高中数学函数的单调性公开课优秀教学设计
函数的单调性市公开课获奖教案省名师优质课赛课一等奖教案

函数的单调性教案一、引入函数的单调性是高中数学中的重要概念,它描述的是函数在定义域上的变化趋势。
在解题中,了解函数的单调性能够帮助我们简化问题,提高解题效率。
本教案将通过详细的讲解和例题分析,帮助学生掌握函数的单调性的概念、判断和应用。
二、概念剖析1. 单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≤ f(x2),则称 f(x) 在定义域上是单调递增的。
2. 单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≥ f(x2),则称 f(x) 在定义域上是单调递减的。
3. 严格单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) < f(x2),则称 f(x) 在定义域上是严格单调递增的。
4. 严格单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) > f(x2),则称 f(x) 在定义域上是严格单调递减的。
三、判断方法1. 导数判断法:对于函数 f(x),通过求导数 f'(x),可以判断函数的单调性。
当 f'(x) > 0 时,函数 f(x) 单调递增;当 f'(x) < 0 时,函数f(x) 单调递减。
2. 一阶差分判断法:对于函数 f(x),通过计算相邻两点之间的函数值差来判断函数的单调性。
当 f(x2) - f(x1) > 0 时,函数 f(x) 单调递增;当 f(x2) - f(x1) < 0 时,函数 f(x) 单调递减。
四、应用示例1. 实例1:判断函数 f(x) = 3x + 2 的单调性。
解析:根据导数判断法,求出函数 f(x) 的导数 f'(x) = 3。
函数的单调性教案()

函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。
教学内容:(1) 引入函数单调性的概念。
(2) 讲解函数单调增和单调减的定义。
(3) 举例说明函数单调性的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。
(2) 采用提问法,引导学生思考函数单调性的含义和应用。
教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。
(2) 讲解函数单调增和单调减的定义,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。
(4) 总结函数单调性的应用,如解不等式、求最值等。
1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。
教学内容:(1) 讲解函数单调性的传递性。
(2) 讲解函数单调性的同增异减性质。
(3) 举例说明函数单调性性质的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的性质。
(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。
教学步骤:(1) 讲解函数单调性的传递性,举例说明。
(2) 讲解函数单调性的同增异减性质,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。
(4) 总结函数单调性性质的应用,如解不等式、求最值等。
第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。
教学内容:(1) 讲解导数与函数单调性的关系。
(2) 讲解利用导数判断函数单调性的方法。
(3) 举例说明利用导数判断函数单调性的应用。
教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。
(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。
教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。
(2) 讲解利用导数判断函数单调性的方法,举例说明。
函数的单调性教案(获奖)

函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。
章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。
2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。
3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。
2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。
3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。
章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。
2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。
3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。
章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。
2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。
3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。
4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。
《函数的单调性》教学设计

《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。
2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。
3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。
二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。
2. 学会利用导数、图像以及定义法判断函数的单调性。
3. 能够运用单调性解决实际问题,提高解决问题的能力。
三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。
2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:笔记本、彩笔、函数图像绘制工具。
五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。
例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。
(2)利用图像:引导学生观察函数图像,判断函数的单调性。
(3)利用定义法:讲解如何利用定义法判断函数的单调性。
4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。
5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。
六、板书设计1. 函数单调性的定义。
2. 单调性的判断方法:导数法、图像法、定义法。
3. 单调性在实际问题中的应用。
七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。
求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。
函数的单调性教案()

函数的单调性教案(优秀)第一章:引言1.1 教学目标了解函数单调性的概念及其在数学中的重要性。
理解单调性对解决实际问题的重要作用。
1.2 教学内容介绍函数单调性的概念。
通过实际例子说明单调性在解决实际问题中的应用。
1.3 教学方法使用多媒体演示和实际例子来讲解函数单调性的概念。
引导学生通过思考和讨论来理解单调性的重要性。
1.4 教学评估通过课堂提问和小组讨论来评估学生对函数单调性的理解程度。
第二章:函数单调性的定义与性质2.1 教学目标理解函数单调性的定义及其性质。
学会判断函数的单调性。
2.2 教学内容介绍函数单调性的定义。
讲解函数单调性的性质,如单调递增和单调递减。
2.3 教学方法使用数学定义和示例来解释函数单调性的概念。
引导学生通过自主学习和小组讨论来掌握函数单调性的性质。
2.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性定义和性质的理解程度。
第三章:函数单调性的应用3.1 教学目标学会使用函数单调性解决实际问题。
理解函数单调性在数学和其他领域中的应用。
3.2 教学内容介绍函数单调性在解决实际问题中的应用。
讲解函数单调性在其他领域中的应用,如经济学和物理学。
3.3 教学方法使用实际例子和应用问题来展示函数单调性的使用。
引导学生通过思考和讨论来理解函数单调性在实际问题中的应用。
3.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性应用的理解程度。
第四章:函数单调性的证明4.1 教学目标学会使用数学方法证明函数的单调性。
理解证明函数单调性的重要性和方法。
4.2 教学内容介绍证明函数单调性的方法和技巧。
讲解不同类型的函数单调性证明。
4.3 教学方法使用示例和练习来讲解证明函数单调性的方法。
引导学生通过自主学习和小组讨论来掌握证明函数单调性的技巧。
4.4 教学评估通过课堂练习和小组讨论来评估学生对证明函数单调性的理解程度。
5.1 教学目标拓展对函数单调性的深入理解。
5.2 教学内容介绍函数单调性的进一步研究和发展。
《函数的单调性》教学设计[合集5篇]
![《函数的单调性》教学设计[合集5篇]](https://img.taocdn.com/s3/m/36edcbafd5d8d15abe23482fb4daa58da1111c4f.png)
《函数的单调性》教学设计[合集5篇]第一篇:《函数的单调性》教学设计《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标(1)知识与技能目标:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;(2)过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.三、教法学法分析教法分析:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.学法分析:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.四、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答. [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,这一情形进行描述.引导学生回答:对于自变量8<10,f(t1)=1,t2=10时,f(t2)=4”对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1<t2时,是否都有f(t1)<f(t2)呢? [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当x1<x2时,都有f(x1)<f(x2)”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明f(x)=1在区间(0,+ ∞)上是单调减函数.x[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念 [教师活动]给出一组题:1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R 上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(x)满足f(1+a)<f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P29例1、2(2)书面作业:必做:教材作业选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数b的值唯一吗?探究:函数y=x在定义域内是增函数,函数y=1有两个单调减区间,由这两个基本函x数构成的函数y=x+1的单调性如何?请证明你得到的结论.x[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.五、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.第二篇:函数单调性教学设计函数单调性教学设计关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。
函数单调性教学设计

函数的单调性教学设计一、教学内容解析1.教材内容及地位《函数单调性》是高中数学新教材必修一第三章第二节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力. 因此,它是高中数学核心知识之一,是函数教学的战略要地。
2.教学重点函数单调性的概念,判断和证明简单函数的单调性。
3.教学难点归纳抽象函数单调性的定义以及根据定义证明函数的单调性.二、学生学情分析1.从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。
2.从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。
3.从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。
函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心理是学生学好本节课的情感基础。
但是如何运用数学符号将自然语言的描述提升为形式化的定义,学生接受起来比较困难?在教学中要多引导,让学生真正的理解函数单调性的定义。
三、课堂教学目标1.知识目标:理解函数单调性的相关概念。
高中《数学》函数的单调性教学设计学情分析教材分析课后反思

《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教学内容分析:
函数的单调性是学生在掌握了函数的概念,函数的表示方法等基础知识后,学习的函数的第一个性质,主要刻画了函数在其定义域内某区间上图像(上升或下降)的变化趋势,为进一步学习函数其它性质提供了方法依据,如在研究函数的值域、最大值、最小值等性质中有着重要应用,而且在解决比较数的大小、解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。
同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。
所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。
二、教学目标设置:
(一)知识与技能:
1.用准确的数学语言归纳、抽象概括增函数和减函数的定义,并能正确理解单调性的定义;
2.利用图像和定义判断函数的单调性,能正确书写单调区间,并能用单调性定义证明函数在给定区间上的单调性;
3.培养学生抽象概括能力、类比化归能力及数形结合思想方法的运用能力。
(二)过程与方法:
1. 通过学生熟悉的现实问题创设情境,引出本节课题函数单调性,同时借助多媒体的直观演示,让学生观察图像(上升?下降?)变化趋势,过渡到在区间上用自变量x和相应函数f(x)的变化进行语言表述;
2.设置问题引导学生自主探究、尝试、归纳、总结,师生互相讨论交流,最终形成严格的数学概念;
3.形成概念后,引导学生自主探究,通过生生互动,师生互动,达到让学生从多种形式认识概念的本质含义,从而加深学生对概念的理解;巩固练习问题(1)为了加深学生对单调性定义中自变量取值“任意”性的理解,是一个很好的问题;问题(2)的变式题体现了“逆向思维”,深化对定义的理解;问题(3)通过教师的引导,针对于数学基础较好、思维较为活跃的一部分学生,对判断方法进行适当的深入和拓展,加深学生对单调性定义的更
深层次的理解,同时也为在高三阶段利用导函数研究函数的单调性奠定了良好的知识基础;
4.知识应用部分,首先师生合作完成用单调性定义证明一个一次函数单调性,让学生初步体会用符号语言刻画单调性的代数描述过程,然后由教师演示实验(教材中的例题2)让学生直观感知压强和体积的关系,培养了学生数学建模思想和在物理问题中应用数学知识解决问题的能力,最后让学生运用本节课所学知识进行单调性判定和证明,使学生能够学以致用.
(三)情感态度与价值观:
创设情境引出课题,让学生充分认识到数学源于生活,又能应用于生活,进而激发学生自主学习和主动探究的学习兴趣;在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认知的提升;在概念应用阶段,通过对定义法证明单调性过程的具体分析,以及证明过程的严格板书,帮助学生掌握用定义证明函数单调性的方法和步骤,培养学生清晰地思维、严谨的数学推理能力;最后先由学生自己独立完成再进行小组合作交流,展示自己用单调性定义证明函数单调性的全过程,培养了学生运用所学知识解决实际问题的能力,增强了学生学好数学的信心.
三、学生学情分析:
本班学生的数学基础和学习能力存在差异,学生在认知过程中主要存在两个方面的困难:第一,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言进行描述,比如把定义域内某区间上“随着x 的增大,相应的函数值)(x f 也随着增大”(单调递增)这一特征用该区间上“任意的21x x <,都有)()(21x f x f <”进行刻画,其中最难理解的是为什么要在区间上“任意”取两个大小不等的1x ,2x ;第二,利用定义证明函数的单调性过程中,
对学生在代数方面严格推理能力的要求较高,教师应该给以适时的点拨和纠正.
四、重难点:
重点:1. 函数单调性的概念;2.判断和证明函数的单调性. 难点:理解函数单调性的概念
五、教学策略分析:
1. 多媒体演示创设情境,让学生通过观察气温变化曲线图的变化趋势,完成对单调性直观上的一种认识,为概念的引入提供了必要性,并让学生带着问题(什么是函数的单调性?)进入新课;
2. 问题串引导学生探究式学习法,小组合作和自主探究相结合,问题作引导,引发积极思考;
3.实验器材的恰当使用,提高了课堂的趣味性,丰富了学生的直观感受;
4.多媒体展示和学生板演相结合,提高课堂效率的同时兼顾解答的规范性.
六、教学过程:
(一)创设情境,引入新知
第一,先观察一个图形(函数)
(通过多媒体给出承德今年8月8日气温变化曲线图)
师:同学们和我一起来观察承德今年8月8日的气温曲线图,如果用函数观点来分析,设时间为t,温度为T,这条曲线表达的是关于这两个变量的函数关系吗?为什么?
(学生回答,教师结合学生回答追问:如果设时间t为自变量,能从图中得出自变量的变化范围吗?师追问:这个函数的定义域及它的对应关系)
【设计意图】回归函数定义,教师总结:该曲线反映了气温T 随时间t的变化规律,在区间[0,24]内每给一个时间t的值,根据图象都有唯一确定的温度T与之对应,是一个函数.
师:观察图象,结合已学过的函数观点,你能说出这一天的气温变化规律吗?
(学生独立思考5秒后回答)
预案:⑴当天的最高气温,最低气温及何时达到;⑵某些时段温度升高,某些时段温度降低
(师追问:最高气温和最低气温是在什么范围研究的?结合学生回答给以及时评价;如果在定义域内一部分一部分地研究,你又会发现什么规律?学生补充)。