函数的概念学案
高一数学学案 函数的概念.定义域.值域

3.1 .1函数的概念.定义域.值域 课前案1.目标导航: (1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念;(2)体会集合语言和对应关系在刻画函数概念中的作用; (3)了解构成函数的要素,能求简单函数的定义域。
2.问题导引:问题1:某-“复兴号”高速列车加速到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km/h )与运行时间(单位:h ) 的关系可以表示为什么?问题2:某电气维修公司要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?思考:以上两个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系? 两个实例有什么共同点?3,路径导学: (1))函数的定义:设集合A 、B 是 ,如果对于集合A 中的 ,按照某种确定的对应关系f ,在集合B 中都有的数y 与它对应,那么就称 一个函数,记作 ,其中x 叫做 , 取值的范围(数集A )叫做这个函数的 .与x 的值相对应的y 值叫做 ,函数值的集合 叫做函数的(2)确定一个函数需要两个要素: 和 (3)、区间及写法:设a 、b R ∈ ,且a<b ,则:满足不等式a x b ≤≤的实数x 的集合叫做 ,表示为 ______ ;满足不等式a x b <<的实数x 的集合叫做 ___ ,表示为 ;满足不等式a x b a x b ≤<<≤或的实数x 的集合叫做 _____ ,表示为 _____ ___、_______ ; 符 号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。
分别满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别表示为 、、 、 。
高中数学第一章集合与函数的概念1函数及其表示复习学案1

1。
2 函数及其表示自主复习考点清单:函数的概念与函数的定义域; 函数的表示; 分段函数及映射.考点详情:重点一:函数的概念 1.函数的概念设B A ,是非空数集,如果按照某种对应关系f ,使集合A 中任意一个数x ,在集合B 中存在唯一确定 的数)(x f 与之对应,则称)(x f 为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(。
函数的定义域、值域:在函数A x x f y ∈=),(中,x 叫自变量,x 的取值范围叫函数的定义域,与x 的值对应的值y 叫函数值,函数值的集合}|)({A x x f ∈叫函数的值域,显然值域是B 的子集。
2.函数的三要素:定义域、值域、对应法则 3.区间:区间是数学中表示“连续”的数集的一种形式。
设a ,b 是两个实数,而且a <b 。
我们规定:(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b];(2)满足不等式a<x<b的实数x的集合叫做开区间,表示为(a,b);(3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,分别表示为[a,b),(a,b]。
这里的实数a与b都叫做相应区间的端点.其中a叫做左端点,b 叫做右端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”。
我们可以把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为[a,+∞),(a,+∞),(-∞,b],(-∞,b)。
区间的几何表示如下表所示:4.具体函数定义域的求法函数的定义域是自变量x的取值范围,如果未加特殊说明,函数的定义域就是指使函数关系式有意义的x的取值范围,但在实际问题中,函数的定义域还要受到实际意义的制约。
(1)求具体函数定义域的原则和方法主要有:①若f(x)为整式,则其定义域为实数集R。
②若f(x)是分式,则其定义域是使分母不等于0的实数的集合。
③若f(x)为偶次根式,则其定义域是使根号内的式子大于或等于0的实数的集合。
高中数学第二章函数概念与基本初等函数I函数的概念函数的概念名师导航学案苏教版

2。
1 函数的概念和图象2.1。
1 函数的概念名师导航知识梳理1.函数的概念设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有__________的数f (x)和它对应,那么就称f:A →B 为从集合A 到集合B 的函数,记作y=f (x),x ∈A.其中x 叫__________,x 的取值范围A 叫做函数y=f (x )的__________;与x 的值相对应的y 的值叫做函数值,函数值的集合{f(x )|x ∈A }(⊆B )叫做函数y=f(x )的__________。
函数符号y=f (x)表示“y 是x 的函数",有时简记作函数__________。
(1)函数实际上就是集合A 到集合B 的一个特殊对应f:A →B ,这里A ,B 为__________的数集.(2)A:定义域;{f(x )|x ∈A}:值域,其中{f(x )|x ∈A}__________B ;f :对应法则,x ∈A,y ∈B.(3)函数符号:y=f (x )↔y 是x 的函数,简记f(x).2。
已学函数的定义域和值域(1)一次函数f (x )=ax+b(a ≠0):定义域为__________,值域为__________;(2)反比例函数f(x )=xk (k ≠0):定义域为__________,值域为__________; (3)二次函数f (x)=ax 2+bx+c (a ≠0):定义域为__________,值域:当a 〉0时,为__________;当a 〈0时,为__________。
3。
函数的值:关于函数值f(a )例:f (x)=x 2+3x+1,则f(2)= __________.4。
函数的三要素:对应法则f 、定义域A 和值域{f(x )|x ∈A}.只有当这三要素__________时,两个函数才能称为同一函数。
疑难突破有关函数概念的理解剖析:(1)如果一个函数需要几条限制时,那么定义域为各限制所得x 的范围的交集。
3.1.1(第1课时)函数的概念 学案(含答案)

3.1.1(第1课时)函数的概念学案(含答案)3.13.1函数的概念与性质函数的概念与性质33..1.11.1函数及其表示方法函数及其表示方法第第11课时课时函数的概念函数的概念学习目标1.在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念.2.体会集合语言和对应关系在刻画函数概念中的作用.3.了解构成函数的要素,能求简单函数的定义域和值域.知识点一函数的有关概念函数的定义给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数函数的记法yfx,xA定义域x 称为自变量,y称为因变量,自变量取值的范围即数集A称为函数的定义域值域所有函数值组成的集合yB|yfx,xA称为函数的值域知识点二同一个函数一般地,函数有三个要素定义域,对应关系与值域如果两个函数表达式表示的函数定义域相同,对应关系也相同,则称这两个函数表达式表示的就是同一个函数特别提醒两个函数的定义域和对应关系相同就决定了这两个函数的值域也相同思考定义域和值域分别相同的两个函数是同一个函数吗答案不一定,如果对应关系不同,这两个函数一定不是同一个函数1任何两个集合之间都可以建立函数关系2已知定义域和对应关系就可以确定一个函数3若函数的定义域只有一个元素,则值域也只有一个元素4函数yfxx2,xA与uftt2,tA表示的是同一个函数一.函数关系的判断例11多选下列两个集合间的对应中,是A 到B的函数的有AA1,0,1,B1,0,1,fA中的数的平方BA0,1,B1,0,1,fA中的数的开方CAZ,BQ,fA中的数的倒数DA1,2,3,4,B2,4,6,8,fA中的数的2倍答案AD解析A选项121,020,121,为一一对应关系,是A到B的函数B选项00,11,集合A中的元素1在集合B中有两个元素与之对应,不符合函数定义,不是A到B的函数C选项A中元素0的倒数没有意义,不符合函数定义,不是A到B的函数D选项122,224,326,428,为一一对应关系,是A到B的函数2设Mx|0x2,Ny|0y2,给出如图所示的四个图形其中,能表示从集合M到集合N的函数关系的个数是A0B1C2D3答案B解析中,因为在集合M中当1x2时,在N中无元素与之对应,所以不是;中,对于集合M中的任意一个数x,在N中都有唯一的数与之对应,所以是;中,x2对应元素y3N,所以不是;中,当x1时,在N中有两个元素与之对应,所以不是因此只有是反思感悟1判断对应关系是否为函数的两个条件A,B必须是非空实数集A中任意一元素在B中有且只有一个元素与之对应对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系2根据图形判断对应关系是否为函数的方法任取一条垂直于x轴的直线l.在定义域内平行移动直线l.若l与图形有且只有一个交点,则是函数;若在定义域内有两个或两个以上的交点,则不是函数跟踪训练11下列对应关系式中是A到B的函数的是AAR,BR,x2y21BA1,0,1,B1,2,y|x|1CAR,BR,y1x2DAZ,BZ,y2x1答案B解析对于A,x2y21可化为y1x2,显然对任意xAx1除外,y值不唯一,故不符合函数的定义;对于B,符合函数的定义;对于C,2A,在此时对应关系无意义,故不符合函数的定义;对于D,1A,但在集合B中找不到与之相对应的数,故不符合函数的定义2判断下列对应关系f是否为定义在集合A 上的函数AR,BR,对应关系fy1x2;A1,2,3,BR,f1f23,f34;A1,2,3,B4,5,6,对应关系如图所示解AR,BR,对于集合A中的元素x0,在对应关系fy1x2的作用下,在集合B中没有元素与之对应,故所给对应关系不是定义在A上的函数由f1f23,f34,知集合A中的每一个元素在对应关系f的作用下,在集合B中都有唯一的元素与之对应,故所给对应关系是定义在A上的函数集合A 中的元素3在集合B中没有与之对应的元素,且集合A中的元素2在集合B中有两个元素5和6与之对应,故所给对应关系不是定义在A上的函数二.求函数的定义域.函数值和值域命题角度1求函数的定义域例2求下列函数的定义域1fxx12x11x;2fx5x|x|3;3fx3xx1.解1要使函数有意义,自变量x的取值必须满足x10,1x0.解得x1,且x1,即函数定义域为x|x1,且x12要使函数有意义,自变量x的取值必须满足5x0,|x|30,解得x5,且x3,即函数定义域为x|x5,且x33要使函数有意义,自变量x的取值必须满足3x0,x10,解得1x3,所以这个函数的定义域为x|1x3延伸探究在本例3条件不变的前提下,求函数yfx1的定义域解由1x13得0x2.所以函数yfx1的定义域为0,2反思感悟求函数定义域的常用依据1若fx是分式,则应考虑使分母不为零2若fx是偶次根式,则被开方数大于或等于零3若fx是由几个式子构成的,则函数的定义域要使各个式子都有意义4若fx是实际问题的解析式,则应符合实际问题,使实际问题有意义跟踪训练2函数y2x23x214x的定义域为________________答案,122,4解析由2x23x20,4x0,4x0,得x12或2x4,所以定义域为,122,4命题角度2求函数值例3已知fx12xxR,且x2,gxx4xR1求f1,g1,gf1的值;2求fgx解1f11211,g1145,gf1g15.2fgxfx412x412x1x2xR,且x2反思感悟求函数值的方法1已知fx的表达式时,只需用a替换表达式中的x即得fa的值2求fga的值应遵循由里往外的原则跟踪训练3已知fx11xxR,且x1,gxx22xR,则f2______,fg2______,fgx________.答案13171x23解析fx11x,f211213.又gxx22,g22226,fg2f611617.fgx11gx1x23.命题角度3求值域例4求下列函数的值域1y2x1,x1,2,3,4;2y3x1x1;3yxx.解1当x1时,y3;当x2时,y5;当x3时,y7;当x4时,y9.所以函数y2x1,x1,2,3,4的值域为3,5,7,92借助反比例函数的特征y3x14x134x1x1,显然4x1可取0以外的一切实数,即所求函数的值域为y|y33设uxx0,则xu2u0,则yu2uu12214u0由u0,可知u12214,所以y0.所以函数yxx的值域为0,反思感悟求函数值域常用的四种方法1观察法对于一些比较简单的函数,其值域可通过观察得到2配方法当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域3分离常数法此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;4换元法即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域对于fxaxbcxd其中a,b,c,d为常数,且a0型的函数常用换元法跟踪训练4求下列函数的值域1y2x1x3;2y2xx1.解1分离常数法y2x1x32x37x327x3,显然7x30,所以y2.故函数的值域为,22,2换元法设tx1,则xt21,且t0,所以y2t21t2t142158,由t0,再结合函数的图像如图,可得函数的值域为158,.三.同一个函数的判定例5多选下列各组函数表示同一个函数的是Afxx,gxx2Bfxx21,gtt21Cfx1x0,gxxxDfxx,gx|x|答案BC 解析A中,由于fxx的定义域为R,gxx2的定义域为x|x0,它们的定义域不相同,所以它们不是同一个函数B中,函数的定义域.值域和对应关系都相同,所以它们是同一个函数C中,由于gxxx1的定义域为x|x0,故它们的定义域相同,所以它们是同一个函数D中,两个函数的定义域相同,但对应关系不同,所以它们不是同一个函数反思感悟在两个函数中,只有当定义域.对应关系都相同时,两函数才是同一个函数值域相等,只是前两个要素相等的必然结果跟踪训练5下列各组式子是否表示同一个函数为什么1fx|x|,tt2;2y1x1x,y1x2;3y3x2,yx3.解1fx与t的定义域相同,又tt2|t|,即fx与t的对应关系也相同,fx与t是同一个函数2y1x1x的定义域为x|1x1,y1x2的定义域为x|1x1,即两者定义域相同又y1x1x1x2,两函数的对应关系也相同故y1x1x与y1x2是同一个函数3y3x2|x3|与yx3的定义域相同,但对应关系不同,y3x2与yx3不是同一个函数1若Ax|0x2,By|1y2,下列图形中能表示以A为定义域,B为值域的函数的是答案B解析A中值域为y|0y2,故错误;C,D中值域为1,2,故错误2若fxx1,则f3等于A2B4C22D10答案A解析因为fxx1,所以f3312.3函数y1xx的定义域为Ax|x1Bx|x0Cx|x1或x0Dx|0x1答案D解析由题意可知1x0,x0,解得0x1.4如果函数yx22x的定义域为0,1,2,3,那么其值域为A1,0,3B0,1,2,3Cy|1y3Dy|0y3答案A解析当x取0,1,2,3时,y 的值分别为0,1,0,3,则其值域为1,0,35下列四个图像中,不是以x为自变量的函数的图像是答案C解析根据函数定义,可知对自变量x的任意一个值,都有唯一确定的实数函数值与之对应,显然选项A,B,D满足函数的定义,而选项C不满足1知识清单1函数的概念2函数的定义域.值域3同一个函数的判定2方法归纳观察法.换元法.配方法.分离常数法3常见误区1定义域中的每一个自变量都有唯一确定的值与其相对应2自变量用不同字母表示不影响相同函数的判断。
3.1.1 第2课时 函数的概念(二)

的定义
x−1
域为{x∈R|x≠1},与函数y=x+1的定义域不同,不是同一函数,故D错误.
返回导航
1
1
2
4 . 已 知 f(x) =
(x≠ - 1) , g(x) = x + 2 , 若
1+x
f g x
=4,则x=
________.
(2)因为36=22×32,则f(36)=f(22×32)=f(22)+f(32),
再次利用f(ab)=f(a)+f(b)求解即可.
返回导航
03.课后检测案 (19)
返回导航
基础强化
1.(5分)不等式(x+2)(x-3)>0的解集用区间表示为(
A.(-∞,-2)
B.(3,+∞)
C.(-2,3)
D.(-∞,-2)∪ 3, + ∞
值域也相同,都是[0,4],但它们不是同一个函数.
返回导航
【即时练习】 下列函数中哪个与函数y=x是同一个函数(
A.y=
2
3
B.y= 3
C.y= 2
)
2
D.y=
答案:B
解析:对于A,函数的定义域为{x|x≥0},两个函数的定义域不同;对于B,函
数的定义域为R,两个函数的定义域和对应关系相同,是同一函数;对于C,函
故C错误;对于D,f(x)的定义域为[1,+∞),g(x)的定义域为(-∞,
-1]∪ 1, + ∞ ,定义域不相同,故D错误.
返回导航
学习目标三
例3
求函数的值
1
已知f(x)= (x∈R,x≠-1),g(x)=x2+2(x∈R).
学案5:3.1.1 函数的概念

3.1.1 函数的概念【学习目标】1.函数的概念(1)函数的定义设A,B是,如果对于集合A中的,按照某种确定的对应关系f,在集合B中都有和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作.(2)函数的定义域与值域函数y=f(x)中,x叫做,A叫做函数的定义域,与x的值相对应的y值叫做,函数值的集合叫做函数的值域.显然,值域是集合B的.(3)对应关系f:除解析式、图象表格外,还有其他表示对应关系的方法,引进符号f统一表示对应关系.注意:判断对应关系是否为函数的2个条件①A、B必须是非空数集.②A中任意一元素在B中有且只有一个元素与之对应.2.函数的三要素由函数的定义可知,一个函数的构成要素为:、和。
3.相同函数值域是由和决定的,如果两个函数的定义域和相同,我们就称这两个函数是同一函数.两个函数如果仅对应关系相同,但定义域不同,则它们相同的函数.4. 区间及有关概念(1)一般区间的表示.设a,b∈R,且a<b,规定如下:区间{x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示. 定义 R {x |x ≥a }{x |x >a }{x |x ≤a }{x |x <a }符号【小试牛刀】判断正误(正确的打“√”,错误的打“×”)(1)根据函数的定义,定义域中的一个x 可以对应着不同的y .( ) (2)函数的定义域和值域一定是无限集合.( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)两个函数相同指定义域和值域相同的函数.( ) (5)f (x )=3x +4与f (t )=3t +4是相同的函数.( )(6)函数值域中每一个数在定义域中有唯一的数与之对应.( ) (7)函数f (2x -1)的定义域指2x -1的取值范围.( ) 【经典例题】题型一 函数关系的判定例1(1) 若集合M ={x |0≤x ≤2},N ={y |0≤y ≤3},则下列图形给出的对应中能构成从M 到N 的函数f :M →N 的是( )(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ①f :把x 对应到3x +1; ②g :把x 对应到|x |+1; ③h :把x 对应到1x ; ④r :把x 对应到x .[跟踪训练] 1 设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数y =f (x )的定义域为M ,值域为N ,对于下列四个图象,不可作为函数y =f (x )的图象的是( )题型二 已知函数的解析式求定义域 求函数定义域的几种类型(1)若f (x )是整式,则函数的定义域是R . (2)若f (x )是分式,则应考虑使分母不为零. (3)若f (x )是偶次根式,则被开方数大于或等于零.(4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集. (5)若f (x )是实际情境的解析式,则应符合实际情境,使其有意义. 例2 求下列函数的定义域. (1)y =2+3x -2;(2)y =x 2-2x -3; (3)y =3-x ·x -1; (4)y =(x -1)0+2x +1;[跟踪训练] 2 求下列函数的定义域:(1)y =(x +1)2x +1--x 2-x +6. (2)y =10-x 2|x |-3.题型三 函数相同判断两个函数为同一函数的方法判断两个函数是否为同一函数,要先求定义域,若定义域不同,则不是同一函数;若定义域相同,再化简函数的解析式,看对应关系是否相同.注意:(1)在化简解析式时,必须是等价变形.(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的. 例3 下列各组函数: ①f (x )=x 2-x x ,g (x )=x -1;②f (x )=x x ,g (x )=x x; ③f (x )=(x +3)2,g (x )=x +3; ④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5). 其中表示相等函数的是________(填上所有正确的序号). [跟踪训练] 3 (1)与函数y =x -1为同一函数的是( ) A .y =x 2-xxB .m =(n -1)2C .y =x -x 0D .y =3(t -1)3(2)判断以下各组函数是否表示相等函数: ①f (x )=(x )2;g (x )=x 2.②f (x )=x 2-2x -1;g (t )=t 2-2t -1.题型四 求抽象函数的定义域 两类抽象函数的定义域的求法(1)已知f (x )的定义域,求f (g (x ))的定义域:若f (x )的定义域为[a ,b ],则f (g (x ))中a ≤g (x )≤b ,从中解得x 的取值集合即为f (g (x ))的定义域.(2)已知f (g (x ))的定义域,求f (x )的定义域:若f (g (x ))的定义域为[a ,b ],即a ≤x ≤b ,求得g (x )的取值范围,g (x )的值域即为f (x )的定义域.例4 (1)设函数f(x)=x,则f(x+1)等于什么?f(x+1)的定义域是什么?(2)若函数y=f(x)的定义域是[0,+∞),那么函数y=f(x+1)的定义域是什么?[跟踪训练] 4 已知函数f(x)的定义域为[1,3],求函数f(2x+1)的定义域.例5 (1)已知函数y=f(x)的定义域为[-2,3],求函数y=f(2x-3)的定义域;(2)已知函数y=f(2x-3)的定义域是[-2,3],求函数y=f(x+2)的定义域.[跟踪训练] 5(1)函数f(2x+1)的定义域为[1,3],求函数f(x)的定义域.(2)函数f(1-x)的定义域为[1,3],求函数f(2x+1)的定义域。
高中数学第三章函数的概念与性质函数的概念学案新人教A版必修第一册
3.1.1 函数的概念课程标准(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.(2)了解构成函数的三要素,能求简单函数的定义域.(3)能够正确使用“区间”的符号表示某些集合.(4)理解同一个函数的概念,能判断两个函数是否是同一个函数.新知初探·课前预习——突出基础性教材要点要点一函数的概念要点二同一个函数如果两个函数的________相同,并且________完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数❷.要点三区间及有关概念1.一般区间的表示设a,b∈R,且a<b,规定如下:2.特殊区间的表示助学批注批注❶抓住两点:(1)可以“多对一”、“不可一对多”;(2)集合A中的元素无剩余,集合B中的元素可剩余.批注❷只有当两个函数的定义域和对应关系分别相同时,这两个函数才是同一个函数.定义域和值域都分别相同的两个函数,它们不一定是相同的函数,因为函数对应关系不一定相同.批注❸这里的实数a与b都叫做相应区间的端点.区间的左端点一定要小于右端点,即a <b.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何两个集合之间都可以建立函数关系.( )(2)函数的定义域必须是数集,值域可以为其他集合.( )(3)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(4)区间是数集的另一种表示方法,任何数集都能用区间表示.( )2.下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是( )A B C D3.区间(0,1)等于 ( )A.{0,1}B.{(0,1)}C.{x|0<x<1}D.{x|0≤x≤1}4.若f(x)=x-√x+1,则f(3)=________.题型探究·课堂解透——强化创新性题型 1 函数的概念例1 (1)(多选)下列图形中是函数图象的是( )(2)下列从集合A到集合B的对应关系f是函数的是( ) A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积方法归纳1.根据图形判断对应关系是否为函数的一般步骤2.判断一个对应关系是否为函数的方法巩固训练1 (多选)下列对应关系是集合A到集合B的函数的是( )A.A=R,B={x|x≥0},f:x→y=|x|B.A=Z,B=Z,f:x→y=x2C.A=Z,B=Z,f:x→y=√xD.A={x|-1≤x≤1},B={0},f:x→y=0题型 2 求函数值(x∈R,且x≠-1),g(x)=x2+2(x 例2 [2022·山东青岛高一期中]已知f(x)=11+x∈R).(1)求f(2),g(2)的值;(2)求f(g(3))的值.方法归纳求函数值的2种策略巩固训练2 已知函数f(x)=x+1.x+2(1)求f(2);(2)求f(f(1)).题型 3 求函数的定义域例3 求下列函数的定义域.; (2)y=√x2−2x−3;(1)y=2+3x−2(3)y=√3−x·√x−1; (4)y=(x-1)0+√2.x+1方法归纳求函数定义域的常用策略巩固训练3 (1)函数f (x )=√1+x −1x的定义域是( )A .[-1,0)∪(0,+∞)B .[-1,+∞)C .(-∞,0)∪(0,+∞)D .R(2)函数f (x )=√−x 2+6x −5的定义域为________.题型 4 同一函数的判断例4 下面各组函数中表示同一个函数的是( ) A .f (x )=x ,g (x )=(√x )2B .f (t )=|t |,g (x )=√x 2C .f (x )=x 2−1x−1,g (x )=x +1 D .f (x )=|x |x ,g (x )={1,x ≥0−1,x <0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形; ②与用哪个字母表示无关.巩固训练4 下列函数中与函数y =x 2是同一函数的是( ) A .u =v 2B .y =x ·|x |C .y =x 3x D .y =(√x )43.1.1 函数的概念新知初探·课前预习[教材要点]要点一实数集 任意一个数x 唯一 要点二定义域 对应关系 要点三1.(a ,b ) (a ,b ]2.(-∞,+∞) [a ,+∞) (a ,+∞) (-∞,a ] (-∞,a )[基础自测]1.答案:(1)× (2)× (3)× (4)×2.解析:只有D 的函数图象与垂直于x 轴的直线至多有一个交点,故选D. 答案:D 3.答案:C4.解析:f (3)=3-√3+1=3-2=1. 答案:1题型探究·课堂解透例1 解析:(1)A 中至少存在一处如x =0,一个横坐标对应两个纵坐标,这相当于集合A 中至少有一个元素在集合B 中对应的元素不唯一,故A 不是函数图象,其余B ,C ,D 均符合函数定义.(2)对于选项B ,集合A 中的元素1对应集合B 中的元素±1,不符合函数的定义;对于选项C ,集合A 中的元素0取倒数没有意义,在集合B 中没有元素与之对应,不符合函数的定义;对于选项D ,A 集合不是数集,故不符合函数的定义.答案:(1)BCD (2)A巩固训练1 解析:选项A 中,对于A 中的任意一个实数x ,在B 中都有唯一确定的数y 与之对应,故是A 到B 的函数.选项B 中,对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数.选项C 中,集合A 中的负整数没有平方根,在集合B 中没有对应的元素,故不是集合A 到集合B 的函数.选项D 中,对于集合A 中任意一个实数x ,按照对应关系f :x →y =0在集合B 中都有唯一一个确定的数0和它对应,故是集合A 到集合B 的函数.答案:ABD例2 解析:(1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11,∴f (g (3))=f (11)=11+11=112.巩固训练2 解析:(1)f (2)=2+12+2=34; (2)∵f (1)=1+11+2=23;∴f (f (1))=f (23)=23+123+2=58.例3 解析:(1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x−2有意义,所以这个函数的定义域为{x |x ≠2}.(2)要使函数有意义,需x 2-2x -3≥0,即(x -3)(x +1)≥0,所以x ≥3或x ≤-1,即函数的定义域为{x |x ≥3或x ≤-1}.(3)函数有意义,当且仅当{3−x ≥0,x −1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)函数有意义,当且仅当{x −1≠0,2x+1≥0,x +1≠0,解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.巩固训练3 解析:(1)由{1+x ≥0x ≠0,解得:x ≥-1且x ≠0.∴函数f (x )=√1+x −1x 的定义域是[-1,0)∪(0,+∞). (2)由-x 2+6x -5≥0,得x 2-6x +5≤0,(x -1)(x -5)≤0, 解得1≤x ≤5,所以函数的定义域为[1,5]. 答案:(1)A (2)[1,5]例4 解析:对于A ,f (x )=x 的定义域为R ,而g (x )=(√x )2的定义域为[0,+∞),两函数的定义域不相同,所以不是同一个函数;对于B ,两个函数的定义域都为R ,定义域相同,g (x )=√x 2=|x |,这两个函数是同一个函数;对于C ,f (x )=x 2−1x−1的定义域为{x |x ≠1},而g (x )=x +1的定义域是R ,两个函数的定义域不相同,所以不是同一个函数;对于D ,f (x )=|x |x 的定义域为{x |x ≠0},而g (x )={1,x ≥0−1,x <0的定义域是R ,两个函数的定义域不相同,所以不是同一个函数.答案:B巩固训练4 解析:函数y =x 2的定义域为R ,对于A 项,u =v 2的定义域为R ,对应法则与y =x 2一致,则A 正确;对于B 项,y =x ·|x |的对应法则与y =x 2不一致,则B 错误;对于C 项,y =x 3x 的定义域为{x |x ≠0},则C 错误;对于D 项,y =(√x )4的定义域为{x |x ≥0},则D 错误;故选A.答案:A。
高中数学第三章函数函数及其表示方法第1课时函数的概念学案新人教B版必修第一册
3.1 函数的概念与性质 3.1.1 函数及其表示方法第1课时 函数的概念课程标准在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用.了解构成函数的要素,能求简单函数的定义域.新知初探·自主学习——突出基础性教材要点知识点一 函数的概念1.函数的概念一般地,给定两个非空实数集A与B,以及对应关系f,如果对于集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对应,则称f为定义在集合A上的一个函数,记作y=f(x),x∈A.2.函数的定义域和值域函数y=f(x)中x称为自变量,y称为因变量,自变量取值的范围(即数集A)称为这个函数的定义域,所有函数值组成的集合{y|y=f(x),x∈A}称为函数的值域.状元随笔 对函数概念的3点说明(1)当A , B为非空实数集时,符号“ f :A→B ”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f ”表示对应关系,在不同的函数中f的具体含义不一样.知识点二 同一函数一般地,如果两个函数的定义域相同,对应关系也相同(即对自变量的每一个值,两个函数对应的函数值都相等),则称这两个函数就是同一个函数.知识点三 常见函数的定义域和值域函数一次函数反比例函数二次函数a<0基础自测1.下列从集合A到集合B的对应关系f是函数的是( )A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A={平行四边形},B=R,f:求A中平行四边形的面积2.函数f(x)=√x−1x−2的定义域为( )A.(1,+∞) B.[1,+∞)C.[1,2) D.[1,2)∪(2,+∞) 3.下列各组函数表示同一函数的是( )A.y=x2−9x−3与y=x+3B.y=√x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=x+1,x∈Z与y=x-1,x∈Z4.若函数f(x)=√x+6x−1,求f(4)=________.课堂探究·素养提升——强化创新性题型1 函数的定义[经典例题]例1 根据函数的定义判断下列对应关系是否为从集合A到集合B的函数:(1)A={1,2,3},B={7,8,9},f(1)=f(2)=7,f(3)=8;状元随笔 从本题可以看出函数f(x)的定义域是非空数集A,但值域不一定是非空数集B,也可以是集合B的子集.(2)A={1,2,3},B={4,5,6},对应关系如图所示;状元随笔 判断从集合A到集合B的对应是否为函数,一定要以函数的概念为准则,另外也要看A中的元素是否有意义,同时,一定要注意对特殊值的分析.(3)A=R,B={y|y>0},f:x→y=|x|;(4)A=Z,B={-1,1},n为奇数时,f(n)=-1,n为偶数时,f(n)=1.方法归纳(1)判断一个集合A到集合B的对应关系是不是函数关系的方法:①A,B必须都是非空数集;②A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.(2)函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”,而不能是“一对多”.跟踪训练1 (1)设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A.0个 B.1个 C.2个 D.3个(1)①x∈[0,1]取不到[1,2].③y∈[0,3]超出了N∈[0,2]范围.④可取一个x值,y有2个对应,不符合题意.(2)关键是否符合函数定义.①x→3x,x≠0,x∈R;②x→y,其中y2=x,x∈R,y∈R.(2)下列对应是否是函数?题型2 求函数的定义域[教材P87例题1]例2 求下列函数的定义域:(1)f(x)=1√(2)g(x)=1x+1x+2.方法归纳求函数的定义域(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.跟踪训练2 求下列函数的定义域:(1)f(x)=6x2−3x+2;(2)f(x)=0√||(3)f(x)=√2x+3-√1 x .(1)分母不为0(2){偶次根式被开方数≥0(x+1)0底数不为0分母不为0 (3){偶次根式被开方数≥0分母不为0题型3 同一函数例3 下面各组函数中为相同函数的是( )A .f (x )=√(x −1)2,g (x )=x -1B .f (x )=√x 2−1,g (x )=√x +1·√x−1C .f (x )=x ,g (x )=x 2xD .f (x )=x 0与g (x )=1x 0方法归纳判断同一函数的三个步骤和两个注意点(1)判断同一函数的三个步骤(2)两个注意点:①在化简解析式时,必须是等价变形;②与用哪个字母表示无关.跟踪训练3 试判断下列函数是否为同一函数.(1)f (x )=x 2−xx ,g (x )=x -1;(2)f(x)=√xx,g(x)√(3)f(x)=x2,g(x)=(x+1)2;(4)f(x)=|x|,g(x)=√x2.状元随笔 判断两个函数是否为同一函数,要看三要素是否对应相同.函数的值域可由定义域及对应关系来确定,因而只要判断定义域和对应关系是否对应相同即可.题型4 求函数的值域[经典例题]状元随笔 求函数值域的注意事项①数形结合求值域一定要注意函数的定义域;②值域一定要用集合或区间来表示.例4 求下列函数的值域.(1)y=3-4x,x∈(-1,3];(2)f(x)=1x,x∈[3,5];(3)y=2xx+1;(4)y=x2-4x+5,x∈{1,2,3};(5)y=x2-2x+3,x∈[0,3);(6)y=2x-√x−1;(7)f(x)=1x2+2.状元随笔 (1)用不等式的性质先由x∈(-1,3]求-4x的取值范围,再求3-4x的取值范围即为所求.(2)先分离常数将函数解析式变形,再求值域.(3)将自变量x=1,2,3代入解析式求值,即可得值域.(4)先配方,然后根据任意实数的平方都是非负数求值域.方法归纳求函数值域的方法(1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图象的“最高点”和“最低点”观察函数的值域.如函数y=11+x2的值域为{y|0<y≤1}.(2)配方法:求形如F(x)=a[f(x)]2+bf(x)+c的函数的值域可用配方法,但要注意f(x)的取值范围.如求函数y=x-2√x+3的值域,因为y=(√x-1)2+2≥2,故所求值域为{y|y≥2}.对于形如y=ax2+bx+c(a≠0)的函数,尤其要注意在给定区间上二次函数最值的求法.(3)分离常数法:此方法主要是针对分子分母同次的分式,即将分式转化为“反比例函数类”的形式,便于求值域.(4)换元法:形如y=ax+b+√cx+d的函数常用换元法求值域,即先令t=√cx+d,求出x,并注明t的取值范围,再代入上式表示成关于t的二次函数,最后用配方法求值域.注意:分离常数法的目的是将分式函数变为反比例函数类,换元法的目的是将函数变为二次函数类.即将函数解析式变为已经熟悉的简单函数类型求值域.(5)反表示法:根据函数解析式反解出x,根据x的取值范围转化为关于y的不等式求解.(6)中间变量法:根据函数解析式确定一个已知范围的中间变量(如x2),用y表示出该中间变量,根据中间变量的取值范围转化为关于y的不等式求解.跟踪训练4 求下列函数的值域:(1)y=2x+1,x∈{1,2,3,4,5};(2)y=√x+1;(3)y=1−x21+x2;先分离再求值域(4)y=-x2-2x+3(-5≤x≤-2);配方法求值域(5)f(x)=5x+4 x−1.第三章 函数3.1 函数的概念与性质3.1.1 函数及其表示方法第1课时 函数的概念新知初探·自主学习[教材要点]知识点三{x|x≠0} R {y|y≤4ac−b24a}[基础自测]1.解析:对B,集合A中的元素1对应集合B中的元素±1,不符合函数的定义;对C,集合A中的元素0取倒数没有意义,在集合B中没有元素与之对应,不符合函数的定义;对D,A集合不是数集,故不符合函数的定义.综上,选A.答案:A2.解析:使函数f(x)=√x−1x−2有意义,则{x−1≥0,x−2≠0,即x≥1,且x≠2.所以函数的定义域为{x|x≥1且x≠2}.故选D.答案:D3.解析:A中两函数定义域不同;B中两函数值域不同;D中两函数对应法则不同.答案:C4.解析:f(4)=√4+64−1=2+2=4.答案:4课堂探究·素养提升例1 【解析】 (1)(4)对于集合A中的任意一个值,在集合B中都有唯一的值与之对应,因此(1)(4)中对应关系f是从集合A到集合B的一个函数.(2)集合A中的元素3在集合B中没有对应元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应关系不是集合A到集合B的函数.(3)A中的元素0在B中没有对应元素,故所给对应关系不是集合A到集合B的函数.跟踪训练1 解析:(1)图号正误原因①×x=2时,在N中无元素与之对应,不满足任意性②√同时满足任意性与唯一性③×x=2时,对应元素y=3∉N,不满足任意性④×x=1时,在N中有两个元素与之对应,不满足唯一性解析:(2)①是函数.因为任取一个非零实数x,都有唯一确定的3x与之对应,符合函数定义.②不是函数.当x=1时,y=±1,即一个非零自然数x,对应两个y的值,不符合函数的概念.答案:(1)B (2)①是函数②不是函数例2 【解析】 (1)因为函数有意义当且仅当{x+1≥0,√x+1≠0,解得x>-1,所以函数的定义域为(-1,+∞).(2)因为函数有意义当且仅当{x≠0,x+2≠0,解得x≠0且x≠-2,因此函数的定义域为(-∞,-2)∪(−2,0)∪(0,+∞).跟踪训练2 解析:(1)要使函数有意义,只需x2-3x+2≠0,即x≠1且x≠2,故函数的定义域为{x|x≠1且x≠2}.(2)要使函数有意义,则{x+1≠0,|x|−x>0,解得x<0且x≠-1.所以定义域为(-∞,-1)∪(−1,0).(3)要使函数有意义,则{2x +3≥0,2−x >0,x≠0,解得-32≤x <2,且x ≠0.故定义域为[−32,0)∪(0,2).例3 【解析】 函数的三要素相同的函数为相同函数,对于选项A ,f (x )=|x -1|与g (x )对应关系不同,故排除选项A ,选项B 、C 中两函数的定义域不同,排除选项B 、C ,故选D.【答案】 D跟踪训练3 解析:所以函数y =3-4x ,x ∈(-1,3]的值域是[-9,7).(2)因为f (x )=1x 在[3,5]上单调递减,所以其值域为[15,13].(3)因为y =2x x +1=2(x +1)−2x +1=2-2x +1≠2,所以函数y =2x x +1的值域为{y |y ∈R 且y ≠2}. (4)函数的定义域为{1,2,3},当x =1时,y =12-4×1+5=2,当x =2时,y =22-4×2+5=1,当x =3时,y =32-4×3+5=2,所以这个函数的值域为{1,2},(5)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).(6)设t =√x −1,则x =t 2+1,且t ≥0,所以y =2(t 2+1)-t =2(t -14)2+158,由t ≥0,再结合函数的图象(如图),可得函数的值域为[158,+∞).【解析】(7)方法一 因为x 2+2≥2,所以0<1x 2+2≤12,所以f (x )的值域为(0,12].方法二 设t 是所求值域中的元素,则关于x 的方程1x 2+2=t 应该有解,即x 2=1t -2应该有解,所以1t -2≥0,即1−2t t ≥0,解得0<t ≤12,所以所求值域为(0,12].跟踪训练4 解析:(1)将x =1,2,3,4,5分别代入y =2x +1,计算得函数的值域为{3,5,7,9,11}.(2)因为√x ≥0,所以√x +1≥1,即所求函数的值域为[1,+∞).(3)因为y =1−x 21+x 2=-1+21+x 2,所以函数的定义域为R ,因为x 2+1≥1,所以0<21+x2≤2.所以y ∈(-1,1].所以所求函数的值域为(-1,1].(4)y =-x 2-2x +3=-(x +1)2+4.因为-5≤x≤-2,所以-4≤x+1≤-1.所以1≤(x+1)2≤16.所以-12≤4-(x+1)2≤3.所以所求函数的值域为[-12,3].解析:(5)函数f(x)=5x+4x−1=5(x−1)+9x−1=5+9x−1,因为x≠1,所以9x−1≠0,所以f(x)≠5,所以函数f(x)=5x+4x−1的值域为(-∞,5)∪(5,+∞).。
高中数学第三章函数的概念与性质3-1函数的概念及其表示第1课时函数的概念学案新人教A版必修第一册
1第一节 函数的概念及表示 第1课时 函数的概念课标要点核心素养1.理解函数的概念,会用集合语言刻画函数,体会对应关系在函数定义中的作用. 2.了解构成函数的要素,会求一些简单函数的定义域和值域. 3.了解区间的概念,体会用区间表示数集的意义和作用.1.通过学习函数的概念,培养数学抽象素养.2.借助函数定义域和值域的求解,培养数学运算素养和逻辑推理素养.1.函数的概念(1)定义:一般的,设A 、B 是非空的数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A ,其中x 称为自变量,x 的取值范围A 叫做函数的定义域.与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (2)函数的三要素:对应关系:f ,f 一定要保证一个x 只对应一个y .定义域:在函数y =f (x ),x ∈A 中,x 叫做自变量,自变量取值的范围(数集A )叫做这个函数的定义域. 值域:所有函数值构成的集合{y |y =f (x ),x ∈A }叫做这个函数的值域. 2.两个函数相同一般地,如果两个函数的定义域相同,并且对应关系也完全一致(即相同的自变量对应的函数值也相同),那么这两个函数是同一个函数. 3.区间设a ,b 是两个实数,而且a <b ,我们规定:(1)满足不等式a ≤x ≤b 的x 的集合叫做闭区间,表示为[a ,b ]. (2)满足不等式a <x <b 的x 的集合叫做开区间,表示为(a ,b ).(3)满足不等式a ≤x <b 或a <x ≤b 的实数x 的集合叫做半开半闭区间,分别表示为[a ,b )(a ,b ]. 这里的实数a 与b 都叫做相应区间的端点,这几个区间的几何表示:定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b } 开区间 (a ,b ) {x |a ≤x <b }半开半 闭区间 [a ,b ){x |a <x ≤b } 半开半 闭区间(a ,b ]在数轴表示时,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点.实数R 可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”. 无穷区间的表示 定义 {x |x ≥a } {x |x >a }{x |x <a }{x |x ≤a } R 符号[a ,+∞)(a ,+∞) (-∞,a )(-∞,a ](-∞,+∞)(1)[a ,b ],(a ,b ),[a ,b ),(a ,b ],四个区间形式中一定是“左端点小右端点大”a <b . (2)∞端点一定是取不到的,出现∞的一端一定用小括号.思考辨析(正确的打“√”,错误的打“×”)(1)函数y =f (x )=x 2,x ∈A 与u =f (t )=t 2,t ∈A 表示的是同一个函数. ( ) (2)函数y =f (x )=x 2,x ∈[0,2]与g (x )=2x ,x ∈[0,2]表示的是同一个函数. ( ) (3)函数f (x )=x 2,x ∈[0,2]与h (x )=x 2,x ∈(0,2)表示同一个函数. ( )(4)两个函数的定义域相同值域也相同,则两个函数表示同一个函数. ( )(5)f (x )=√1-x +√x -2是一个函数.( )[解析] (1)√ 两个函数定义域相同,对应关系也相同.(2)× 两函数的对应关系不同. (3)× 两函数的定义域不同.(4)×值域可以由定义域和对应关系唯一确定,当且仅当定义域和对应关系相同才是同一个函数.反例f(x)=x与f(x)=-4x的定义域和值域相同,但不是同一个函数.(5)×此题x范围是空集,而函数要求定义域是非空数集,故不是函数.[答案] (1)√(2)×(3)×(4)×(5)×函数的定义与函数相等兴趣探究中(1)I是R的函数吗?(2)R是I的函数吗?[思考] 1.电路中的电压U=220v,电流I与电阻R之间的变化规律,用欧姆定律表示,即I=220x2.炮弹的运动轨迹中,炮弹的高度H与时间t的关系H=v0t-xx2(t>0)中(1)H是t的函数吗?(2)t是H的函数吗?2[解析] 1.每一个R对应一个I,而且每一个I对应一个R,满足函数定义.故1中两问都是函数.2.每一个t对应一个H,而且每一个H对应两个t,不满足函数定义.故2中两问(1)是函数,(2)不是函数.[答案] 1.(1)是(2)是2.(1)是(2)不是知识归纳1.判断对应关系是否为函数的2个条件(1)A,B必须是非空数集.(2)A中任意一元素在B中有且只有一个元素与之对应.即对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.考向例题考向一判断函数关系【例1】判断下列对应关系f是不是定义在集合A上的函数.(1)A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;(2)A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;(3)A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;(4)A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.[解析] (1)对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B中没有元素与之对应,所以不是函数.(2)对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.(3)对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.(4)集合A不是数集,故不是函数.[答案] (1)不是(2)是(3)是(4)不是即时巩固判断下列对应f是否为定义在集合A上的函数.;①A=R,B=R,对应法则f:y=1x2②A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;③A={1,2,3},B={4,5,6},对应法则如图所示.的作用下,在集合B中没有元素与之对应,故所给对应不是定义在A上的函数.[解析] ①A=R,B=R,对于集合A中的元素x=0,在对应法则f:y=1x2②由f(1)=f(2)=3,f(3)=4,知集合A中的每一个元素在对应法则f的作用下,在集合B中都有唯一的元素与之对应,故所给对应是定义在A上的函数.③集合A中的元素3在集合B中没有与之对应的元素,且集合A中的元素2在集合B中有两个元素(5和6)与之对应,故所给对应不是定义在A上的函数.[答案] ①不是②是③不是考向二判断同一个函数【例2】下列四组函数,表示同一函数的是()A.f(x)=√x2,g(x)=xB.f(x)=x,g(x)=x2x3,g(x)=xC.f(x)=√x3D.f(x)=x2,g(x)=(√x)423[解析] 选项A 中,由于f (x )=√x 2=|x |,g (x )=x 两函数对应法则不同,所以它们不是同一函数;选项B 中,由于f (x )=x 的定义域为R ,g (x )=x 2x 的定义域为{x |x ≠0},它们的定义域不相同,所以它们不是同一函数;选项C 中,f (x )=√x 33=x ,g (x )=x 的定义域和对应法则完全相同,所以它们是同一函数;选项D 中,f (x )=x 2的定义域为R ,g (x )=(√x)4=x 2的定义域为[0,+∞),两个函数的定义域不相同,所以它们不是同一函数.[答案] C函数的三要素兴趣探究[思考] (1)函数y =x -1和函数y =x 2-1x +1定义域是否相同?是不是同一个函数?为什么? (2)函数y =√x 3和y =√x 64定义域是否相同?是不是同一个函数?为什么? [答案] (1)y =x -1的定义域是R ,函数y =x 2-1x +1的定义域是{x |x ≠-1},两个函数的定义域不同,故不是同一个函数.(2)y =√x 3的定义域是{x ∈R|x ≥0},函数y =√x 64的定义域是R ,两个函数的定义域不同,故不是同一个函数. 知识归纳函数定义域求解要考虑函数解析式中的分母不为零,偶次根式中的被开方数要大于等于0,有时还要考虑到实际问题的实际意义. 考向例题考向一 求函数的定义域【例2】 求下列函数的定义域:(1)f (x )=2+3x -2;(2)f (x )=(x -1)0+√2x +1; (3)f (x )=√3-x ·√x -1; (4)f (x )=(x +1)2x +1-√1-x.[解析] (1)当且仅当x -2≠0,即x ≠2时, 函数f (x )=2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当{x -1≠0,2x +1≥0,x +1≠0,解得x >-1且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}. (3)函数有意义,当且仅当{3-x ≥0,x -1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}. (4)要使函数有意义,自变量x 的取值必须满足{x +1≠0,1-x ≥0,解得x ≤1且x ≠-1, 即函数定义域为{x |x ≤1且x ≠-1}.[答案] (1){x |x ≠2} (2){x |x >-1且x ≠1}. (3){x |1≤x ≤3} (4){x |x ≤1且x ≠-1}. 方法技巧:求函数定义域的常用方法(1)若f (x )是分式,则应考虑使分母不为零. (2)若f (x )是偶次根式,则被开方数大于或等于零.(3)若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合. (4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集. (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义. 即时巩固1.下列函数的定义域不是R 的是 ( )A .y =x +1B .y =x 2C .y =1xD .y =2x[解析] A 中为一次函数,B 中为二次函数,D 中为正比例函数,定义域都是R ;C 中为反比例函数,定义域是{x |x ≠0},不是R . [答案] C2.已知函数f (x )=√2-x的定义域为M ,g (x )=√x +2的定义域为N ,则M ∩N = ( )A .{x |x ≥-2}B .{x |x <2}C .{x |-2<x <2}D .{x |-2≤x <2}[解析] 由题意得M ={x |x <2},N ={x |x ≥-2},4所以M ∩N ={x |-2≤x <2}. [答案] D 考向二 求函数值 【例3】 已知f (x )=11+x(x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f [g (3)]的值. [解析] (1)∵f (x )=11+x,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112.[答案] (1)f (2)=13g (2)=6 (2)f [g (3)]=112方法技巧:求函数值时,首先要确定出函数的对应法则f 的具体含义,然后将变量代入解析式计算,用a 替换表达式中的x 即得f (a )的值.对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别和函数求值的方法. 即时巩固已知函数f (x )=x 2+x -1.(1)求f (2),f (1x ),f (a +1); (2)若f (x )=5,求x . [解析] (1)f (2)=22+2-1=5,f (1x )=1x 2+1x -1=1+x -x 2x 2,f (a +1)=(a +1)2+(a +1)-1=a 2+3a +1.(2)∵f (x )=x 2+x -1=5, ∴x 2+x -6=0,解得x =2或x =-3. 考向三 求函数值域【例4】求下列函数的值域.(1)y =2x -1,x ∈{1,2,3,4,5}; (2)y =√x -1; (3)y =xx +1. [解析] (1)(直接法)将x =1,2,3,4,5分别代入y =2x -1计算得函数的值域为{1,3,5,7,9}. (2)(观察法)∵函数的定义域为{x |x ≥0}, ∴√x≥0,∴√x -1≥-1.∴函数y =√x -1的值域为[-1,+∞). (3)(分离常数法)∵y =xx +1=1-1x +1, 且定义域为{x |x ≠-1},∴1x +1≠0,即y ≠1. ∴函数y =xx +1的值域为{y |y ∈R ,且y ≠1}. [答案] (1){1,3,5,7,9} (2)[-1,+∞) (3){y |y ∈R ,且y ≠1}. 即时巩固求函数y =3-xx +1的值域. [解析] ∵y =3-xx +1=-1+4x +1,且定义域为{x |x ≠-1},∴1x +1≠0,即y ≠-1. ∴函数y =3-xx +1的值域为{y |y ∈R ,且y ≠-1}. [答案] {y |y ∈R ,且y ≠-1}1.下列对应关系是从集合M 到集合N 的函数的是 ( )A .M =R ,N ={x ∈R |x >0},f :x →|x |B .M =N ,N =N *,f :x →|x -1| C .M ={x ∈R |x >0},N =R ,f :x →x 2D .M =R ,N ={x ∈R |x ≥0},f :x →√x5[解析] 对于A ,集合M 中x =0时,|x |=0,但集合N 中没有0;对于B ,集合M 中x =1时,|x -1|=0,但集合N 中没有0;对于D ,集合M 中x 为负数时,集合N 中没有元素与之对应;分析知C 中对应是集合M 到集合N 的函数. [答案] C2.已知函数f (x )=x 21+|x -1|,则f (-2)= ( )A .-1B .0C .1D .2 [解析] 由题意知f (-2)=(-2)21+|-2-1|=44=1[答案] C3.下列函数中,值域为(0,+∞)的是 ( )A .y =√xB .y =√xC .y =1x D .y =x 2+1[解析] y =√x的值域为[0,+∞),y =1x 的值域为(-∞,0)∪(0,+∞),y =x 2+1的值域为[1,+∞).[答案] B 4.函数y =1-√1-x的定义域为 .[解析] 由{1-x ≥0,1-√1-x ≠0解得x ≤1且x ≠0,用区间表示为(-∞,0)∪(0,1]. [答案] (-∞,0)∪(0,1] 5.求下列函数的值域:(1)y =x +1,x ∈{1,2,3,4,5}; (2)y =2x +1x -3.[解析] (1)(观察法)因为x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}. (2)(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3,显然7x3≠0,所以y ≠2.故函数的值域为(-∞,2)∪(2,+∞).。
初中《函数》教案设计
初中《函数》教案设计教学目标:1. 理解函数的概念,能够识别函数的各个组成部分。
2. 掌握函数的表示方法,包括解析式和表格法。
3. 能够运用函数解决实际问题,提高解决问题的能力。
教学重点:1. 函数的概念及组成部分。
2. 函数的表示方法。
教学难点:1. 函数概念的理解。
2. 函数表示方法的运用。
教学准备:1. 教学课件或黑板。
2. 函数相关例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如变量、自变量、因变量等。
2. 提问:同学们,你们认为什么是函数呢?函数有哪些组成部分?二、新课讲解(15分钟)1. 讲解函数的概念,引导学生理解函数的定义。
2. 解释函数的各个组成部分,如定义域、值域、对应关系等。
3. 举例说明函数的表示方法,包括解析式和表格法。
4. 引导学生通过实例理解函数的实际应用。
三、课堂练习(10分钟)1. 布置一些简单的函数题目,让学生独立完成。
2. 选取部分学生的作业进行讲解和点评。
四、巩固知识(10分钟)1. 通过课件或黑板,展示一些常见的函数图像,如正比例函数、一次函数、二次函数等。
2. 引导学生观察图像,分析函数的特点和性质。
五、拓展提高(10分钟)1. 引导学生思考:函数在实际生活中有哪些应用?2. 举例说明函数在生活中的应用,如温度与海拔的关系、商品价格与数量的关系等。
六、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念和表示方法。
2. 强调函数在实际生活中的重要性。
教学反思:本节课通过讲解、练习、巩固和拓展等环节,帮助学生理解和掌握函数的基本概念和表示方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,结合实际生活中的例子,让学生感受函数的应用价值,提高学生的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念学案
学习目标
1、通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用
2、了解构成函数的要素,进一步巩固初中常见函数(一次函数、二次函数、反比例函数)的图像、定义域、值域
3、理解区间的概念,能准确地利用区间表示数集
4、通过从实际问题中抽象概括函数概念的活动,培养抽象概括能力
教学重点体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念
教学难点函数的概念、符号y=f(x)的理解、
教学流程
一、问题1、在初中,甚至在小学我们就接触过函数,在实际生产生活中,函数也发挥着重要的作用,那么,请大家举出以前学习过的几个具体的函数
问题2、请大家用自己的语言来描述一下函数
二、结合刚才的问题,阅读课本实例(1)、(2)、(3),进一步体会函数的概念问题3、在实例(1)、(2)中是怎样描述变量之间的关系的?你能仿照描述一下实例(3)中恩格尔系数和时间(年)之间的关系吗?
问题4、分析、归纳上述三个实例,对变量之间的关系的描述有什么共同点呢?
函数的概念
一般地,设、是,如果按照某种确定的对应关系,使对于集合中的一个数,在集合中都有和它对应,那么就称为从集合到集合的一个函数,记作其中叫做自变量,的取值范围叫做函数的;与的值相对应的值叫做函数值,函数值的集合叫做函数的
问题5、在实例(2)中,按照图中的曲线,从集合B到集合A能不能构成一个函数呢?请说明理由
练习1、
1、在下列从集合到集合的对应关系中,不可以确定是的函数的是()(1),对应关系
(2),对应关系
(3),对应关系
(4),对应关系
2、下图中,可表示函数的图像只能是()
三、区间的概念
阅读课本,明确区间的概念。