自动控制,遥测控制,测量仪器,仪表和计算机等技术领域。
波形信号发生器又称为函数信号发生器,作为试验用信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。
目前,市场上常见的波形信号发生器多为纯硬件搭接而成,且波形种类有限,多为锯齿、正弦、方波、三角等波形。
信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波。
三角波和方波的电路便是可取的路径之一,不用依靠单片机。
但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大的缺点,在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。
而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大,大电阻,大电容在制作上有些困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是其致命的弱点。
一旦工作需求功能有增加,则电路复杂程度会大大增加。
本文采用AT89C51单片机构成的波形发生器,可产生三角波,方波,锯齿波和正弦波等多种波形,波形周期可用程序改变,并可根据需要选择单极性输出或者双极性输出,具有线路简单,结构紧凑,性能优越等特点。
1单片机的概述及信号发生器1.1 单片机的概述随着大规模集成电路技术的发展,中央处理(CPU)、随机存取存储器(RAM)、只读存储器、(I/O)接口、定时器/计数器和串行通信接口,以及其他一些计算机外围电路等均可集成在一块芯片上构成单片微型计算机,简称为单片机。
单片机具有体积小,成本低,性能稳定、使用寿命长等特点。
其中最明显的优势就是可以嵌入到各种仪器、设备中,这是其他计算机和网络都无法做到的。
1.2 信号发生器的分类信号发生器应用广泛,种类繁多,性能各异,分类也不尽一致。
按照频率范围分类可以为:超低频信号发生器,低频信号发生器、视频信号发生器、高频波形发生器、甚高频波形发生器和超高频信号发生器。
按照输出波形分类可以分为:正弦信号发生器和非正弦信号发生器,非正弦信号发生器又包括:脉冲信号发生器,函数信号发生器、扫频信号发生器、数字序列波形发生器、图形信号发生器、噪声信号发生器等。
按照信号发生器性能指标可以分为一般信号发生器和标准信号发生器。
前者对输出信号的频率、幅度的准确度和稳定度以及波形失真等要求不高的一类信号发生器。
后者是指其输出信号的频率、幅度、调制系数等在一定范围内连续可调,并且读数准确、稳定、屏蔽良好的中、高档信号发生器。
1.3 研究内容本文是做基于51单片机的信号发生器的设计,将采用编程的方法来实现三角波、锯齿波、方波、正弦波的发生。
根据设计的要求,对各种波形的频率和幅度进行程序的编写,并将所写程序装入单片机的程序存储器中。
在程序运行中,当接收到来自外界的命令,需要输出某种波形时再调用相应的中断服务子程序和波形发生程序,经电路的数/模转换器和运算放大处理后,从信号发生器的输出端口输出。
1.4 Protues软件的介绍Protues是目前最好的模拟单片机外围器件的工具,它可以仿真51系列、A VR、PIC等常用的MCU及其外围电路(如LCD、RAM、ROM、键盘、马达、LED、AD/DA,部分SPI器件,部分IIC器件…)。
本文章基于ProtuesPR06.7SP3和KEIL uVision3软件。
当然软件仿真精度有限,而且不可能所有的器件都找得到相应的仿真模型,用开发板和仿真器当然是最好的选择,可是对于单片机爱好者,或者简单的开发应该是比较好的选择。
Protues与其他的单片机仿真软件不同的是,它不仅能仿真单片机CPU 的工作情况,也能反正仿真单片机外围电路或没有单片机参与的其它电路的工作情况。
因此在仿真和程序调试时,关心的不再是某些语句执行时单片机寄存器和存储器内容的改变,而是从工程的角度直接看程序运行和电路工作的过程和结果。
对于这样的仿真实验,从某种意义上讲,是弥补了实验和工程应用脱节的矛盾和现象。
2 实验设计原理及芯片简介2.1 实验设计原理数字信号可以通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模拟信号的方法来获得所需要的波形。
AT89C51单片机本身就是一个完整的微型计算机,具有组成微型计算机的各种部分部件:中央处理器CPU,随机存取存储器RAM、I/O接口电路、定时器/计数器以及串行通讯接口等,只要将89C51再配置键盘及其接口、显示器及其接口、数模转换及波形输出、指示灯及其接口等四部分。
即可构成所需的波形信号发生器,其信号发生器构成原理框图如图 2.1所示图2.1 信号发生器原理框图89C51是整个波形信号发生器的核心部分,通过程序的编写和执行,产生各种各样的信号,并从键盘接收数据,进行各种功能的转换和信号幅度的调节。
当数字信号经过接口电路到达转换电路,将其转换成模拟信号也就是所需要的输出波形。
2.2 AT89C51的简介图2.2 AT89C51芯片外形结构及引脚分布图AT89C51 是一种带4K字节闪存可编程可擦除只读存储器(EPEROM-Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机[5]。
A T89C2051 是一种带2K字节内闪存可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦出1000次。
该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51 指令集和输出管脚兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51 是一种高效微控制器,AT89C51 是它的一种精简版本。
AT89C51 单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
外形及引脚排列如下图所示:管脚说明:VCC:供低电压。
GND:接地。
P0 口:P0口为一个8位漏极开路双向I/O口,每脚可吸收8TTL门电流。
当P0口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FLASH编程时,P0口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1 口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2 口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL 门电流,当P2口被写“1”时,其管脚被内部上拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接受高八位地址信号和控制信号。
P3 口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。
当P3口写入“1”后,他们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流,这是由于上拉的缘故。
P3口也可作为AT89C51的一些特殊功能口,如下表所示:各端口管脚备选功能P3.0 RXD (串行输入口)P3.1 TXD (串行输出口)P3.2 /INT0 (外部中断0)P3.3 /INT1 (外部中断1)P3.4 T0 (计时器0外部输入)P3.5 T1 (计时器1外部输入)P3.6 /WR (外部数据存储器写选通)P3.7 /RD (外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。