1-催化裂解工艺技术(DCC)1
石油裂解

石油裂化和裂解在石油化工生产过程里,常用石油分馏产品(包括石油气)作原料,采用比裂化更高的温度(700〜800C,有时甚至高达1000C以上),使具有长链分子的烃断裂成各种短链的气态烃和少量液态烃,以提供有机化工原料。
工业上把这种方法叫做石油的裂解。
所以说裂解就是深度裂化,以获得短链不饱和烃为主要成分的石油加工过程。
石油裂解的化学过程是比较复杂的,生成的裂解气是一种复杂的混合气体,它除了主要含有乙烯、丙烯、丁二烯等不饱和烃外,还含有甲烷、乙烷、氢气、硫化氢等。
裂解气里烯烃含量比较高。
因此,常把乙烯的产量作为衡量石油化工发展水平的标志。
把裂解产物进行分离,就可以得到所需的多种原料。
这些原料在合成纤维工业、塑料工业、橡胶工业等方面得到广泛应用。
定义:裂化(cracking )就是在一定的条件下,将相对分子质量较大、沸点较高的烃断裂为相对分子质量较小、沸点较低的烃的过程。
单靠热的作用发生的裂化反应称为热裂化,在催化作用下进行的裂化,叫做催化裂化。
裂解是石油化工生产过程中,以比裂化更高的温度(700r〜800r,有时甚至高达i000r以上),使石油分馏产物(包括石油气)中的长链烃断裂成乙烯、丙烯等短链烃的加工过程。
裂解(pyrolysis )是一种更深度的裂化。
石油裂解的化学过程比较复杂,生成的裂解气是成分复杂的混合气体,除主要产品乙烯外,还有丙烯、异丁烯及甲烷、乙烷、丁烷、炔烃、硫化氢和碳的氧化物等。
裂解气经净化和分离,就可以得到所需纯度的乙烯、丙烯等基本有机化工原料。
目前,石油裂解已成为生产乙烯的主要方法。
裂化分类:(1)热裂化:热裂化是在热的作用下(不用催化剂)使重质油发生裂化反应,转变为裂化气(炼厂气的一种)、汽油、柴油的过程。
热裂化原料通常为原油蒸馏过程得到的重质馏分油或渣油,或其他石油炼制过程副产的重质油[1]。
在400〜600C,大分子烷烃分裂为小分子的烷烃和烯烃;环烷烃分裂为小分子或脱氢转化成芳烃,其侧链较易断裂;芳烃的环很难分裂,主要发生侧链断裂。
石科院介绍

中国石油化工股份有限公司石油化工科学研究院北京市海淀区学院路18号中国石油化工股份有限公司石油化工科学研究院(以下简称石科院)是中国石化直属的石油炼制与石油化工综合性科学技术研究开发机构创建于1956年。
石科院以石油炼制技术的开发和应用为主,注重油化结合,兼顾相关石油化工技术的研发。
近年加强了在新型替代燃料和新能源领域的创新,正在向全方位的以炼油为主、油化结合的能源型研发机构转变。
多年来,石科院在技术创新方面既重视与企业和设计单位的合作,注重市场拉动的作用又十分重视开展导向性基础研究和应用基础研究,积累科学知识和工艺、工程经验,发挥知识创新对技术创新的推动作用。
目前,石科院拥有从原油评价到各项炼油工艺技术及催化剂开发,直到石油产品研制和评价的全炼油厂成套技术的开发实力和研发优势。
科研业务领域包括:清洁汽/煤/柴油生产技术、劣质和重质原油加工技术、油化结合技术、芳烃生产技术、石油产品生产技术、石油化学品生产技术、石油替代资源研究、炼化技术基础、计算机技术应用以及分析测试等配套技术共十个方面。
石科院下设17个研究部门,拥有一支综合技术优势突出的科研队伍,目前职工总数为1246人,各类技术人员959人。
其中,中国科学院、中国工程院院士6人,教授级高级工程师114人,高级技术人员468人;博士237人,硕士272人。
拥有近千套中小型炼油和石油化工试验装置及各种化学分析仪器,涉及炼油工艺、石油化工、精细化工和添加剂以及油品应用研究等领域。
石科院有炼油工艺与催化剂国家工程研究中心、石油化工催化材料与反应工程国家重点实验室、国家能源石油炼制技术研发中心、中国石化润滑油评定中心、中国石化水处理技术服务中心、中国石化生物液体燃料重点实验室、中国石化重(劣)质油及非常规油气资源炼制技术重点实验室等机构。
是全国石油产品标准化归口单位,是国家石油产品质量监督检验中心、中国石油学会石油炼制分会的挂靠单位,是《石油学报》、《石油炼制与化工》和英文版的《China Petroleum Processing and Petrochemical Technology》3个科技期刊的编辑、出版单位。
催化裂解工艺(DCC)

催化裂解工艺(DCC)1.工艺原理:催化裂解工艺(DCC)是以重质油为原料、利用择形催化反应制取气体烯烃的新技术。
其中催化裂解Ⅰ型(DCC-Ⅰ)以生产最大量丙烯为主要目的,催化裂解Ⅱ型(DCC-Ⅱ)以生产最大量异丁烯和异戊烯、兼产丙烯和高辛烷值优质汽油为目的。
它们所加工的原料可以是蜡油、蜡油掺渣油或二次加工油以及常压渣油,实现了炼油工艺向石油化工的延伸,开创了一条以重质油为原料直接制取低碳烯烃的新途径,达到国际先进水平。
由于目的产品不同,DCC-Ⅰ和DCC-Ⅱ两者采用的反应器型式、催化剂类型和工艺操作条件都不相同,其差别列于表1。
从表1可见,DCC-Ⅱ的反应时间、反应温度、剂油比及注水量均低于DCC-Ⅰ。
表1:DCC-Ⅰ和DCC-Ⅱ工艺的主要差别DCC-ⅠDCC-Ⅱ反应器型式提升管十床层提升管催化剂CRP CIP反应温度,℃540-580500-530剂油比9-156-9注水量,m%15-256-10产品分布,m%H2~C211.91 5.59C3~C442.2234.49C5+汽油26.6039.00柴油 6.609.77重油 6.07 5.84焦炭 6.00 4.31损失0.60 1.00合计100.00100.00烯烃产率,m%丙烯21.0314.29总丁烯14.0314.65异丁烯 5.13 6.13总戊烯--9.77异戊烯-- 6.77异丁烯/总丁烯0.360.42异戊烯/总戊烯--0.69汽油性质RONC99.396.4MONC84.782.5催化裂解利用择形催化反应原理,将重质原料油选择性裂化成低碳气体烯烃,其丙烯产率是常规FCC的3倍以上。
异丁烯和异戊烯产率也达到FCC的3倍以上。
催化裂解工艺开辟了一条制取低碳烃的新途径。
1.1催化裂解的一般特点①催化裂解是碳正离子反应机理和自由基反应机理共同作用的结果,其裂解气体产物中乙烯所占的比例要大于催化裂化气体产物中乙烯的比例。
②在一定程度上,催化裂解可以看作是高深度的催化裂化,其气体产率远大于催化裂化,液体产物中芳烃含量很高。
新一代增产丙烯DCC工艺催化剂DMMC-1的工业应用

收 稿 日期 :0 70 —1 2 0 —53 。 作 者 简 介 : 晓华 , 级 工 程 师 , 业 于 厦 门大 学 催 化 专 业 , 黄 高 毕 现 在 中 国石 化 安 庆 分 公 司炼 油 一 部 工 作 。
过进行 催化剂制备技 术创新并引入新 型催化材料 , 该
催化剂具有 多产丙烯和降低 汽油 中烯烃含量的特点 。
布, 降低 反应 物分 子 向活 性 中心 扩 散 的传 质 阻力 ,
有 利 于裂 化 中问产 物进 行 深度 裂化 和裂解 。 实 现 D C反应 的重 要组 成部 分 是控 制深度 裂 C
D C装 置 上 使 用 。本 文 主 要 介 绍 D C MMC l催 化 —
剂 的性 能特点 、 业 试验 情况及 标定 结果 。 工 2 D MC 1催 化 剂 的 性 能 特 点 M -
表 1 DCC 原 料 分 子 动 力 学 直 径 及 适 于 发 生 裂 化 反 应 的
催 化裂 解 ( C ) 艺是来自石 油 化 工科 学 研 究 院 D C 工 ( 以下 简称 石科 院 ) 究 开发 的一 种 以重质 油 为原 研
催化裂解制乙烯的工艺

催化裂解制乙烯的工艺
催化裂解制乙烯是一项常见的化学工艺,该工艺通过使用不同的
催化剂和反应条件来生产乙烯。
以下是该工艺的步骤:
第一步:准备原料
催化裂解制乙烯的原料通常是原油或天然气。
这些原料在进入反应器前,需要先经过预处理,包括脱水、脱硫等处理,以减少对催化剂的
影响。
第二步:通入反应器
经过预处理的原料被通入反应器中。
反应器通常是一个沸腾床反应器
或流化床反应器,其中含有催化剂。
第三步:反应催化
反应器中的催化剂将原料分解成较小的分子,其中包括乙烯和一些低
碳烃。
这些低碳烃进一步分解,产生更多的乙烯和碳质产物。
第四步:分离和回收
反应器中的产物需要经过分离,以得到单纯的乙烯或乙烯的混合物。
一般使用几个不同的分离步骤来达到最高的分离效率。
典型的分离步
骤包括闪蒸和精馏,将乙烯和其它低碳烃分离开来。
分离后的乙烯可
以被收集和包装。
第五步:处理废料
反应器中产生的废料需要经过处理,以便回收可以回收的原材料。
回
收的原材料可以经过重新处理以获得更高的产量。
催化裂解制乙烯的工艺是一项高效的化学工艺,可以生产大量的
乙烯,用于制造塑料、橡胶、化学品和其他材料。
该工艺需要使用高
质量的催化剂和精密的操作来确保生产出的乙烯的质量和产量。
此外,处理废料也是一个关键的步骤,以确保工艺的可持续性和环境友好性。
催化裂化新工艺技术问答

催化裂化新工艺1、什么是ROCC-V型重油催化裂化技术?ROCC-V型重油催化裂化装置反应-再生系统结构简图如图所示,反应-再生系统采用同轴式布置,自上而下依次是沉降器、第一再生器和第二再生器。
第一再生器采用常规再生方式,第二再生器采用完全再生方式。
二再含氧烟气通过特殊设计的分布器全部进入一再床层,二再烟气中过剩氧参与一再烧焦使氧气得到充分利用,以降低主风单耗。
为了提高一再烧焦效果,在一再上采用了待生催化剂均配技术。
再生器采用内、外结合的取热技术。
反应提升管采用高效喷嘴、预提升段和快速终止反应设施。
提升管出口采用:“直联”对口软连接技术。
反应沉降器内部设置粗旋及单级旋风分离器。
反应汽提段采用高效汽提技术。
ROCC-V型重油催化裂化技术在青岛石油化工厂 1.0Mt/a催化裂化装置上进行了工业放大试验,达到了预期的目标。
用残炭为 2.99%的蜡油及渣油混合进料时,轻质油收率为71.98%,液化石油气收率为10.88%,干气产率为3.23%(包括损失),汽油辛烷值(RON)为90.2,轻柴油十六烷值为33。
试运行中,装置运行平稳,反应-再生系统调节自如,再生剂含炭低。
2、ROCC-V型重油催化裂化技术的特点是什么?ROCC-V型重油催化裂化技术的特点是:(1)耗风量少,再生剂定炭低,可适应大比例掺炼渣油的要求。
二再含过剩氧的烟气可在一再进一步利用,而且,一再采用常规再生,因而耗风量少。
在青岛石油化工厂1.0Mt/aROCC-V型装置的设计耗风指标为每千克焦耗风(标准状态)9.6m3,工业示范装置运行已经达到每千克焦耗风(标准状态)8.8m3,主风机组、再生器和三旋等再生系统的投资可以大幅度降低。
另外,再生催化剂定炭可达到0.05%以下。
(2)合理布置沉降器、一再、二再(三器)之间的位置,尽量降低三器总高度。
沉降器顶切线标高仅为58.1m。
与国外类似的两段逆流再生工艺相比,两器总高度降低约15m左右,减少了反应油气在高温下的停留时间。
催化裂化工艺流程简述

催化裂化工艺流程简述催化裂化工艺是炼油工业中最重要的生产工艺之一,其主要目的是将原油分解成较小的石油产品,如汽油、柴油和石蜡等。
下面将详细介绍催化裂化工艺的流程。
首先,原油在经过预热后进入预分离器。
预分离器的作用是将原油分离成气态、液态和固态组分。
气态组分主要是轻质油气,液态组分是重油和油脂,而固态组分主要是沥青和杂质。
然后,气态组分进入催化裂化器,该装置包含了催化剂床。
催化剂是由稀土和金属组成的固体颗粒,其具有促进油品分解反应的催化作用。
气态组分在催化剂床上通过催化剂时,原油中的长链烃分子会被分解成较短的分子链。
这个过程是通过裂解反应实现的,主要是通过热裂解和催化裂解两种方式。
催化裂化的裂解反应需要一定的温度和压力条件。
通常,裂化温度在480至540摄氏度之间,压力大约在1.5至3.5兆帕之间。
此外,还需要适量的氢气作为反应介质,以提高催化裂化过程的效果。
在裂解过程中,长链烃分子被分解为较短的分子链,并产生了大量的烃气。
这些烃气通过催化裂化反应器床顶部的气体出口进入分离器,以将轻质油气和重质油气进行分离。
分离后的轻质油气进一步冷凝成液体石油产品,如汽油和柴油。
而重质油气则返回到催化裂化器进行进一步的分解。
最后,经过一系列分离、冷凝和脱硫处理的液体石油产品被收集和储存。
而废气中的硫化氢、氯化氢等有害气体会进行处理,以保护环境。
总的来说,催化裂化工艺是一种高效且经济的原油加工工艺,可以将原油转化为各种石油产品。
其具有重要的意义,可以满足社会对汽油、柴油等石油产品的需求。
通过合理控制工艺参数,优化催化剂的选择和管理,可以进一步提高催化裂化工艺的效果,实现更高的产量和更好的产品质量。
因此,催化裂化工艺在炼油工业中具有重要的应用价值。
重质油催化裂化工艺

重质油催化裂化工艺
一、催化裂解工艺(DCC-Ⅰ、DCC-Ⅱ、DCC-III)
【Deep Catalytic Cracking】:重质油为原料,固体酸择型分子筛催化剂,缓和条件下进行裂化反应。
二、多产液化气和高辛烷值汽油催化转化工艺技术(MGG、ARGG 和MIP)
【Maximum Gas&Gasoline】:重质油为原料,RMG催化剂和工艺条件,大量生产液化气,特别是C3和C4烯烃和高辛烷值汽油。
【Atmospheric Residuum Maximum Gas&Gasoline】:常压重油多产液化气及汽油。
三、多产异构烯烃(MIO)催化裂化新技术
【Maximum Iso-Olefin】:重质馏分油和减压渣油,RFC专用催化剂,多产异构烯烃(异丁烯和异戊烯)和高辛烷值汽油。
四、重油制取乙烯和丙烯的催化热裂解工艺(CPP)
五、多产液化气和柴油(MGD)催化裂化技术
六、催化裂化吸附转化加工焦化蜡油(DNCC)工艺技术
七、大庆全减压渣油VRFCC催化裂化工艺技术
八、洛阳工程公司开发的降烯烃多产液化气和丙烯的FDFCC-I、FDFCC-II、FDFCC-III技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
催化裂解技术(DCC)
中国石化石油化工科学研究院
1 前言
丙烯是仅次于乙烯的重要化工原料,目前全球对丙烯的需求快速增长,甚至超过了对乙烯需求的增长速度。
作为蒸汽裂解副产物的丙烯已经不能满足市场需求,因而石化/炼油行业正积极研发增产丙烯的方法。
中石化开发的DCC技术突破了常规催化裂化(FCC)的工艺限制,可成倍地增加丙烯产率,已引起国际石化/炼油行业的广泛关注。
2 工艺描述
DCC是重质原料油的催化裂解技术,它的原料包括减压瓦斯油(VGO)、减压渣油(VTB)、脱沥青油(DAO)等,它的产品包括可作为化工原料的轻烯烃、液化气(LPG)、汽油、中馏分油等。
它的主要目标是最大量生产丙烯(DCC-Ⅰ)或最大量生产异构烯烃(DCC-Ⅱ)。
该技术突破了常规催化裂化(FCC)的工艺限制,丙烯产率为常规FCC的2~3倍。
其工艺流程与FCC基本相似,包括反应-再生系统、分馏系统以及吸收稳定系统。
原料油经蒸汽雾化后送入提升管加流化床(DCC-I型)或提升管(DCC-II)反应器中,与热的再生催化剂接触,发生催化裂解反应。
反应产物经分馏/吸收系统,实现分离、回收。
沉积了焦炭的待生催化剂经蒸汽汽提后送入再生器中,用空气烧焦再生。
热的再生催化剂以适宜的循环速率返回反应器循环使用,并提供反应所需热量,实现反应-再生系统热平衡操作。
反再系统的原则流程示于图1。
图1 DCC技术反应-再生系统工艺流程
3 技术特点
图2 DCC装置及其联合体的流程简图
3.1 技术优势及特点
· DCC装置的反应系统有流化床(DCC-I型,最大量丙烯操作模式)或提升管(DCC-II,
最大量异构烯烃操作模式)两种型式,可以加工多种重质原料,并特别适宜加工石蜡基原料,丙烯产率可达20wt%。
所产汽油可作高辛烷值汽油组分,中馏分油可作燃料油组分。
·使用配套的、有专利权的催化剂,反应温度高于常规FCC,但远低于蒸汽裂解。
·操作灵活,可通过改变操作参数转变DCC运行模式。
·该工艺过程虽有大量气体产物,但仍可采用分馏/吸收系统,实现产品的分离,回收,而不需用蒸汽裂解制乙烯工艺中所使用的深冷分离。
·烯烃产品中的杂质含量低,不需要加氢精制。
DCC主要设备和工艺参数的特点及与FCC的比较列于表1,DCC装置的配置见图2。
表1 DCC和常规FCC的对比
3.2 性能指标
裂解反应中的一个重要参数是反应温度。
DCC采用配套的专用催化剂,可降低裂解反应所需要的能量,故所需反应温度比蒸汽裂解低得多。
DCC的反应温度随原料的裂化性能和所需产品分布而变化,一般适宜的温度为520~580℃,其中DCC-Ⅰ模式取高限,DCC-Ⅱ模式取低限。
原料的裂化性能对反应参数和产品产率有显著影响,高K值和高氢含量原料的低碳烯烃产率较高。
几种典型原料按DCC-Ⅰ和DCC-Ⅱ模式运行的烯烃产率分别列于表2和3。
表2 不同原料DCC-Ⅰ的低碳烯烃产率
表3 不同原料DCC-Ⅱ的低碳烯烃产率
3.3 安全环保
DCC装置在生产过程产生的污水、废气、废渣、粉尘、噪音等与常规催化裂化装置的相当,采取的治理措施相似。
4 催化剂
已开发出一系列DCC配套使用的专有催化剂,以适应不同需要,如最大量丙烯生产、最大量异构烯烃生产、最大量原料掺渣油量等,见表4。
新一代MMC催化剂系列已在多套DCC 装置上成功应用。
应用结果表明,与以前开发的催化剂相比,丙烯选择性及丙烯产率均较高。
MMC-1和MMC-2催化剂的性质列于表5。
表4 DCC用催化剂系列
表5 MMC催化剂的性质
5 经济性
为了评价和量化炼油装置向石油化工延伸的经济性,采用Haverly Systems GRTMPS建立了一个典型的美国墨西哥海湾沿岸炼油厂的线性规划模型。
基准方案是一个典型的常规FCC 燃料生产模式。
第二方案同基准方案的构型,但FCC按多产化学品操作,并由模型决定最获利的产品构成。
第三个方案为石化操作模式,FCC按DCC-I模式运行。
该研究的基本模型包括典型的、与所有美国墨西哥海湾沿岸炼油厂的平均值相一致的工艺设备。
单个工艺设备的处理量按10万桶原油/天折算。
模型评价结果列于表6。
方案二与方案三相比,丙烯和对二甲苯产量分别增加了182.7%和15.0%,但优级和普通汽油产量分别减少了4.5%和4.9%。
经济分析表明,方案三有94129美元/天的收益。
表6 DCC与FCC产品对比
6 应用业绩
1990年DCC技术首次实现工业应用,迄今共有9套装置运行,总加工能力达到358万吨/年,其中单套装置最大能力为80万吨/年。
一套能力为450万吨/年的DCC装置将于2008
年建成。
7 技术服务
可提供工艺基础设计或承包交钥匙工程,以及相关的技术咨询、人员培训、现场开工等服务。
也可单独提供有关催化剂及相关的技术服务,包括催化剂的再生等。