水源热泵与地源热泵优缺点的比较
风冷模块热泵、水冷螺杆、水源热泵、地源热泵中央空调方案对比

风冷模块热泵、水冷螺杆、水源热泵、地源热泵中央空调方案对比风冷模块热泵、水冷螺杆、水源热泵、地源热泵中央空调方案对比2014年8月一、项目概述本工程建筑总面积约10000m2,建筑功能为公共建筑。
二、设计条件:1.依据规范和图纸《采暖通风与空气调节设计规范》(GB50019-2003)2.室外气象参数:天津市位置:北纬39°08′东径116°28′,海拔3.3米。
夏季大气压力:1004.8hpa冬季大气压力:1026.6hpa夏季室外通风计算干球温度:29℃夏季室外空调计算干球温度:33.4℃夏季室外空调计算湿球温度:26.9℃冬季室外空调计算干球温度:-11℃冬季室外采暖计算干球温度:-9℃冬季室外平均风速:2.8M/S夏季室外平均风速:1.9M/S3.室内设计参数:三、负荷分析天津属于冬冷夏热地区,夏季需要设置冷源,满足空调房间的需要;冬季建筑需要提供热源供热,要设置合理的空调方案,首先需要对天津的气候条件进行了解,夏季最高温度在35℃以下,冬季最低温度在-12℃以上,根据实际的气象条件,选择合理、高效的空调冷、热源方案。
四、冷热负荷估算值五、空调主机方案比较以下分别从主机特点、初投资、运行费用、系统维护等方面对多种可选方案进行比较,以期选择最佳方案,确定性价比最高的系统形式。
目前市场上比较成熟的冷热源系统解决方案无外乎以下几种:1.冷源:A.水冷制冷机组(螺杆机组);B.风冷冷水机组(风冷模块);C.水源制冷系统;D.地源制冷系统;2.热源:A.市政热网;B.自建锅炉房;C.风冷热水机组(风冷模块);D.水源热泵系统;E.地源热泵系统;以上诸多系统,在投资、运行费用以及系统维护等方面存在着很大的差别。
为了能满足冬夏两季的应用,我们把以上各种方式组合成五种合理方案:◆方案一:风冷冷热水热泵机组中央空调系统方案;◆方案二:水冷机组+集中市政热网方案;◆方案三:水冷机组+自建燃气锅炉房方案;◆方案四:水源热泵中央空调系统方案;◆方案五:地源热泵中央空调系统方案;下面对这五种方案分别进行详细分析,比较其各方面的优缺点:* 比较原则:初投资均为各系统标准报价;电费统一为1元/度;气费统一为3.25元/Nm3;运行时间一致。
地源热泵钻井与水源热泵最大差别

地源热泵钻井与水源热泵最大差别地源热泵(Heat Pump) 钻井其实地源热泵和水源热泵从字面就可以看出来,最大的区别就是取热源的方式方法不同。
机结构形式:牵引式、车载式、车载背机式。
一般打井机的组成:柴油机、摩擦离合器、变速箱、分动箱、传动轴、泥浆泵、清水泵、真空泵、转盘、水龙头、卷扬机、液压系统、操纵机构、桅杆、钻具、车架等。
掌握旋转系统、提升系统、循环系统、固控设备、动力与传动系统、控制系统、井控设备等全国最先进的技术水平。
利用钻头旋转时产生的切削或研磨作用破碎岩石。
是当前最通用的钻井方法。
比顿钻钻速快,并易于处理井塌、井喷等复杂情况。
水源热泵是通过(tōng guò)打井直接取地下水、进行换热换冷的;而地源热泵是通过地下埋管,然后在向管道里面注入水进行冷媒体作为换热的。
水源热泵(Heat Pump) 需要大量的水资源,而且水源必须满足一定的温度(temperature)、纯净度、温度。
宁波专业钻井利用钻头旋转时产生的切削或研磨作用破碎岩石。
是当前最通用的钻井方法。
比顿钻钻速快,并易于处理井塌、井喷等复杂情况。
而且对于地下水的抽取和回灌,都要考虑(consider)地质的结构,对于一些城市是禁止抽取地下水的就不能使用水源热泵了。
所以使用水源热泵的前提条件是比较多的。
地源热泵钻井的原理地源热泵是通过(tōng guò)埋在地下的管道进行制冷供暖的,所以不用抽取地下水,更不会感染水源、没有废气、废水、废渣的排放,只要地质条件不负责,就可以使用。
地源热泵(Heat Pump) 钻井也是水源热泵的一种形式,两者相互互补,各有优不好的地方,适合于不同的地质条件,相对于国内使用地源热泵要比水源热泵范围(fàn wéi)要广。
镇海机械钻井。
污水源热泵 地源热泵与空气源热泵的比较

污水源热泵地源热泵与空气源热泵的比较污水源热泵系统与传统换热器相比的优越性就是污水源热泵以城市污水做为室内制冷供暖的冷热源,在消耗少量电力的情况下通过污水源热泵系统内部的热泵做功,将污水中的冷热能传递到室内以满足人类的需求。
污水源热泵系统既可以采暖又能够制冷,可以说是一机两用,在很大程度上帮助现代企业降低了运营成本,而且采用污水做为建筑物取暖制冷的能源,同传统的依靠煤炭和地下水来采暖制冷相比,节能而且环保。
污水源热泵系统与空气源热泵,电锅炉煤炭采暖,地源热泵采暖制冷相比较:1.同空气源热泵系统相比较污水源热泵系统与空气源热泵相比,避免了空气源热泵冬季需要定时的结霜和除霜问题,由于污水的内部温度相对来说一年四季都处于一个比较平稳的转台,因此污水源热泵系统的工作性能相对也是比较稳定。
一般情况下热泵的制热制冷系数可以达到5~6,这个制冷制热系数是在产生相同冷热能的情况下所消耗的能量要比空气源热泵节省42%-45%. 2.同地下水水源热泵相比较污水源热泵系统与地下水水源热泵相比较而言,好处是采用污水作为能源因而避免了从地下水中抽取水资源,因此也就不必浪费大量的精力和物力考虑和解决废水回灌的问题,这就在解决了打井基建的同时,还能够节省后期抽水和废水回灌的运行费用。
而且还可以避免由于回灌不当而引发的地下水资源破坏等问题。
3.与电锅炉和燃煤锅炉相比较与电热锅炉相比,污水水源热泵是借助电力来驱动内部热泵进行做功,产生相同冷热能的情况下,其消耗的电能相比之于电锅炉可以节省电能将近65%,比燃料锅炉也要节省出1/2的能源。
传统的锅炉燃烧会产生大量的有害气体,因而容易对大气造成破坏,而污水源热泵系统采取污水进行换热与其相比更加环保而且节能而且还能避免由于使用传统锅炉造成的大气污染,具有良好的环保效应。
污水源热泵系统的利用一般有两种方式,一种是是直接利用,就是污水直接进入热泵机组内部进行换热后在将冷热能传递给室内;而是间接利用方式,间接利用方式通常是污水先流经污水换热器进行换热,换热后在有热泵将冷热能传递到室内。
水源热泵应用的优缺点

水源热泵应用的优缺点随着“节能环保,绿色建筑”的大力提倡,国家发改委、财政部等部委从政策上给予“节能型地(水)源热泵系统”明确性补助,预示着地水源热泵逐步发展的方向。
水源热泵因受条件所限也并不是所有地区都适合,本文阐述了水源热泵的优缺点,为设计者选用水源热泵时作为参考。
标签:水源热泵;地下水;能源;制热(冷)系数水源热泵是利用地球水所储藏的太阳能资源作为冷、热源,进行转换的技术。
水源热泵技术的工作原理就是:通过输入少量高品位能源(如电能),实现低温位热能向高温位转移。
水体分别作为冬季热泵供暖的热源和夏季空调的冷源,即在夏季将建筑物中的热量”取”出来,释放到水体中去,由于水源温度低,所以可以高效地带走热量,以达到夏季给建筑物室内制冷的目的;而冬季,则是通过水源热泵机组,从水源中”提取”热能,送到建筑物中采暖。
1.做为北方的主要几种热源的形式,区域锅炉房、热电厂、小型家用锅炉与水源热泵相比较,水源热泵有着明显的优势。
采用燃料锅炉供暖,只有70%~90%的燃料内能转化为热量且供热同时产生大量废气、废料,处理废料等需要耗费大量的人力、物力和财力。
电锅炉是清洁环保的热源,其可将90%~98%的电能转换为热能,无需处理废料。
但发電所需的煤等物力会间接的产生与燃料锅炉同样的问题,且电锅炉成本较高。
小型家用锅炉同样存在运行成本维护成本高、会产生废气增加危险性等问题。
热电厂是相对比较经济、效果较好的采暖热源形式。
但受到各项目运行参数要求的不同,比如需要夏季制冷,过渡季节采暖等问题则无法解决。
而水源热泵则因其自身的特点为越来越多的用户所采纳,其具有以下几种明显优势,(1)水源热泵便于集中管理,如可按园区的大小及分期建设设置一台或几台水热热泵机组,便于分期管理;(2)分段调节:按各项目的自身特点可选择各时段的冷热媒运行参数,以达到节能的效果。
(3)水热热泵可提供热源也可在夏季供冷,对于公共建筑需要冷热源的要求做到了一机多用。
20110831水源热泵技术应用的利与弊.

地源热泵中央空调系统地源热泵中央空调系统是以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。
其工作原理是:冬季,热泵机组从地源(浅层水体或岩土体)中吸收热量,向建筑物供暖;夏季,热泵机组从室内吸收热量并转移释放到地源中,实现建筑物空调制冷。
根据地热交换系统形式的不同,地源热泵系统分为地下水地源热泵系统、地表水地源热泵系统和地埋管地源热泵系统。
一、地下水地源热泵系统地下水热泵系统,也就是通常所说的深井回灌式水源热泵系统。
通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群灌回地下。
地下水地源热泵系统应用条件:1、建筑项目附近地下水资源丰富,并便于实施供回水工程。
2、地方政策允许利用地下水。
3、地下水温适度,水质适宜,供水稳定,回灌顺畅。
二、地表水地源热泵系统地表水热泵系统是通过直接抽取或者间接换热的方式,利用包括江水、河水、湖水、水库水、污水、工业废水以及海水等等作为热泵的冷热源。
地表水地源热泵系统应用条件:1、建筑项目附近有丰富的地表水。
2、水量充足,水温适度,水质经简单处理能达到使用要求。
三、土壤源热泵系统(地埋管)这种空调系统是把热交换器埋于地下,通过水在由高强度塑料管组成的封闭环路中循环流动,从而实现与大地土壤进行冷热交换的目的。
地下埋管换热器主要有两种形式,即水平埋管和垂直埋管。
选择哪种形式取决于现场可用地表面积、当地岩土类型以及钻孔费用。
尽管水平埋管通常是浅层埋管,可采用人工开挖,初投资比垂直埋管小些,但它的换热性能比竖埋管小很多,并且往往受可利用土地面积的限制,所以在实际工程应用中,一般都采用垂直埋管。
土壤源热泵系统应用条件:1、建筑物附近缺乏水资源或因各种因素限制,无法利用水资源。
2、建筑物附近有足够场地敷设“地埋管”(例如:办公楼前后场地、别墅花园,学校运动场等等)。
地源热泵空调系统的特点一、地源热泵空调系统的优点地(水)源热泵与常规空调技术相比有着无可比拟的优势。
水源热泵、地源热泵、直燃机特点比较

地表水受环境温度影响较大,对机组能力有影响。例如冬季水温下降,应考虑增加水流量或加辅助热源设备。
1、水系统工作温度在15~32℃之间,大于室内露点温度,管道不需保温,可节省保温费用。
2、需额外提供辅助加热设备,增加初投资。
水源热泵、地源热泵、直燃机特点比较
类型
项目
水源热泵
地源热泵
直燃机
地下水热泵
地表水热泵
水环热泵
热源
地下深井水
河水、湖水、海水等
封闭循环水
土壤
---
系统循环方式
开式
开式或闭式
闭式
闭式
冷温水一般为闭式
冷却水开式
辅助热源、排热设备
需深水潜水泵
需循环水泵
1、冷却塔
一般采用封闭式冷却塔,如采用开式冷却塔,则需另加热交换器把环路水与冷却塔隔离,防止水源热泵机组中的水/制冷剂热交换器受到腐蚀和结垢。增加了初投资。
3、对水质要求高,如采用闭式冷却塔,换热效率低,冷却塔体积大,价格昂贵;如采用开式冷却塔加热交换器,也增加了初投资。
4、从建筑物内区利用热泵升温,提供给外区,热泵机组之间难以匹配。
5、水源热泵机组都带有压缩机,噪音比一般空调末端大,需采用降噪措施。
1、需使用特殊地埋管材,制作特殊形状管道。
2、需使用专用挖掘钻孔工具,工程量大,安装复杂,劳动成本高。
2、加热器
根据能源情况可选用电锅炉,燃油、燃气锅炉,蒸汽、水热交换器等。
不需水泵,但换热管及制冷剂要增加很多,或者要加防冻液
开式冷却塔+冷却水泵
环境影响
1、地下水经过机组及空调系统后直接排回地下,会对地下水造成一定程度的污染。
地源热泵技术的优势与劣势

地源热泵技术的优势与劣势一、关于地源热泵地源热泵技术是一种利用可再生能源(浅层地热)的暖通空调技术,该技术有高效的节能性,在国际上广泛应用在建筑节能领域。
地源热泵通过输入少量的高品位能源(如电能),将热能实现由低品位向高品位转移。
土壤(地下水/地表水/污水等)可作为地源热泵在冬季供热的热源和夏季制冷的冷源,在供暖/制冷的同时,也可用来制备/供应生活热水,特别是夏季,通过室内热量和热水中冷量的交换,地源热泵的能效达到了最大化。
通常地源热泵消耗1kWh的能量,用户可以得到4.4kWh以上的热量或冷量,超高的能效比给我们提供了最优的节能建设和改造方案。
二、地源热泵发展史1912年,地源热泵技术在瑞士被提出,至今已有百年历史。
1946年,美国第一台地源热泵系统在俄勒冈州的波特兰市中心区安装成功,从此地源热泵开始在美国发展起来。
方肇洪教授在2000年赴美国俄克拉荷马州立大学(OSU)专门研究地源热泵技术,并把这项技术带回国内应用于工程实践。
美国多年来的统计资料显示,地源热泵的运行费用(采暖)比耗电空调节约35%~50%,比燃油、燃煤锅炉运行费用节约40%~60%。
三、地源热泵的优势地源热泵主要有以下六大优势:1/节能:性能系数较高,节省运行费用25~50%2/环保:废除锅炉房,不向室外排热,不用地下水3/可持续发展:热量冬取夏蓄,利用可再生能源4/冷暖兼用:节省初投资5/美观:无室外机,不影响建筑外观6/降低电网负荷四、地源热泵的劣势地源热泵的优势很明显,节能环保,是一种新能源技术,缺点主要有以下三点:地源热泵的缺点主要是三个方面:一是需要用地,地下埋管,像郊区厂房/有车库的小区等都没问题;二是前期投入大一些,但是后期节能基本能补缺,相较于传统能源节能效果很好;三是供冷供热都要使用,单一供热或者供冷的项目有局限,像很多北方地区都没有问题。
如何快速区分地源热泵空调和水源热泵?

如何快速区分地源热泵空调和水源热泵?
有很多人分不清地源热泵空调和水源热泵有什么不一样,两者是不是同样类型的
空调:
定义上的区别: 地源热泵和水源热泵在概念上来讲主要是针对系统所说的,也
就是地源热泵系统和水源热泵系统,而不是针对主机,有很多人在这方面有误解,
换句话说地源热泵主机和水源热泵主机是一样的主机,通常所说的地源热泵或者
水源热泵就是指主机源水侧水源的来源。
地源热泵空调的水源来源于地下埋管的闭式环路,源水侧的水通过地下埋管与地
下进行热交换,而不发生物质交换。
水源热泵区别于地源热泵的就是源水侧水源直接取自地下水或者江水或者海水
等,它是一种开式的型式,水被直接拿来取热或排热并按要求排放回原取水点,
只是利用了自然界水中的能量。
简单理解的区别:
1、地源热泵是室外打孔,占地面积比水源热泵要大。
2、水源热泵是室外打水井,但现在对打井审批比较复杂(水源热泵是需要打井
的,通常都需要水务局批准。),而地源热泵不需要相关的审批手续 。
3、地源热泵空调比水源热泵室外部分投资要高。
4、地源热泵是地下闭式系统,水源热泵是开式系统。
通过以上的解释大家可以直观的了解到两者的区别,在使用的时候也可以选择自
己所需要的地源热泵空调或者是水源热泵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水源热泵与地源热泵优缺点的比较
一、水源热泵深井技术介绍
1、水源热泵原理
地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表20M以下的浅表层地下水可常年维持在该地区年平均温度左右,是理想的天然冷热源。
水源热泵系统正是利用地下水的特性而工作的一种新型节能空调。
在水源热泵的水井系统中,水源热泵一般成井深度为50米到300米,因为此部分地下水主要由地表水补给,且不适宜饮用,故用于水源热泵中央空调是极佳选择水源中央空调系统的是由末端(室内空气处理末端等)系统,水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。
为用户供热时,水源中央空调系统从水源中中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。
为用户供冷时,水源中央空调将用户室内的余热通过水源中央空调主机(制冷)转移到水源中,以满足用户制冷需求。
1.1系统原理图:制热工况为例(制冷工况可通过阀门切换来实现,即使水源水进冷凝器,蒸发器的冷冻循环水接用户系统),系统原理见下图:
分类:水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。
闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与土壤或海水换热来实现能量转移。
开式系统也就是通常所说的深井回灌式水源热泵系统。
通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群回地下。
.
水源热泵原理图:
深井回灌开式环路
地下水平式封闭环路
2.水源热泵优点
2.1高效节能
水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,。
4~6,实际运行为7理论计算可达到.
水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。
而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温
度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。
水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。
与空气源热泵相比,其运行效率要高出
20~60%,运行费用仅为普通中央空调的40~60%。
2.2属可再生能源利用技术
水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。
其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。
地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。
这使得利用储存于其中的近乎无限的太阳能或地能成为可能。
所以说,水源热泵利用的是清洁的可再生能源的一种技术。
2.3节水省地
以地表水为冷热源,向其放出热量或吸收热量,不消耗水资源,不会对其造成污染;省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规空调系统,节省建筑空间,也有利于建筑的美观。
.
2.4环保效益显著
水源热泵机组供热时省去了燃煤、燃气、然油等锅炉房系统,无燃烧过程,避免了排烟、排污等污染;供冷时省去了冷却水塔,避免了冷
却塔的噪音、霉菌污染及水耗。
所以,水源热泵机组运行无任何污染,无燃烧、无排烟,不产生废渣、废水、废气和烟尘,不会产生城市热岛效应,对环境非常友好,是理想的绿色环保产品。
2.5一机多用,应用范围广
水源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。
特别是对于同时有供热和供冷要求的建筑物,水源热泵有着明显的优点。
不仅节省了大量能源,而且用一套设备可以同时满足供热和供冷的要求,减少了设备的初投资。
其总投资额仅为传统空调系统的60%,并且安装容易,安装工作量比传统空调系统少,安装工期短,更改安装也容易。
水源热泵可应用于宾馆、商场、办公楼、学校等建筑,小型的水源热泵更适合于别墅、住宅小区的采暖、供冷。
2.6运行稳定可靠,维护方便
水体的温度一年四季相对稳定,其波动的范围远远小于空气的变动,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性;采用全电脑控制,自动程度高。
由于系统简单、机组部件少,运行稳定,因此维护费用低,使用寿命长。
2.7符合国家政策,获得政策性支持
《中华人民共和国可再生能国家十分重视可再生能源开发利用工作,源法》已于2006年1月1日起实施;同时,在《国家中长期科学和技术发展规划纲要》中,又把大力发展和规模化应用新能源和可再生能源作为能源领域的优先发展主题。
从国家立法和发展战略的高度,
对可再生能源的发展应用予以强力推动。
日前,国家财政部、建设部发文《关于推进可再生能源在建筑中应用的实施意见》以及《可再生能源建筑应用专项资金管理暂行办法》,明确指出十一五期间,可再生能源应用面积占新建建筑面积比例为25%以上,到2020年,可再生能源应用面积占新建建筑面积比例为50%以上,这为我国水源热泵的发展提供了良好的环境和强劲的动力。
3.水源热泵的应用限制:
3.1可利用的水源条件限制
水源热泵理论上可以利用一切的水资源,其实在实际工程中,不同的水资源利用的成本差异是相当大的。
所以在不同的地区是否有合适的水源成为水源热泵应用的一个关键。
目前的水源热泵利用方式中,闭式系统一般成本较高。
而开式系统,能否寻找到合适的水源就成为使用水源热泵的限制条件。
对开式系统,水源要求必须满足一定的温度、水量和清洁度。
3.2水层的地理结构的限制
对于从地下抽水回灌的使用,必须考虑到使用地的地质的结构,确保同时还应当考虑当地的地质可以在经济条件下打井找到合适的水源,和土壤的条件,保证用后尾水的回灌可以实现。
3.3投资的经济性
由于受到不同地区、不同用户及国家能源政策、燃料价格的影响,水源的基本条件的不同;一次性投资及运行费用会随着用户的不同而有所不同。
虽然总体来说,水源热泵的运行效率较高、费用较低。
但与
传统的空调制冷取暖方式相比,在不同地区不同需求的条件下,水源热泵的投资经济性会有所不同。
二、地源热泵深井技术介绍
1. 地源热泵系统原理
地源热泵系统是利用热泵机组在土壤中提取或蓄存热量,制取冷热
水为空调服务的系统,
又称土壤源热泵。
其原理图如图所示。
地源热泵原理图1 图
地表浅层土壤温度呈三层分布,地表冻土层附近土壤温度受室外大气影响,温度全年波动大;冻土层以下有一恒温层,温度全年基本不变;恒温层下到地壳深处有一定的正温度梯度,土壤温度随深度缓慢上升。
地热井,指的是深升3500米左右的地热能或水温大于30℃的温泉水来进行发电的方法和装置,地热分高温、中温和低温三类。
高于150℃,以蒸汽形式存在的,属高温地热;90℃~150℃,以水和蒸汽的混合物等形式存在的,属中温地热;高于25℃、低于90℃,以温水、温热水、热水等形式存在的,属低温地热.
地热深井的技术简介是:(1)集成创新:即地核原子炉和发电机+地
幔地壳的热岩层+石油钻探式钻地热井+工质优选+蒸汽发电机+发电机=6因素集成。
(2)工作循环简单:即工质吸热变工质蒸汽→蒸汽机作功→联动发电机发电。
(3)井水闭式循环:即地热井水在井内闭式循环,不必抽到井外。
(4)工质闭式循环:即工作介质按工质贮罐→井炉换热→蒸汽机→冷却→回到工质贮罐,是全封闭的循环,不会泄漏。
(5)热功转换效率高:即采用相变传热和换热,又低温工作的蒸汽发电机,故一般每孔地热井装机在1500~3000KW。
(6)建厂成本低:即一般约0.8亿元/万KW,低于核电的2.2亿元/万KW或秸杆发电的2亿元/万KW。
用于供暖的地热水温度一般在60℃以上,也有采用50~60 ℃的,50℃以下的则很少采用。
分直接供暖和间接供暖两种方其对地热水的水质, 式:直接供暖是将地热水直接送入供热系统
要求高,不得对供暖管道系统产生腐蚀和结垢,一般为矿化度比较低的地热水;间接供暖是使地热水通过热交换器将热转换给供热系统进行供暖。
开采具有腐蚀性和易产生结垢的地热水供暖,一般采用间接供暖方式。
地热水供暖的利用率取决于地热水的温度及其供暖后排放水温度,地热水温度愈高, 供暖后的排水温度愈低, 则其供暖的利用率越高。
2.但是在长期的利用中发现:
2.1①从地层深处提取热水取暖,利用率低,热水不可饮用,不再回流,直接排入废水沟,严重浪费热力资源。
②长期抽取深层地下水易使形成地下漏斗,影响地层稳定,国家已出台政策禁止。
③地热深井
的循环需要一口出水井四口回水井,打井的费用投入较大。
2.2防腐问题地热对金属腐蚀是普遍存在的而且很严重。
地热水中最常出现起主要作用的腐蚀成分是氯(CL)和溶解氧(0:)。
氯离子半径小,穿透能力强,因此容易穿过金属表面已有的保护层造成对碳钢、不锈钢及其他合金强烈的缝隙腐蚀、孔蚀与应力腐蚀等。
2.3氯离子对金属的腐蚀作用还与温度有关,60cc的地热水CL一含量仅只200rTlg/L时,也会使不锈钢产生局部腐蚀,温度越高腐蚀作用越强。
在地下深层地热水自然状态下通常不含氧气,流出地面后空气中的氧会溶入地热水,溶解氧也是地热水中最常见最重要的腐蚀性物质。