高中数学《一元二次函数方程和不等式》公开课优秀教学设计

合集下载

高中数学第二章一元二次函数方程和不等式.基本不等式1教案第一册

高中数学第二章一元二次函数方程和不等式.基本不等式1教案第一册

2.2基本不等式教材分析:“基本不等式" 是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用。

利用基本不等式求最值在实际问题中应用广泛。

同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标 【知识与技能】1。

学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2。

掌握基本不等式2a b +≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题【过程与方法】通过实例探究抽象基本不等式; 【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣。

教学重难点 【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式2a b+≤的证明过程; 【教学难点】 12a b+≤等号成立条件; 22a b+≤求最大值、最小值。

教学过程 1。

课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,∀a ,a ∈a ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立特别地,如果a 〉0,b 〉0,我们用√a ,√a 分别代替上式中的a ,b ,可得√aa ≤a +a 2①当且仅当a =b 时,等号成立。

通常称不等式(1)为基本不等式(basic inequality )。

其中,a +a 2叫做正数a ,b 的算术平均数,√aa 叫做正数a ,b 的几何平均数。

基本不等式表明:两个正数的算术平均数不小于它们的几何平均数。

思考: 上面通过考察a 2+b 2=2ab 的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)类比弦图几何图形的面积关系认识基本不等式2a bab +≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得2a b ab +≥,(a>0,b>0)2a bab +≤2)2a bab +≤用分析法证明:要证 2a bab +≥(1) 只要证 a +b ≥(2) 要证(2),只要证 a +b - ≥0(3) 要证(3),只要证 ( — )2≥0 (4)显然,(4)是成立的。

一元二次不等式教案5篇

一元二次不等式教案5篇

一元二次不等式教案一元二次不等式教案5篇作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。

那么教案应该怎么写才合适呢?以下是小编整理的一元二次不等式教案,仅供参考,希望能够帮助到大家。

一元二次不等式教案1教学内容3.2一元二次不等式及其解法三维目标一、知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.强化学生应用转化的数学思想和分类讨论的数学思想.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点1.深入理解二次函数、一元二次方程与一元二次不等式的关系.教学方法启发、探究式教学教学过程复习引入师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。

回顾下等比数列的性质。

生:略师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。

《二次函数与一元二次方程、不等式(第一课时)》示范公开课教学设计【高中数学人教版】

《二次函数与一元二次方程、不等式(第一课时)》示范公开课教学设计【高中数学人教版】

《二次函数与一元二次方程、不等式(第一课时)》教学设计◆教学目标1.经历从实际情境中抽象出一元二次不等式模型的过程,了解一元二次不等式的现实意义,提升数学抽象素养;2.能用二次函数的观点,看一元二次方程和一元二次不等式,并能求解二次方程和二次不等式问题,感悟数学知识的整体性和关联性,提升逻辑推理、几何直观和数学运算等核心素养.◆教学重难点◆教学重点:从实际问题中抽象出一元二次不等式模型,并会借助二次函数求解一元二次不等式,体会函数思想、化归思想及数形结合的思想.教学难点:理解二次函数、一元二次方程与一元二次不等式解集之间的关系.◆课前准备GEOGEBRA、PPT课件.◆教学过程一、情境引入★资源名称:【情景演示】二次函数与一元二次方程、不等式★使用说明:本资源类比一次函数与一元一次方程、不等式的联系,提出对二次函数与一元二次方程、不等式之间联系的思考,引发学生以类比的视角来学习函数、方程、不等式之间的关系.注:此图片为视频截图,如需使用资源,请于资源库调用.问题1:园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24 m ,围成的矩形区域的面积要大于20 m 2,则这个矩形的边长为多少米?师生活动:学生独立思考,把实际问题中的数量关系用数学模型表示出来. 预设的答案:1.因为学生已经学习过基本不等式,所以部分学生会令矩形的一边长为x ,另一边为y ,可以得到⎩⎨⎧>=+.20,12xy y x 此时还需要消元从而转化为一元二次不等式求解.2.部分学生用一个未知数x 即可表示问题中的不等式20)-12>x x (,但学生容易忘记自变量x 的取值范围.追问:不等式20)-12>x x (即020122<+-x x ,与我们学习过的一元一次不等式有什么不同?你能再举出一些类似的不等式吗?师生活动:学生可以回答这个问题.之后学生阅读课本获得定义,或者教师给出一元二次不等式的定义,一元二次不等式的一般形式:0022<++>++c bx ax c bx ax 或,并且强调二次项的系数a ≠0.设计意图:通过具体问题抽象出一元二次不等式的过程,明确一元二次不等式的定义和一般形式,体会一元二次不等式的现实意义.二、探究新知1.探究一元二次不等式的解法问题2:在初中,我们学习了从一次函数的观点看一元一次方程、一元一次不等式的思想方法.那么这三个“一次”之间的关系是什么?师生活动:教师引导学生回答问题,并强调从代数和几何两方面的理解,注意数形结合的思想.师生共同总结如下:设计意图:通过对三个“一次”的关系的总结,帮学生梳理函数和相应的方程、不等式之间的关系,为下面的探索做好铺垫.★资源名称: 【数学探究】二次函数与一元二次方程、不等式的关系★使用说明:本资源动态展示了二次函数的零点与一元二次方程的根、一元二次不等式的解集之间的关系,使用时可通过滑动条改变二次函数中的系数,直观观察三者之间的关系.注:此图片为动画截图,如需使用资源,请于资源库调用.问题3:类似地,能否从二次函数的观点看一元二次不等式,进而得到一元二次不等式的求解方法呢?以函数20122+-=x x y 为例.师生活动:学生类比研究,应该有一部分学生可以获得思路.教师设计追问,引导学生思考.追问1:教师用信息技术画出函数20122+-=x x y 的图象,图象与x 轴有两个交点,并在函数图象上任取一点P (x ,y ).当点P 在抛物线上移动时,请你观察:随着点P 的移动,它的纵坐标的符号怎样变化?师生活动:学生观察思考后回答.预设的答案:当点P 移动到x 轴上时,它的纵坐标等于0(即0=y );当点P 移动到x 轴上方时,它的纵坐标大于0(即0>y );当点P 移动到x 轴下方时,它的纵坐标小于0(即0<y ).追问2:当点P 的纵坐标y =0时、y >0时、y <0时所对应的横坐标x 的取值范围分别是什么?师生活动:学生独立获得答案.师生活动:学生思考并对上述方法进行了归纳、概括,获得求解一般一元二次不等式的解法.预设的答案:求解一元二次不等式的关键是利用二次函数的图象与x 轴的相关位置确定不等式对应的x 的取值范围,而确定x 的取值范围需要先求出相应一元二次方程的根.这种关系体现在下表中.Δ>0Δ=0Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0(a>0)的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集 {x |x <x 1,或x >x 2}{x |x ≠-b2a}Rax 2+bx +c <0(a>0)的解集{x |x 1<x <x 2}∅ ∅设计意图:通过问题引导学生从具体的“三个二次”的关系,归纳、概括、获得一般的一元二次不等式的解法.在这个过程中培养学生数学抽象概括的能力,以及从具体到抽象,从特殊到一般的研究问题的基本方法.并体会数形结合和函数思想的应用.3.应用举例例1 求下列不等式的解集:(1)0652>+-x x (2)01692>+-x x (3)03-2-2>+x x追问:求解不等式的依据是什么?步骤是什么?第(3)题与(1)(2)题有何异同?能否转化为(1)(2)题.师生活动:学生独立完成后展示交流,师生总结求解思路.对于二次项系数是负数(即0<a )的不等式,可以先把二次项系数化成正数,再求解.预设的答案:(1)解:对于方程0652=+-x x ,因为∆>0, 所以它有两个实数根,解得3,221==x x ,画出二次函数652+-=x x y 的图象(图2.3-2)结合图象得不等式0652>+-x x 的解集为}{3,2><x x x 或.(2)解:对于方程01692=+-x x ,因为∆=0,所以它有两个相等的实数根,解得3121==x x ,画出二次函数169y 2+-=x x 的图象(图2.3-3),结合图象得不等式01692>+-x x 的解集为}31|{≠x x .(3)解:不等式可化为032-2<+x x ,因为∆=-8<0,所以方程032-2=+x x 无实数根,画出二次函数32y 2+-=x x 的图象(图2.3-4),结合图象得不等式032-2<+x x 的解集为∅.因此原不等式的解集为∅.追问:通过这三道题的学习,请你试着总结一下:解一元二次不等式的一般步骤是什么?师生活动:学生总结,教师完善.预设的答案:步骤是:(1)先把二次项系数化为正数;(2)求判别式的值;(3)求相应方程的实数根;(4)结合函数图象写出一元二次不等式的解集.设计意图:这三道例题对应的三个二次函数的图象分别与x 轴有两个交点、有一个交点和没有交点,再次巩固了利用二次函数解二次不等式的方法.并要注重代数问题的求解程序的提炼总结,以便学生有序地思考,规范地求解,提升学生的数学运算素养.注重数形结合思想方法的应用,培养学生思维的严谨性.例 2 已知一元二次不等式02<++c bx ax 的解集为{}53-><x x x ,或,则02<+-c bx ax 的解集为________.追问:如何利用“三个二次”的关系求解?能大致画出不等式对应的函数的草图吗? 师生活动:学生先独立思考,画出函数的草图,从而可以确定a 0<.并利用方程的根与函数零点的关系,及韦达定理求出a ,b ,c 之间的关系(而不是具体的值),再化简求值.预设的答案:解:根据题意可知a 0<.图2-3-5令)0(02≠=++a c bx ax .由根与系数的关系得⎪⎪⎩⎪⎪⎨⎧⨯-=+-=,53,53-ac ab解得⎩⎨⎧-=-=.15,2a c a b 代入所求不等式得01522<-+a ax ax .①又∵0<a ,∴①化为01522>-+x x . 对于方程015-22=+x x ,因为∆>0,所以它有两个实数根,解得3,-521==x x ,画出二次函数15-22x x y +=的图象(图2-3-5),结合图象得不等式15-22>+x x 的解集为}{53-<>x x x ,或.设计意图:进一步理解三个“二次”之间的关系,在较复杂的情境中应用新知识,提高学生分析问题的能力.三、归纳小结,布置作业★资源名称: 【知识点解析】二次函数与一元二次方程、不等式★使用说明:本资源为二次函数与一元二次方程、不等式的知识讲解视频,主要以二次函数为视角讨论了三个“二次”之间的关系,让学生明确二次函数的零点、一元二次方程的根和一元二次不等式的解集之间的统一性.注:此图片为微课截图,如需使用资源,请于资源库调用.问题4:这节课我们学习了解一元二次不等式,那么我们是如何去研究一元二次不等式。

《一元二次函数、方程和不等式复习》教学设计

《一元二次函数、方程和不等式复习》教学设计

《一元二次函数、方程和不等式复习》教学设计表七、教学板书评价方案设计课前检测:【测评内容】1.课前梳理章节内容,制作整个章节的思维导图。

2.下发知识清单,易错题在线推送(12学),经典题型再次回眸。

3.根据知识点整理整个章节的题型,总结整章内容的解题方法。

【评价方式】1.通过课堂授课前投影展示部分学生的预习作业进行评价。

2.通过提问,掌握学生对本节的初步认知情况。

3.通过12学平台,精确掌握易错题的正确率,结合知识清单进行评价反馈。

课堂练测【练习内容1】常见题型专题总结(九个题型):(一)利用不等式性质,判断其它不等式是否成立1. 设a ,b ,c ∈R ,且a >b ,则( )A. ac >bcB. a −c >b −cC. a 2>b 2D. 1a <1b (二)比较大小2. 设0<a <b ,则下列不等式中正确的是( )A. a <b <√ab <a+b 2 B. a <√ab <b <a+b 2 C. a <√ab <a+b 2<b D. √ab <a <a+b 2<b(三)利用不等式性质判断P 是Q 的充分条件和必要条件3. 不等式2x 2−5x −3≥0成立的一个必要不充分条件是( )A. x ≥0B. x <0或x >2C. x <−12D. x ≤−12或x ≥3 (四)不等式恒成立k 分类讨论4. 已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( )A. 0≤k ≤1B. 0<k ≤1C. k <0或k >1D. k ≤0或k ≥1(五)没有限定条件的基本不等式最值问题5. 已知x >0,则x +12x 的最小值为( ) A. 12 B. 1 C. √22 D. √2(六)有限定条件的基本不等式的最值问题(数式互换)6. 设x 、y ∈R, x+y=5,则3x +3y 的最小值是( )A 、10B 、36C 、64D 、318(七)解一元二次不等式7.设集合A ={x|x 2−4x +3<0},B ={x|2x −3>0},则A ∩B =( )A. (−3,−32)B. (−3,32)C. (1,32)D. (32,3) (八)利用二次函数求一元二次不等式的最值问题8.已知关于x 的不等式ax 2−x +b ≥0的解集为[−2,1],则关于x 的不等式bx 2−x +a ≤0的解集为( )A. [−1,2] B. [−1,12] C. [−12,1] D. [−1,−12](九)恒成立问题(一元二次不等式含参数的恒成立、基本不等式含参数的恒成立)9.已知x >0,y >0,若2y x +8x y >m 2+2m 恒成立,则实数m 的取值范围是( )A. m ≥4或m ≤−2B. m ≥2或m ≤−4C. −2<m <4D. −4<m <2【练习内容2】(2019年高考理数第23题第1问)已知a,b,c 为正数,且abc=1,求证222111c b a cb a ++≤++ (变式训练)已知a 、b 、c 为不全相等的正数,且abc=1,求证:cb ac b a 111++<++【评价方式】 1.12学精准掌握每题的正确率,挑选错误率较高的题目进行讲解。

人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习

人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习

【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。

数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。

教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。

一元二次函数方程和不等式教学设计

一元二次函数方程和不等式教学设计

一元二次函数、方程和不等式(衔接课)一、教学设计1.教学内容解析在现行人民教育出版社A版高中数学教材中,“一元二次不等式的解法”这一部分内容安排在《必修5》的第三章第二节,学生高二时才学习,导致高一学生在学习《必修1》的“集合”、“函数”等内容时,有一定的障碍,达不到一定的深度,初高中数学内容衔接不连贯,对于这一部分内容,老师普遍认为应调整到《必修1》之前,或是安排在《必修1》的“集合”之后,“函数”之前比较好.本节课的产生正是基于以上原因,但它并不是一节“一元二次不等式的解法”的新知课,也不是一节复习课,而是一节衔接课,以一元二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.三个“二次”是初中三个“一次”(一元一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.如,解析几何中解决直线与二次曲线位置关系问题,导数中导函数为二次函数时的许多问题等,同时,此部分内容又是培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想的极好素材,本节课的地位和作用主要体现在它的基础性和工具性方面.根据以上分析,本节课的教学重点确定为教学重点:一元二次函数、一元二次方程与一元二次不等式三者之间的关系及应用.2.学生学情诊断本节课的授课对象为华中师大一附中高一平行班学生,华中师大一附中是湖北省示范高中,学生基础很好,一般而言,学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题. 但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律.教学难点:含参数的二次方程、不等式,如何利用三个“二次”之间的关系进行等价转化处理,为今后处理其它类型的函数、方程、不等式问题提供范式.3.教学目标设置(1)理解一元二次函数、一元二次方程及一元二次不等式三者之间的关系;(2)能够用二次函数的观点处理二次方程和二次不等式问题,感悟函数的重要性以及数学知识之间的关联性;(3)引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,能够在本主题的学习中,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养.4.教学策略分析本课作为初高中内容和方法上的“衔接课”,有其重要特点:一不能靠单纯的复习;二不宜上成新课;三,必须展示基本的套路,而又不可能一次到位;四,需要立足于函数、圆锥曲线等核心概念必然联系的高度,着眼于继续学习,而又必须遵循数学的自然顺序,避免后继内容的前移。

一元二次函数、方程和不等式小结(第一课时)教学设计

一元二次函数、方程和不等式小结(第一课时)教学设计
所以 ,故实数 的取值范围是
解:因为 ,所以 ,所以
当且仅当 ,即 时取等号,所以 .
答案:3
【感言】1.利用基本不等式时要注意应用的前提,即非负,定值和取等条件;2.在利用基本不等式解决两类问题中灵活运用“凑”“配”的技巧
教材 复习参考题2
复习巩固 第1题,2题,第3题
拓广探索 第9题
2.掌握基本不等式 (a,b≥0), 能用基本不等式解决简单的最大值或最小值问题。
教学难点:
不等式性质的证明和运用,利用基本不等式解决实际问题。
教学过程
一、不等关系和不等式
例1(1)若 ,则 的大小关系是( )
A. B. C. 或 D.
解:∵ ,
∴ .故选B
(2)(多项选择题)若 且 ,则下列不等式错误的是( )
A. B. C. D.
解:对于A, 正 负时不成立,故错误;对于B, 与 都为负值时不成立,故错误;
对于C, 时不成立,故错误;
对于D,由于 ,根据不等式的性质, 总成立,故选ABC.
【感言】不等式的大小比较,我们常用作差来解决,在处理不等式时注意与等式的区别。
二、基本不等式及其应用
例2(1)若 ,则 有( )
A.最小值6 B.最小值8 C.最大值4 D.最大值3
解:由 ,当且仅当 ,即 时,取等号,故选B.
(2)已知 ,则函数 的最大值为_________.
解: ,
当且仅当 ,即 时取等号.
答案:
(3)已知 为正数,若 恒成立,则实数 的取值范围是.
解:由已知,设 ,要使得 恒成立,只须
又 ,当且仅当 时取等号,
教学设计
课程基本信息
学科
数学
年级

《一元二次函数》示范公开课教案【高中数学必修第一册北师大】

《一元二次函数》示范公开课教案【高中数学必修第一册北师大】

《一元二次函数》教学设计1. 熟悉配方法,理解a,b,c (或a,h,k )对二次函数图象的作用.2.理解由y =ax 2到y =a(x −ℎ)2+k 的图象变换方法.3. 掌握二次函数的性质.4. 体会抽象概括的过程,加强直观想象素养的培养.重点:掌握一元二次函数的图象和性质.难点:体会用平移的方法研究一元二次函数的图象,并能迁移到对其他函数的图象的研究之中. 一、新课导入 回顾旧知:初中阶段,我们学习了一元二次函数y =ax²+bx +c (a ≠0),请回顾认识这个函数的过程.答案:认识这个函数的过程是从y =x²开始的,是由简到繁的过程.如图所示:思考:对于二次函数y =a(x −ℎ)2+k (a ≠0)的图象,可以由函数y =ax²的图象,经过怎样的变换得到?师揭示本节课题:《一元二次函数》.设计意图:通过对旧知识的回顾,激发学生对一元二次函数的探究,从而引出今天的课题,激发学生的学习兴趣,让学生在对新问题的挑战中,进一步深化数形结合思想.二、新知探究探究一:一元二次函数.分析:一元二次函数的三种形式:(1)一般式:y =ax²+bx +c (a ≠0)(2)顶点式:y =a(x −ℎ)2+k(a ≠0)◆教学目标 ◆教学重难点 ◆ ◆教学过程◆(3)两根式:y =a(x −x 1)(x −x 2)(a ≠0)思考:如何把一元二次函数的一般式化为顶点式?答案:配方法.一元二次函数y =ax²+bx +c (a ≠0)都可以通过配方化为y =a (x +b 2a )2+4ac−b 24a ,若设 ℎ=−b 2a ,k =4ac−b 24a ,则有y =a(x 一ℎ)2+k (顶点式)通常把一元二次函数的图象叫作抛物线.例如:一元二次函数y =2x 2+3x +5,通过配方可化为y =2(x +34)2+318,其图象为开口向上,以x =−34为对称轴,(−34,318)为顶点的抛物线.探究二:一元二次函数的图象变换规律.分析:如图所示,一元二次函数y =2(x −2)2的图象可以由y =2x 2的图象右移2个单位长度得到;y =2(x −2)2−1的图象可以由由y =2x 2的图象右移2个单位长度,下移1个单位长度得到.知识点:一元二次函数y =a(x −ℎ)2+k 的图象可以由y =ax 2的图象经过向左(或向右)平移|ℎ|个单位长度,再向上(或向下)平移|k|个单位长度而得到.探究三:一元二次函数y =a(x 一ℎ)2+k(a ≠0)的性质.知识点:(1) 函数y =a(x −ℎ)2+k 的图象是一条抛物线,顶点坐标是(ℎ,k ),对称轴是直线x =ℎ.(2)当a >0时,抛物线开口向上;在区间(−∞,ℎ]上,函数值y 随自变量x 的增大而减小;在区间[ℎ,+∞)上,函数值y 随自变量x 的增大而增大;函数在x =ℎ处有最小值,记作y min =k .(3)当a <0时,抛物线开口向下;在区间(−∞,ℎ]上,函数值y 随自变量x 的增大而增大;在区间[ℎ,+∞)上,函数值y 随自变量x 的增大而减小;函数在x =ℎ处有最大值,记作y max =k .小结:二次函数y =a(x −ℎ)2+k(a ≠0),a 决定了二次函数图象的开口大小及方向(a >0,图象开口向上,a 值越大,开口越小;a <0,图象开口向下,a 值越大,开口越大)﹔h 决定了二次函数图象的左、右平移,而且“h 正左移,h 负右移”﹔k 决定了二次函数图象的上、下平移,而且“k 正上移,k 负下移”.图象变换口诀:“上加下减,左加右减”.设计意图:从一元二次函数的三种形式进行探究,从简到繁,唤醒旧知,联系新知,从形式到图象变换,再到性质分析,循序渐进对一元二次函数的变换以及性质进行理解.三、应用举例例1: 已知一元二次函数y =12x ²+2x +5.(1)指出它的图象可以由y =12x ²的图象经过怎样的变换才能得到;(2)指出它的对称轴,试述函数的变化趋势及函数的最大值或最小值.分析:因为题中给出了一元二次函数的一般形式y =12x ²+2x +5,所以我们直接利用配方,将它变成y =a (x +b 2a )2+4ac−b 24a的形式,然后通过结合图形,即可得出答案. 解:(1)配方,可得,y =12x 2+2x +5y =12(x 2+4x)+5y =12(x 2+4x +4−4)+5 y =12(x +2)²+3.所以,y =12x 2+2x +5的图象可以由y =12x ²的图象向左平移2个单位长度,再向上平移3个单位长度而得到.(2) 由(1)可知:该函数的图象开口向上,对称轴为直线x =-2;在区间(−∞,−2]上,函数值y 随自变量x 的增大而减小,在区间[−2,+∞)上,函数值y 随自变量x 的增大而增大;函数在x =−2处取得最小值3,y min =3.例2:若函数y =(a −1)x 2+2x +5的图象恒在x 轴的上方,求实数a 的取值范围. 解:当a −1=0时,函数解析式为y =2x +5,此时函数图象为一条直线,不是恒在x 轴的上方,故a ≠1;当a −1≠0时,若函数图象恒在x 轴上方,则有{a -1>0,Δ=4-20(a -1)<0,解得a >65. 综上所述,实数a 的取值范围为a >65. 四、课堂练习1. 判断下列说法是否正确,正确的在它后面的括号里画“√”,错误的画“×”.(1)二次函数y =3x 2的开口比y =x 2的开口要大.(2)要得到y =—(x—2)2的图象,需要将y =—x 2向左平移2个单位长度.(3)二次函数y =ax 2+bx +c(a ≠0)一定有最小值.(4)二次函数y =x 2−2x +1的对称轴为x =—1.2.若抛物线y=x2−(m−2)x+m+3的顶点在y轴上,求m的值.3. 若函数y=x2+2(2a−1)x+2在区间(−∞,7]上y随x的增大而减小,求实数a的取值范围.4. 求函数y=3+2x−x2(0≤x≤3)的最小值.参考答案:1. (1)×(2)×(3)×(4)×解析:由一元二次函数的图象和性质得知.2. m的值为2.解析:因为抛物线y=x2−(m−2)x+m+3的顶点在y轴上,所以顶点的横坐标为−−(m−2)2×1=m−22=0,故m=2.3. (−∞,−3]解析:由一元二次函数的性质知,抛物线y在区间(−∞,7]上y随x的增大而减小,可得−(2a−1)≥7,所以a的取值范围为(−∞,−3].4. 0解析:将一元二次函数y=3+2x−x2配方得y=−(x−1)2+4,因为(0≤x≤3),所以当x=3时,y min=3+6−9=0.故y的最小值为0.五、课堂小结1.一元二次函数的图象变换规律:h决定了二次函数图象的左、右平移,而且“h正左移,h负右移”﹔k决定了二次函数图象的上、下平移,而且“k正上移,k负下移”.图象变换口诀:“上加下减,左加右减”.2. 一元二次函数图象的性质:(1)函数y=a(x−ℎ)2+k的图象是一条抛物线,顶点坐标是(ℎ,k),对称轴是直线x=ℎ.a决定了二次函数图象的开口大小及方向(a>0,图象开口向上,a值越大,开口越小;a<0,图象开口向下,a值越大,开口越大)﹔(2)当a>0,抛物线开口向上;在区间(−∞,ℎ]上,函数值y随自变量的增大而减小;在区间[ℎ,+∞)上,函数值y随自变量的增大而增大;函数在x=ℎ处有最小值,记作y min=k.(3)当a<0,抛物线开口向下;在区间(−∞,ℎ]上,函数值y随自变量的增大而增大;在区间[ℎ,+∞)上,函数值y随自变量的增大而减小;函数在x=ℎ处有最大值,记作y max=k.六、布置作业教材第33页练习第1、2题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:一元二次函数、方程和不等式(衔接课)一、教学设计1.教学内容解析在现行人民教育出版社A版高中数学教材中,“一元二次不等式的解法”这一部分内容安排在《必修5》的第三章第二节,学生高二时才学习,导致高一学生在学习《必修1》的“集合”、“函数”等内容时,有一定的障碍,达不到一定的深度,初高中数学内容衔接不连贯,对于这一部分内容,老师普遍认为应调整到《必修1》之前,或是安排在《必修1》的“集合”之后,“函数”之前比较好.本节课的产生正是基于以上原因,但它并不是一节“一元二次不等式的解法”的新知课,也不是一节复习课,而是一节衔接课,以一元二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.三个“二次”是初中三个“一次”(一元一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.如,解析几何中解决直线与二次曲线位置关系问题,导数中导函数为二次函数时的许多问题等,同时,此部分内容又是培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想的极好素材,本节课的地位和作用主要体现在它的基础性和工具性方面.根据以上分析,本节课的教学重点确定为教学重点:一元二次函数、一元二次方程与一元二次不等式三者之间的关系及应用.2.学生学情诊断本节课的授课对象为华中师大一附中高一平行班学生,华中师大一附中是湖北省示范高中,学生基础很好,一般而言,学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题. 但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律.教学难点:含参数的二次方程、不等式,如何利用三个“二次”之间的关系进行等价转化处理,为今后处理其它类型的函数、方程、不等式问题提供范式.3.教学目标设置(1)理解一元二次函数、一元二次方程及一元二次不等式三者之间的关系;(2)能够用二次函数的观点处理二次方程和二次不等式问题,感悟函数的重要性以及数学知识之间的关联性;(3)引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,能够在本主题的学习中,逐步提升数学抽象、逻辑推理、几何直观和数学运算等核心素养.4.教学策略分析本课作为初高中内容和方法上的“衔接课”,有其重要特点:一不能靠单纯的复习;二不宜上成新课;三,必须展示基本的套路,而又不可能一次到位;四,需要立足于函数、圆锥曲线等核心概念必然联系的高度,着眼于继续学习,而又必须遵循数学的自然顺序,避免后继内容的前移。

这种课的关键是整合和提升,形成基本套路并了解它在进一步学习中的基本价值。

这些都需要问题驱动,循序渐进,在师生互动中不断地归纳总结。

5.教学过程环节一:回顾师:同学们,我们初中学过一元一次不等式,同学们说说这个不等式023>-x 的解集是多少啊?生:32>x . 师:诶,怎么算出来的啊?哪位同学来说说?生:把2移到右边去,再不等式左右两边同时除以3.师:你的解题依据是什么呢?生:不等式的性质.师:很好,请坐,这位同学利用不等式的性质,从代数的角度把这个不等式解出来了,还有其它的解法吗?生:可以先画出一次函数的图象,从图象可以看出不等式的解集.师:好,我们先画图象,怎么画这个函数的图象?生:找两个点.师:找那两个点比较好?生:与坐标轴的交点.师:与x 轴的交点是多少?生:)0,32(. 师:这32是怎么出来的啊? 生:令0=y . 即023=-x ,这个方程的根.师:很好,与x 轴的交点的横坐标恰好是对应一次方程的根. 与y 轴的交点是多少? 生:令0=x . 得2-=y ,交点)2,0(-. 师:所以这个不等式的解集就是?生:32>x ,即图象在x 轴上方时所对应的x 的范围. 师:很好,请坐,由此可以看出一次函数、一次方程和一次不等式三者之间有着密切的联系,谁来概括一下?生:一次方程的根就是一次函数图象与x 轴交点的横坐标(即一次函数的零点), 一次不等式的解集就是一次函数图象在x 轴上方时所对应的x 的范围, 一次方程的根也是一次不等式解集的端点师:同学们再想一想,这三者之间为什么会有关系呢?生:……师:我们从代数表达式来看一看, 一次方程、一次不等式和一次函数,这个三个表达式有什么共同点?^……,都含有一次式,对吧,所以它们之间有关系.【评析】回顾初中知识,利用一次函数的图象理解一次方程和一次不等式. 由三个“一次”,类比引出课题,并为三个“二次”的研究提供思路.环节二:整合师:很好,一次函数、一次方程和一次不等式三者之间有着密切的关系. 我们再来看一下一元二次函数)0(2≠++=a c bx ax y ,一元二次方程)0(02≠=++a c bx ax 、一元二次不等式)0(02≠>++a c bx ax ,)0(02≠<++a c bx ax .师:从它们表达式来看,好像也有相同的部分,是什么呀?……,二次多项式,对吧?那么这三个二次之间是否也有类似三个一次之间的关系呢?这就是我们这节课要研究的内容,首先请同学们画画这个二次函数的图象. (板书课题)画出二次函数322--=x x y 的图象.观看几何画板动画,随着动点C 横坐标x 的变化,纵坐标y 的变化情况.(1) 当x 取哪些值时,0=y ? (2)方程0322=--x x 的根为 ; 当x 取哪些值时,0>y ? 不等式0322>--x x 的解集为 ; 当x 取哪些值时,0<y ? 不等式0322<--x x 的解集为 .问题2:一元二次方程0322=--x x ,一元二次不等式0322>--x x 和一元二次函数322--=x x y ,三者之间有什么关系?动画展示:画一画看一看 说一说 变一变问题3:对于一般的一元二次方程、一元二次不等式和一元二次函数,三者之间有什么关系?小组合作探究:师:二次函数、方程和不等式三者之间有着密切的联系,函数是核心,图象是载体,可以通过函数的观点来处理方程和不等式问题.【评析】以具体的常系数的二次函数、方程、不等式为例,让学生通过类比三个“一次”,理解三个“二次”之间的内在联系,突出二次函数在“三个二次”中的中心地位。

并对一般情形的二次函数、方程和不等式之间的关系进行整合,培养学生的数学抽象、几何直观、逻辑推理等核心数学素养,具体策略是问题驱动,在教学中,鼓励学生自主探索、合作研究. 师:好,对于一个具体的一元二次不等式,我们会求解集,如果反过来,已知不等式的解集,你会求这个不等式吗?同学们思考这样的一个问题:【例1】已知关于x 的不等式02<++c bx x 的解集为)3,1(-,求实数c b ,的值.【评析】逆向变式,强化一元二次函数、方程和不等式的内在联系.生1:依题意,3,1-是对应一元二次方程02=++c bx x 的两根,将1-=x 和3=x 代一元二次函数 一元二次方程 一元二次不等式 图象入方程得,⎪⎩⎪⎨⎧=+⋅+=+-⋅+-0330)1()1(22c b c b ,即⎩⎨⎧=++=++-09301c b c b , 解得⎩⎨⎧-=-=32c b . 生2:依题意,3,1-是对应一元二次方程02=++c bx x 的两根,由韦达定理有⎩⎨⎧=⨯--=+-c b 3131,解得⎩⎨⎧-=-=32c b . 师:很好,请坐. 根据三个“二次”之间的关系,不等式的解集就是函数图象在x 轴下方时,所对应的x 的取值范围,所以3,1-正好是图象与x 轴交点的横坐标,也就是方程02=++c bx x 的两个根,从而根据韦达定理,可以求出c b ,的值. (画图分析)环节三:提升辩证唯物主义告诉我们,任何事物都是运动、变化、发展的,当我们将方程和不等式中常系数改为字母时, 随着字母取值的不同,方程的根和不等式的解会发生相应的变化,这类方程和不等式称为含参方程和含参不等式,下面我们一起来研究两个含参问题.师:我们再把前面那个具体的方程变一下,系数上加一个参数,同学们思考这样的一个问题:【例2】已知关于x 的方程0322=+-ax x ,一根小于1,另一根大于1,求实数a 的取值范围.【评析】含参二次方程问题,继续对二次方程和二次函数进行整合提升,用函数的观点来处理方程问题. 生1:设32)(2+-=ax x x f ,则0)1(<f ,解之得2>a . 师:有不同意见吗?生2:不对,应该还要0>∆.师:诶,生2好像说得很有道理呢?还有其它观点吗?生3:我觉得生1是对的,因为0>∆的作用是控制图象与x 轴有两个交点,而这是开口向上的抛物线,0)1(<f 也能保证与x 轴有两个交点.师,同学们同意哪位同学的说法?生:曾子轩.师:很好,题目要求这个方程的两根,一个小于1,一个大于1,根据函数与方程的关系,方程的根就是函数图象与x 轴交点的横坐标,我们可以通过控制二次函数的图象来控制方程的根,也就是要保证函数图象与x 轴的交点,一个在1的左侧,一个在1的右侧. 只需要0)1(<f ,就可以控制住这个二次函数的图象了,当然如果把0>∆加进去,可不可以?也是可以的. 我们从代数的角度来检验一下,看两种解法的答案是否一样?法1:202-4)1(>⇒<=a a f法2:2330124202-4)1(2>⇒⎩⎨⎧>-<⇒>-=∆>⇒<=a a a a a a f 或. 师:这是一个方程问题,我们可以根据函数与方程的关系将它转化为函数问题来处理. 师:我们再把前面那个具体的不等式也变一下,系数上加一个参数,同学们思考这样的一个问题:【例3】若不等式0322>+-ax x 对任意]3,1[-∈x 恒成立,求实数a 的取值范围. 【评析】含参二次不等式问题,继续对二次不等式和二次函数进行整合提升,用函数的观点来处理不等式问题.组内学生相互讨论,分析解题思路,再让学生先分析.学生分析:只需二次函数32)(2+-=ax x x f ,在]3,1[-∈x 这一段的图象位于x 轴上方,应分三种情况讨论,当对称轴在区间的左边、中间和右边.师:非常不错啊,刘钰欣同学将这个不等式问题等价转化为函数图象问题,只需要函数图象在]3,1[-∈x 这一段的图象位于x 轴上方即可. 如何保证图象在x 轴上方呢?我们边看动画一起来分析.动画展示:随着a 的取值变化,函数图象与x 轴的位置关系.师:当对称轴在区间的左边时,怎么样就能保证图象在x 轴上方?生:只需要0)1(>-f ,师:很好,因为当对称轴在区间的左边时,函数在]3,1[-∈x 这一段的图象是上升的,即y 随着x 的增大而增大,只需要最小值0)1(>-f 即可.师:当对称轴在区间的里面时,怎么样就能保证图象在x 轴上方?生:0<∆.师:还可以通过什么来控制?生:0)(>a f .师:就是函数的最小值大于零即可.师:再来看,当对称轴在区间的右边时,怎么样就能保证图象在x 轴上方? 生:只需要0)3(>f ,师:很好,因为当对称轴在区间的右边时,函数在]3,1[-∈x 这一段的图象是下降的,即y 随着x 的增大而减小,只需要最小值0)3(>f 即可.下面同学们把具体的解答过程写出来,找一个同学上黑板完成具体过程:生:记32)(2+-=ax x x f ,这个函数的对称轴为a x =,则当1-<a 时,只需要024)1(>+=-a f ,解得2->a , 又1-≤a ,所以12-≤<-a ;当31<<-a 时,只需要01242<-=∆a ,解得33<<-a ,又31<<-a , 所以31<<-a ;当3>a 时,只需要0612)3(>-=a f ,解得2<a ,与3≥a 矛盾.综上:32<<-a .师:找个同学来点评一下.生:答案正确,但解题过程有点不对,没有讨论1-=a 和3=a 的情况.师:很好,这两种情况,可以加在哪里比较好.生:加在中间.师:很好,对于含参问题,我们除了要选择恰当的分类讨论标准之外,还应该注意分类讨论还应做到不重不漏..师:好,这是一个不等式问题,我们仍然将它转化为一个函数问题来处理.环节四:展望师:同学们,今天莅临我们课堂的还有一位神秘嘉宾,大家想不想见一下?生:想.师:掌声有请.嘉宾:学弟,学妹们好,首先自我介绍一下,我是现在高三(15)班的刘今欣同学,很高兴走进学弟学妹们的课堂,和大家一起交流、学习.嘉宾:大家都知道一元二次函数是中考的压轴题,那么,我们今天学习的二次函数、二次方程和二次不等式在以后的高中学习中有什么作用呢?课前,陈老师给我布置了一个任务,让我归纳整理一下. 二次函数、二次方程和二次不等式在高中数学其它领域的应用. 其实三个“二次”及其相关问题的处理方法广泛应用于高中数学的各大核心模块:如数列、三角函数、立体几何、解析几何、导数等.下面重点以三个“二次”在解析几何中的应用为例,让同学们对三个“二次”在以后学习中的地位和作用有所了解.【案例1】直线1:+=kx y l 与双曲线1222=-y x C :的右支交于不同的两点B A 、,求实数k 的取值范围.解:联立方程22121y kx x y =+⎧⎨-=⎩,消去y ,得到x 的一元二次方程 .022)2(22=++-kx x k ……①直线l 与双曲线C 的右支交于不同两点,等价于方程①有两个不相等的正实数根.即对应二次函数图象与x 轴有两个交点,且交点在y 轴右侧. 我们可以通过以下几个条件控制二次函数的图象.2222220,(2)8(2)0,20220.2k k k k k k ⎧-≠⎪∆=-->⎪⎪⎨->-⎪⎪>⎪-⎩ 解得k 的取值范围是22k -<<【案例2】(2016年江苏高考第19题)试题和答案如下:已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠.⑴ 设2a =,12b =① 求方程()2f x =的根; ② 若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; ⑵ 略.解:⑴ ① ()122xx f x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=, 则()222210x x -⨯+=,即()2210x -=,则21x =,0x =;② 由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立, 令122x x t =+,则由20x>可得12222x x t ⨯=≥, 原问题等价于不等式2+4t mt -≥0,对任意的t 在),2[+∞上恒成立,记2()+4f t t mt =-,当对称轴02≤m ,即0≤m 时,显然成立; 当对称轴220≤<m ,即40≤<m 时,只需(2)820f m =-≥,即40≤<m ; 当对称轴22>m ,即4>m 时,只需216044m m ∆=-≤⇒-≤≤,与4>m 矛盾; 综上,40≤<m ,所以实数m 的最大值为4.【案例3】(2016年全国Ⅱ卷文科高考第11题)试题和答案如下:函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5 (C )6 (D )7 解:因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5, 以上是最终可以转化为二次函数、二次方程和二次不等式的题目,其实还有更多的考题是考其他类型的方程、不等式问题,也可以用函数的观点,数形结合的思想来处理,如 【案例4】(2016年山东卷文理高考第15题,填空压轴)试题和答案如下:已知函数=)(x f 2,,24,,x x m x mx m x m ⎧≤⎪⎨-+>⎪⎩其中0>m .若存在实数b ,使得关于x 的方程b x f =)(有三个不同的根,则m 的取值范围是_______.解:画出函数图像如下图所示:由图所示,要()f x b =有三个不同的根,需要红色部分图像在深蓝色图像的下方,即2224,30m m m m m m m >-⋅+->,解得3m >时间关系,我暂时只讲这么多,欢迎同学们以后常来找我交流,预祝学弟学妹们早日适应华师一的学习. 也预祝大家在这个顶尖中学度过愉快而又成功的三年高中生活!【评析】结课:从高中数学的核心问题中回望基础,让学生加深对三个“二次”作用的理解,并试图产生对进一步学习的期待.师:很好,谢谢这位学长. 高中数学中的许多问题,都与三个“二次”直接有关或间接有关. 二次函数、二次方程和二次不等式的研究方法为研究其它函数、方程和不等式提供了套路. 以后,对于其它类型的方程和不等式问题,我们仍然可以用函数的观点来处理.师:这里其实还蕴含着一种重要的数学思想方法,同学们说说,是什么?生:数形结合,师:著名数学家华罗庚专为数形结合思想写了一首诗,我们一起来朗诵一下.数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事非。

相关文档
最新文档