初中数学竞赛试题之三角形
初中数学竞赛专题:三角形

初中数学竞赛专题:三角形§9. 1全等三角形1. 1. 1★已知等腰直角三角形A8C,8C是斜边.々的角平分线交AC于。
,过C作CE与a)垂直且交8。
延长线于邑求证:BD = 2CE.解析如图,延长CE、B4,设交于b・则NF3E = NAb,A8 = AC,得△AB£>gA4b,CF = 8O.乂BE 1.CF, BE 平分/FBC,故BE 平分CF, E为CF 中点、,所以2CE = FC = BD .9. 1. 2★在△ABC中,已知乙4 = 60。
,£、F、G分别为/W、AC、8C的中点,P、Q为AABC形外两点,使总_14从尸£ = ¥,°尸_14。
,0尸=卓,若6尸=1,求尸0的长.解析如图,连结EG、FG ,则EG//AC , FG//AB,故/PEG = 150。
= NQFG . 又QF = -AC = EG , PE 4AB = FG , 故APEG 9AGFQ , 所以2 2PG = GQ , AEGP + ZFGQ = ZFQG + ZFGQ = 30°, 乂ZEGF = 60°,所以NPG0 = 9O。
,于是PQ = 0PG = y/2 .10.1. 3★在梯形A8C0的底边AD上有一点心若八钻石、ABCEx △(7£)七的周长相等,求竺L AD 解析作平行四边形EC8A,则△AB石口\。
£»,若H与A不重合,则H在£4 (或延长线)上,但由三角形不等式易知,A,在E4上时,AABE的周长〉/XAZE的周长;A,在E4延长线上时,AABE的周长<AA f BE周长,均与题设矛盾,故A与H重合,A£〃8C ,同理ED//BC ,£ = =.= = AD 2AA f E11.1.4★★△ABC 内,44。
= 60。
,/4(78 = 40。
初中数学竞赛资料第二辑专题13 三角形的基本知识

专题13三角形的基本知识阅读与思考三角形是最基本的几何图形,是研究复杂几何图形的基础,许多几何问题都可转化为三角形的问题来解.三角形基本知识主要包括三角形基本概念、三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段和角度的计算、图形的计数等方面有广泛的应用.解与三角形的基本知识相关的问题时,常用到数形结合及分类讨论法,即用代数方法解几何计算题及简单的证明题,对三角形按边或按角进行恰当分类.应熟悉以下基本图形:例题与求解【例1】在△ABC中,∠A=50°,高BE,CF交于O,则∠BOC=________.(“东方航空杯”——上海市竞赛试题)解题思路:因三角形的高不一定在三角形内部,故应注意符合题设条件的图形多样性.【例2】等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,则这个等腰三角形底边的长为()A.17cmB.5cmC.5cm或17cmD.无法确定(北京市竞赛试题)解题思路:中线所分两部分不等的原因在于等腰三角形的腰与底的不等,应分情况讨论.【例3】如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 与CF 交于G ,若∠BDC =140°,∠BGC =110°,求∠A 的大小.(“希望杯”邀请赛试题)解题思路:运用凹四边形的性质计算.【例4】在△ABC 中,三个内角的度数均为正数,且∠A <∠B <∠C ,4∠C =7∠A ,求∠B 的度数.(北京市竞赛试题)解题思路:把∠A ,∠C 用∠B 的代数式表示,建立关于∠B 的不等式组,这是解本题的突破口.【例5】(1)周长为30,各边长互不相等且都是整数的三角形共有多少个?(2)现有长为150cm 的铁丝,要截成)2(>n n 小段,每段的长不小于1cm 的整数,如果其中任意3小段都不能拼成三角形,试求n 的最大值.此时有几种方法将该铁丝截成满足条件的n 段.(江苏省竞赛试题)解题思路:对于(1),不妨设三角形三边为a ,b ,c ,且c b a <<,由条件及三角形三边关系定理可确定c 的取值范围,从而可以确定整数c 的值.对于(2),因n 段之和为定值150cm ,故欲使n 尽可能的大,必须使每段的长度尽可能的小.这样依题意可构造一个数列.【例6】在三角形纸片内有2008个点,连同三角形纸片的3个顶点,共有2011个点,在这些点中,没有三点在一条直线上.问:以这2011个点为顶点能把三角形纸片分割成多少个没有重叠部分的小三角形?(天津市竞赛试题)解题思路:本题的解题关键是找到规律:三角形内角每增加1个内点,就增加了2个三角形和3条边.能力训练A 级1.设a ,b ,c 是△ABC 的三边,化简c b a c b a --+++=____________.2.三角形的三边分别为3,a 21-,8,则a 的取值范围是__________.3.已知一个三角形三个外角度数比为2:3:4,这个三角形是_______(按角分类)三角形.4.如图,∠A +∠B +∠C +∠D +∠E 的度数为____________.(“缙云杯“试题)(第4题)(第5题)(第6题)5.如图,已知AB ∥CD ,GM ,HM 分别是∠AGH ,∠CHG 的角平分线,那么∠GMH =_________.(第7题)(第9题)6.如图,△ABC 中,两外角平分线交于点E ,则∠BEC 等于()A .)90(21A ∠-︒B .A ∠+︒2190C .)180(21A ∠-︒D .A ∠-︒211807.如图,在△ABC 中,BD ,BE 分别是高和角平分线,点F 在CA 的延长线上,FH ⊥BE 交BD 于G ,交BC 于H .下列结论:①∠DBE =∠F ;②2∠BEF =∠BAF +∠C ;③∠F =21(∠BAC -∠C );④∠BGH =∠ABE +∠C .其中正确的是()A .①②③B .①③④C .①②③D .①②③④8.已知三角形的每条边长的数值都是2001的质因数,那么这样的不同的三角形共有()A .6个B .7个C .8个D .9个9.如图,将纸片△ABC 沿着DE 折叠压平,则()A .∠A =∠1+∠2B .∠A =21(∠1+∠2)C .∠A =31(∠1+∠2)D .∠A =41(∠1+∠2)(北京市竞赛试题)10.一个三角形的周长是偶数,其中的两条边分别是4和1997,则满足上述条件的三角形的个数是()A .1个B .3个C .5个D .7个(北京市竞赛试题)11.如图,已知∠3=∠1+∠2,求证:∠A +∠B +∠C +∠D =180°.(河南省竞赛试题)12.平面内,四条线段AB ,BC ,CD ,DA 首尾顺次连接,∠ABC =24°,∠ADC =42°.(1)∠BAD 和∠BCD 的角平分线交于点M (如图1),求∠AMC 的大小.(2)点E 在BA 的延长线上,∠DAE 的平分线和∠BCD 平分线交于点N (如图2),求∠ANC .图1图213.三角形不等式是指一个三角形的两边长度之和大于第三边的长度.在下图中,E 位于线段CA 上,D 位于线段BE 上.(1)证明:AB +AE >DB +DE ;(2)证明:AB +AC >DB +DC ;(3)AB +BC +CA 与2(DA +DB +DC )哪一个更大?证明你的结论;(4)AB +BC +CA 与DA +DB +DC 哪一个更大?证明你的结论.(加拿大埃蒙德顿市竞赛试题)B 级1.已知三角形的三条边长均为整数,其中有一条边长是4,但不是最短边,这样的三角形的个数有_______个.(“祖冲之杯”邀请赛试题)2.以三角形的3个顶点和它内部的9个点共12个点为顶点能把原三角形分割成______个没有公共部分的小三角形.3.△ABC 中,∠A 是最小角,∠B 是最大角,且有2∠B =5∠A ,若∠B 的最大值是 m ,最小值是 n ,则=+n m ___________.(上海市竞赛试题)4.如图,若∠CGE =α,则∠A +∠B +∠C +∠D +∠E +∠F =_______.(山东省竞赛试题)(第4题)(第5题)5.如图,在△ABC 中,∠A =96°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于1A 点,BC A 1∠与CD A 1∠的平分线相交于2A 点,依此类推,BC A 4∠与CD A 4∠的平分线相交于5A 点,则5A ∠的大小是()A .3°B .5°C .8°D .19.2°6.四边形ABCD 两组对边AD ,BC 与AB ,DC 延长线分别交于点E ,F ,∠AEB ,∠AFD 的平分线交于点P .∠A =64°,∠BCD =136°,则下列结论中正确的是()①∠EPF =100°;②∠ADC +∠ABC =160°;③∠PEB +∠PFC +∠EPF =136°;④∠PEB +∠PFC =136°.A .①②③B .②③④C .①③④D .①②③④7.三角形的三角内角分别为α,β,γ,且γβα≥≥,βα2=,则β的取值范围是()A . 4536≤≤βB . 6045≤≤βC . 9060≤≤βD .3245≤≤β(重庆市竞赛试题)8.已知周长小于15的三角形三边的长都是质数,且其中一边的长为3,这样的三角形有()A .4个B .5个C .6个D .7个(山东省竞赛试题)9.不等边△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.(第三十二届美国邀请赛试题)10.设m ,n ,p 均为自然数,满足p n m ≤≤且15=++p n m ,试问以m ,n ,p 为三边长的三角形有多少个?11.锐角三角形用度数来表示时,所有角的度数为正整数,最小角的度数是最大角的度数的41,求满足此条件的所有锐角三角形的度数.(汉城国际数学邀请赛试题)12.如图1,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C (0,-2),D (-2,-2).(1)求△BCD 的面积;(2)如图2,若∠BCO =∠BAC ,作AQ 平分∠BAC 交y 轴于P ,交BC 于Q .求证:∠CPQ =∠CQP ;(3)如图3,若∠ADC =∠DAC ,点B 在x 轴正半轴上运动,∠ACB 的平分线交直线AD 于E ,DF ∥AC交y 轴于F ,FM 平分∠DFC 交DE 于M ,EDMF BCF ∠∠-∠2的值是否发生变化?证明你的结论.图1图2图313.如图1,),0(m A ,)0,(n B .且m ,n 满足0)42(32≤-+-n m .图1图2(1)求A ,B 的坐标;(2)C 为y 轴正半轴上一动点,D 为△BCO 中∠BCO 的外角平分线与∠COB 的平分线的交点,问是否存在点C ,使∠D =41∠COB .若存在,求C 点坐标;(3)如图2,C 为y 轴正半轴上A 的上方一动点,P 为线段AB 上一动点,连CP 延长交x 轴于E ,∠CAB 和∠CEB 平分线交于F ,点C 在运动过程中FECO ABO ∠∠+∠的值是否发生变化?若不变求其值;若变化,求其范围.专题13三角形的基本知识例1130°或50°例2B例380°提示:∠A=2∠BGC-∠BDC例4设∠C=x°,则∠A=(47 x)°,∠B=180°-∠C-∠A=180°-117 x°由∠A<∠B<∠C,得47x<180-117x<x.解得70<x<84.∵47x是整数,∴x=77.故∠C=77°,则∠A=44°,∠B=180°-77°-44°=59°.例5(1)不妨设a<b<c,则由30a b ca b c+=-⎧⎨+>⎩,得10<c<15.∵c是整数,∴c=11,12,13,14.当c=11时,b=10,a=9.当c=12时,b=11,a=7;b=10,a=8.当c=13时,b=12,a=5;b=11,a=6;b=10,a=7;b=19,a=8.当c=14时,b=13,a=3;b=12,a=4;b=11,a=5;b=10,a=6;b=9,a=7.(2)这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,89…但1+1+2+5+8+13+21+34+55=143<150,1+1+2+3+5+8+13+21+34+55+89>150,故n的最大值为10.共有以下7种方式:(1,1,2,3,5,8,13,21,34,62);(1,1,2,3,5,8,13,21,35,61);(1,1,2,3,5,8,13,21,36,60);(1,1,2,3,5,8,13,21,37,59);(1,1,2,3,5,8,13,22,35,60);(1,1,2,3,5,8,13,22,36,59);(1,1,2,3,5,8,14,22,36,58).例6解法1我们不妨先考察三角形内有1个点、2个点、3个点…的简单情况,有下表所示的关系:三角形内点数1234…连线得到的小三角形个数3579…不难发现,三角形内有一个点时,连线可得到3个小三角形,以后每增加一个点,这个点必落在某一个小三角形内,它与该三角形的三个顶点可得到三个小三角形,从而增加了两个小三角形,于是可以推出,当三角形内有2008个点是,连线可得到小三角形的个数为:3+2×(2008-1)=4017(个).解法2整体核算法设连线后把原三角形分割成n个小三角形,则它们的内角和为180°·n,又因为原三角形内每一个点为小三角形顶点时,能为小三角形提供360°的内角,2008个点共提供内角2008×360°,于是得方程180n =360×2008+180,解得n =4017,即这2008个点能将原三角形纸片分割成4017个小三角形.A 级1.2(b +c )2.-5<a <-23.钝角4.180°5.90°6.C7.D8.B9.B 10.B11.提示:过G 作GH ∥EB ,可推得BE ∥CF .12.(1)∠AMC =12(∠ABC +∠ADC )=12×(24°+42°)=33°(2)∵AN 、CN 分别平分∠DAE ,∠BCD ,∴可设∠EAN =∠DAB =x ,∠BCN =∠DCN =y ,∴∠BAN =180°-x ,设BC 与AN 交于S ,∴∠BSA =∠CSN ,∴180°-x +∠B =y +∠ANC ,①同理:180°-2x +∠B =2y +∠D ,②由①×2-②得:2∠ANC =180°+∠B +∠D .∴∠ANC =12(180°+24°+42°)=123°.13.(1)(2)略提示:(3)DA +DB >AB ,DB +DC >DC ,DC +DA >CA ,将三个不等式相加,得2(DA +DB +DC )>AB +CB +CA .(4)由(2)知AB +AC >DB +DC ,同理BC +BA >DC +DA ,CA +CB >DA +DB ,故AB +BC +CA >DA +DB +DCB 级1.82.193.175提示:设∠A =(2x )°,∠B =(5x )°,则∠C =180°-(7x )°,由∠A ≤∠C ≤∠B 得15≤x ≤204.2a5.A6.D7.D8.B9.提示:设长度为4和12的高分别是边a ,b 上的,边c 上的高为h ,△ABC 的面积为S ,则24S a =,212S b =,2S c h =,由22222412412S S S S S h -<<+得36h <<,故5h =.10.711.设锐角三角形最小角的度数为x ,最大角的度数为4x ,另一角为y ,则41804490x x y x y x x ++=︒⎧⎪⎨⎪<︒⎩,解得20≤x ≤22.5,故x =20或21或22.所有锐角三角形的度数为:(20°,80°,80°),(21°,75°,84°),(22°,70°,88°).12.(1)S △BCD =2(2)略(3)设∠ABC =x ,则∠BCF =90°+x ,可证:∠E =12x ,∠DMF =45°.∴2(90)245212BCF DMF x E x ∠-∠︒+-⨯︒==∠。
初中数学 八年级竞赛培优训练 直角三角形 含解析

直角三角形【思维入门】1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是() A.120°B.90°C.60°D.30°2.如图1-5-1,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为()A.20 B.12 C.14 D.13图1-5-13.如图1-5-2,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,AB=10 cm,则CD的长为______cm.图1-5-24.将一副三角板拼成如图1-5-3所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1-5-35.如图1-5-4,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,DC . (1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.【思维拓展】6.如图1-5-5,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为____°.图1-5-57.如图1-5-6,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC =______.图1-5-68.如图1-5-7,∠ABC =90°,D ,E 分别在BC ,AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 的中点,FD 与AB 延长线相交于点M . (1)求证:∠FMC =∠FCM ; (2)AD 与MC 垂直吗?并说明理由.图1-5-79.如图1-5-8,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点图1-5-8D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【思维升华】10.如图1-5-9,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,若∠A=40°,则∠ABX+∠ACX=()图1-5-9A.25°B.30°C.45°D.50°11.如图1-5-10,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形,这样的三角形最多能画____个.图1-5-1012.如图1-5-11,点P在△ABC的BC边上,且PC=2PB,若∠ABC=45°,∠APC =60°,则∠ACB的度数是____.图1-5-1113.如图1-5-12,在△ABC中,AC=BC,且∠ACB=90°,点D是AC上一点,AE⊥BD,交BD的延长线于点E,且AE=12BD,则∠ABD=____.图1-5-1214.如图1-5-13,在△ABC中,∠ACB=90°,M是∠CAB的平分线AL的中点,延长CM交AB于K,BK=BC,则∠CAB=____,∠ACK∠KCB=____.图1-5-1315.如图1-5-14,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1-5-14①),求证:M为AN的中点;(2)将图1-5-14①中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图1-5-14②),求证:△CAN为等腰直角三角形;(3)将图1-5-14①中△BCE绕点B旋转到图③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.图1-5-14第5讲直角三角形【思维入门】1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是(D) A.120°B.90°C.60°D.30°2.如图1-5-1,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为(C) A.20 B.12 C.14 D.13图1-5-1【解析】∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.3.如图1-5-2,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,AB=10 cm,则CD的长为__5____cm.图1-5-24.将一副三角板拼成如图1-5-3所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1-5-3解:(1)证明:∵∠DCE=90°,CF平分∠DCE,∴∠DCF =45°,∵△ABC 是等腰直角三角形,∴∠BAC =45°,∴∠BAC =∠DCF ,∴CF ∥AB ; (2)∵∠D =30°,∴∠DFC =180°-30°-45°=105°.5.如图1-5-4,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,DC . (1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数. 解:(1)证明:∵∠ABC =90°,∴∠DBE =180°-∠ABC =180°-90°=90°, ∴∠ABE =∠CBD .在△ABE 和△CBD 中,∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,EB =DB ,∴△ABE ≌△CBD ;(2)∵AB =CB ,∠ABC =90°, ∴△ABC 是等腰直角三角形, ∴∠ECA =45°.∵∠CAE =30°,∠BEA =∠ECA +∠EAC , ∴∠BEA =45°+30°=75°. 由①知∠BDC =∠BEA . ∴∠BDC =75°.【思维拓展】6.如图1-5-5,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为__45__°.图1-5-5【解析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.7.如图1-5-6,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC =__45°____.图1-5-68.如图1-5-7,∠ABC=90°,D,E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.图1-5-7解:(1)证明:∵△ADE是等腰直角三角形,F是AE的中点,∴DF⊥AE,DF=AF=EF.又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF.又∵∠DFC=∠AFM=90°,∴△DFC≌△AFM.∴CF=MF.∴∠FMC=∠FCM;(2)AD⊥MC.由(1)知∠MFC=90°,FD=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.9.如图1-5-8,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点图1-5-8D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.证明:(1)∵∠ACB=90°,CG平分∠ACB,AC=BC.∴∠BCG=∠CAB=45°,又∵∠ACF=∠CBG,AC=BC,∴△ACF≌△CBG(ASA),∴AF=CG;(2)如答图,延长CG交AB于点H.∵AC=BC,CG平分∠ACB,∴CH⊥AB,H为AB的中点,又∵AD⊥AB,∴CH∥AD,∴G为BD的中点,∠D=∠EGC,∵E为AC的中点,∴AE=EC,又∵∠AED=∠CEG,∴△AED≌△CEG,∴DE=EG,∴DG=2DE,∴BG=DG=2DE,由(1)得CF=BG,∴CF=2DE.第9题答图【思维升华】10.如图1-5-9,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,若∠A=40°,则∠ABX+∠ACX=(D)图1-5-9A.25°B.30°C.45°D.50°11.如图1-5-10,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形,这样的三角形最多能画__3__个.图1-5-10【解析】如答图.①AC为直角边时,符合的等腰直角三角形有2个,一个是以∠BAC为直角,一个是以∠ACB为直角;②AC为斜边时,符合的等腰直角三角形有1个.∴这样的三角形最多能画3个,12.如图1-5-11,点P在△ABC的BC边上,且PC=2PB,若∠ABC=45°,∠APC=60°,则∠ACB的度数是__75°__.图1-5-11【解析】过C作AP的垂线CD,垂足为点D,连结BD.∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°.13.如图1-5-12,在△ABC中,AC=BC,且∠ACB=90°,点D是AC上一点,AE⊥BD,交BD的延长线于点E,且AE=12BD,则∠ABD=__22.5°__.第11题答图图1-5-12 第13题答图【解析】 延长AE ,BC 交于点F .∵AE ⊥BE , ∴∠BEF =90°,又∵∠ACF =∠ACB =90°, ∴∠DBC +∠AFC =∠F AC +∠AFC =90°, ∴∠DBC =∠F AC , 在△ACF 和△BCD 中,⎩⎨⎧∠ACF =∠BCD =90°,AC =BC ,∠F AC =∠DBC ,∴△ACF ≌△BCD (ASA ), ∴AF =BD . 又∵AE =12BD ,∴AE =EF ,即点E 是AF 的中点. ∴AB =BF ,∴BD 是∠ABC 的角平分线. ∴∠ABD =22.5°.14.如图1-5-13,在△ABC 中,∠ACB =90°,M 是∠CAB 的平分线AL 的中点,延长CM 交AB 于K ,BK =BC ,则∠CAB =__45°__,∠ACK ∠KCB=__13__.图1-5-13【解析】 设∠CAB =2α.∵AM =ML ,且∠ACB =90°,∴CM =MA , ∴∠ACM =∠MAC =α.∴∠CKB =∠CAK +∠ACM =3α, ∠KCB =90°-∠ACM =90°-α. ∵BK =BC , ∴∠CKB =∠KCB .∴3α=90°-α,即α=22.5°. ∴∠CAB =45°,∠ACK ∠KCB =22.5°67.5°=13.15.如图1-5-14,已知△BAD 和△BCE 均为等腰直角三角形,∠BAD =∠BCE =90°,点M 为DE 的中点.过点E 与AD 平行的直线交射线AM 于点N .(1)当A ,B ,C 三点在同一直线上时(如图1-5-14①),求证:M 为AN 的中点; (2)将图1-5-14①中△BCE 绕点B 旋转,当A ,B ,E 三点在同一直线上时(如图1-5-14②),求证:△CAN 为等腰直角三角形;(3)将图1-5-14①中△BCE 绕点B 旋转到图③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.图1-5-14证明:(1)∵点M 为DE 的中点,∴DM =ME . ∵AD ∥EN ,∴∠ADM =∠NEM ,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点;(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠ACN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45°+∠MEN+∠BED =∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN为等腰直角三角形,∴(2)中的结论仍然成立.。
数学相似三角形(竞赛题专页)

几何:2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)· GAO DB EC Q P NM · O Q PBDEC N M · A OD BFAECP P ADCB4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.1.∠ABC 的顶点B 在⊙O 外,BA 、BC 均与⊙O 相交,过BA 与圆的交点K 引∠ABC 平分线的垂线,交⊙O 于P ,交BC 于M 。
求证:线段PM 为圆心到∠ABC 平分线距离的2倍。
EDCBA2.在△ABC中,AP为∠A的平分线,AM为BC边上的中线,过B作BH⊥AP于H,AM的延长线交BH于Q,求证:PQ∥AB。
3.菱形ABCD的内切圆O与各边分别切于E、F、G、H,在EF与GH上分别作⊙O的切线交AB于M,交BC于N,交CD于P,交DA于Q。
求证:MQ∥NP。
4.ABCD是圆内接四边形,其对角线交于P,M、N分别是AD、BC的中点,过M、N分别作BD、AC的垂线交于K。
求证:KP⊥AB。
5.以△ABC的边BC为直径作半圆,与AB、AC分别交于点D、E。
与三角形的角有关的竞赛题

word 专业资料-可复制编辑-欢迎下载与三角形的角有关的竞赛题.(1996年“希望杯”全国数学邀请赛初二试题)已知:如图23,DO 平分∠ADC ,BO 平分∠ABC ,且∠A=270,∠O=330,则∠C 的大小是 . 2.(1994年四川省初中数学竞赛试题)如图24,已知∠xoy=900,点A 、B 分别在射线ox 、oy 上移动,∠OAB 的内角平分线与∠OBA 的外角平分线交于点C .试问∠ACB 的大小是否变动?证明你的结论.3.(江苏省第十五届初中数学竞赛初二第1试试题)如图25,XK ,ZF 是△XYZ 的高且交于一点H ,∠XHF =400,那么∠XYZ = 度.A BOF X Y图23 图24 图254.在△ABC 中,∠A=70°,∠B=50°,过A 、B 两点分别作BC 和AC 的垂线,这两条垂线相交于O ,则∠AOB 等于( ) A.120° B.60° C.70°或50° D.60°或120°5.(江苏省第十八届初中数学竞赛初一年级第1试)如图26,在一个正方体的两个面上画了两条对角线AB ,AC ,那么这两条对角线的夹角等于( )A 、600B 、750C 、900D 、13506. (2004年富阳市初一数学竞赛试卷)如图27,已知AB ∥ED ,∠C =900,∠ABC =∠DEF ,∠D =1300,∠F =1000,求∠E 的大小。
7.(1988年上海市初二数学竞赛)一个六边形的六个内角都是1200,连续四边的长依次是1,3,3,2,则该六边形的周长是____.8.已知空间中有8个点,其中任四点不在同一个平面上,在这8点中间连结21条线段,则这些线段最多能构成的三角形的个数为( ) (A)56 (B)35 (C)21 (D)以上都不对9.平面上有n 个点,其中每三个点都是某个正三角形的顶点,则n 的最大值是 .10. (1988年上海市初二数学竞赛试题) ABC ∆中,A ∠是最小角,B ∠是最大角,且25B A ∠=∠,若B ∠的最大的值是m 0最小值是n 0,则m n += .11.如图28所示,四边形ABCD 中,AB=AC=AD,(1) 若∠DAC=2∠BAC,则∠DBC=2∠BDC,说明理由;(2) 试猜想当∠DAC=3∠BAC,∠DAC=4∠BAC,…,∠DAC=n ∠BAC 时,∠DBC 与∠BDC 有何关系?并说明你的理由O D C B A。
数学初中竞赛《三角形的五心》专题训练(含答案) (1)

数学初中竞赛《三角形的五心》专题训练一.选择题1.如图,已知直线MN∥AB,把△ABC剪成三部分,点C在直线AB上,点O在直线MN上,则点O是△ABC的()A.垂心B.重心C.内心D.外心2.课本第5页有这样一个定义“三角形的三条中线的交点叫做三角形的重心”.现在我们继续定义:①三角形三边上的高线的交点叫做三角形的垂心;②三角形三条内角平分线的交点叫做三角形的内心;③三角形三边的垂直平分线的交点叫做三角形的外心.在三角形的这四“心”中,到三角形三边距离相等的是()A.重心B.垂心C.内心D.外心3.如图为4×4的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的重心B.△ABC的外心C.△ACD的内心D.△ABC的垂心4.如图,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF等于()A.a:b:c B.::C.sin A:sin B:sin C D.cos A:cos B:cos C5.在△ABC中,两中线AD与CF相交于点G,若∠AFC=45°,∠AGC=60°,则∠ACF的度数为()A.30°B.45°C.60°D.75°6.如图,已知△ABC的三个顶点分别在反比例函数y=(k>0)的图象上,那么△ABC的()也一定在该函数图象上.A.重心B.内心C.外心D.垂心7.如图,已知H是△ABC的垂心,△ABC的外接圆半径为R,△BHC的外接圆半径为r,则R 与r的大小关系是()A.R=r B.R>r C.R<r D.无法确定8.以Rt△ABC的两条直角边AB、BC为边,在三角形ABC的外部作等边三角形ABE和等边三角形BCF,EA和FC的延长线相交于点M,则点B一定是三角形EMF的()A.垂心B.重心C.内心D.外心9.如图,锐角△ABC的垂心为H,三条高的垂足分为D、E、F,则H是△DEF的()A.垂心B.重心C.内心D.外心10.三个等圆O 1,O 2,O 3有公共点H ,点A 、B 、C 是其他交点,则H 是三角形ABC 的( )A .外心B .内心C .垂心D .重心二.填空题11.在半径为1的⊙O 中内接有锐角△ABC ,H 是△ABC 的垂心,角平分线AL 垂直于OH ,则BC = .12.如图,ADCFBE 是某工厂车间的一种剩余残料,且∠ACB =90°,现需要利用这块残料在△ABC 的外部制作3个等边△ADC 、△CBF 、△ABE 的内切圆⊙O 1、⊙O 2、⊙O 3,若其中最大圆⊙O 3的半径为0.5米,可使生产成本节约3元(节约成本与圆面积成正比),照此计算,则10块这样的残料可使生产成本节约 元.13.如图,在△ABC 中M 为垂心,O 为外心,∠BAC =60°,且△ABC 外接圆直径为10,则AM = .14.如图,锐角三角形ABC 内接于半径为R 的⊙O ,H 是三角形ABC 的垂心,AO 的延长线与BC 交于点M ,若OH ⊥AO ,BC =10,OA =6,则OM 的长= .15.设凸四边形ABCD 的对角线AC 与BD 相交于O ,△OAB ,△OBC ,△OCD ,△ODA 的重心分别为E ,F ,G ,H ,则S EFGH :S ABCD = .16.如图,I 是Rt △ABC (∠C =90°)的内心,过I 作直线EF ∥AB ,分别交CA 、CB 于E 、F .已知EI=m,IF=n,则用m、n表示S△ABC=.17.已知点I是锐角三角形ABC的内心,A1、B1、C1分别是点I关于边BC,CA,AB的对称点,若点B在△A1B1C1的外接圆上,则∠ABC等于.三.解答题18.如图所示,已知锐角△ABC的外接圆半径R=1,∠BAC=60°,△ABC的垂心和外心分别为H、O,连接OH、BC交于点P(1)求凹四边形ABHC的面积;(2)求PO•OH的值.19.如图,AD,BE,CF是△ABC的高,K,M,N分别为△AEF,△BFD,△CDE的垂心,求证:△DEF≌△KMN.20.如图,点H为△ABC的垂心,以AB为直径的⊙O1和△BCH的外接圆⊙O2相交于点D,延长AD交CH于点P,求证:点P为CH的中点.21.如图,△ABC的三边满足关系BC=(AB+AC),O、I分别为△ABC的外心、内心,∠BAC 的外角平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H,求证:(1)AI=BD;(2)OI=AE.22.如图,H是锐角△ABC的垂心,O为△ABC的外心,过O作OD⊥BC,垂足为D.(1)求证:AH=2OD;(2)若AO=AH,求∠BAC的度数.23.如图,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且∠FDE =∠A ,∠DEF =∠B .又设△AFE ,△BDF ,△CED 均为锐角三角形,它们的垂心依次为H 1,H 2,H 3,求证:1.∠H 2DH 3=∠FH 1E ;2.△H 1H 2H 3≌△DEF .24.如图,△ABC 为锐角三角形,CF ⊥AB 于F ,H 为△ABC 的垂心.M 为AH 的中点,点G 在线段CM 上,且CG ⊥GB .(1)求证:∠MFG =∠GCF ;(2)求证:∠MCA =∠HAG .25.如图,已知H 为锐角△ABC 的垂心,D 是使四边形AHCD 为平行四边形的一点,过BC 的中点M 作AB 的垂线,垂足为N ,K 为MN 的中点,过点A 作BD 的平行线交MN 于点G ,若A ,K ,M ,C 四点共圆.求证:直线BK 平分线段CG .参考答案一.选择题1.解:如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F∵MN∥AB,OD=OE=OF(夹在平行线间的距离处处相等)如图2,过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F',由裁剪知,OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点,∴点O是△ABC的内心,故选:C.2.解:内心是三角形的三条内角平分线的交点,而角平分线上的点到角的两边的距离相等,所以在三角形的四“心”中,到三角形三边距离相等的是内心;到三个顶点的距离相等的是外心.故选:C.3.解:如图,连接OA、OB、OC、OD,设每一个小方格的边长为1,由勾股定理可求得OA=OB=OC=,OD=2,∴O点在AB、AC、BC的垂直平分线上,∴点O为△ABC的外心,∵OA=OC≠OD,∴点O即不是△ACD的重心,也不是△ACD的内心,故选:B.4.解:如图,连接OA、OB、OC;∵∠BOC=2∠BAC=2∠BOD,∴∠BAC=∠BOD;同理可得:∠BOF=∠BCA,∠AOE=∠ABC;设⊙O的半径为R,则:OD=R•cos∠BOD=R•cos∠A,OE=R•cos∠AOE=R•cos∠B,OF=R•cos∠BOF=R•cos∠C,故OD:OE:OF=cos∠A:cos∠B:cos∠C,故选:D.5.解:∵点G是△ABC的重心,∴=2,作CE⊥AG于点E,连接EF,∴△CEG是直角三角形,∵∠EGC=60°,∴∠ECG=30°,那么EG=CG=GF,∴GE=GF,∠FGE=120°,∴∠GFE=∠FEG=30°,而∠ECG=30°,∴EF=EC,∵∠EFA=45°﹣30°=15°,∠FAD=∠AGC﹣∠AFC=15°,∴∠FAD=∠EFA,∴EF=AE,∴AE=EC,∵△AEC是等腰直角三角形,∴∠ACE=45°,∴∠ACF=∠ACE+∠ECF=30°+45°=75°,故选:D.6.解:结论:△ABC的垂心也一定在该函数图象上;理由:∵A、B、C都在y=上,∴可设A、B、C的坐标依次是:(a,)、(b,)、(c,).令H的坐标为(x,y).容易得出:AB的斜率==﹣,BC的斜率==﹣,AH的斜率=,CH的斜率=,∵AH⊥BC,CH⊥AB,∴=,=,∴a•=c•,∴(k﹣ay)(c﹣x)=(k﹣cy)(a﹣x),∴ck﹣kx﹣acy+axy=ak﹣kx﹣acy+cxy,∴(a﹣c)xy=(a﹣c)k.显然,a﹣c≠0,∴xy=k,即:y=.∴点H(x,y)在反比例函数y=的图象上.故选:D.7.解:如图,延长AD交△ABC的外接圆于G,连接BG,CG,∴△ABC的外接圆的半径等于△BGC的外接圆的半径,∵△ABC的外接圆半径为R,∴△BGC的外接圆半径为R,∵点H是△ABC的垂心,∴AD⊥BC,BE⊥AC,∴∠ADC=∠BEC=90°,∴∠CAD+∠ACB=90°,∠CBE+∠ACB=90°,∴∠CAD=∠CBE,∵∠CBG=∠CAD,∴∠CBE=∠CBG,同理:∠BCF=∠BCG,在△BCH和△BCG中,,∴△BCH≌△BCG(ASA),∴△BHC的外接圆的半径等于△BGC的外接圆的半径,∵△BHC的外接圆半径为r,∴△BGC的外接圆的半径为r,∴R=r,故选:A.8.解:如图,连接CE,AF,延长EB交MF于G,延长FB交ME于H,∵以Rt△ABC的两条直角边AB,BC为边作等边△ABE和等边△BCF,∴∠CBE=90°+60°=150°,∠FBE=360°﹣90°﹣60°﹣60°=150°,在△CBE与△FBE中,,∴△CBE≌△FBE(SAS);∴CE=FE,∠FEB=∠CEB,∴BE⊥CF于G,∴EG是△MEF的边FM上的高,同理:FH是△MEF的边EM上的高,∴点B是△MEF的三边的高,即:点B是△MEF的垂心.故选:A.9.解:∵BE丄AC,CF丄AB,∴四点B、C、E、F共圆(以BC为直径),∴∠EBF=∠FCE,∵HD丄BD,HF丄BF,∴四点B、D、H、F共圆(以BH为直径),∴∠HBF=∠FDH,同理,四点C、D、H、E共圆,(以CH为直径),∠HDE=∠HCE,∴∠HDE=∠HDF,∴DA平分∠EDF即可.同理可证EB平分∠DEF,FC平分∠EFD,∴H是△DEF的角平分线的交点,∴H是△DEF的内心.故选:C.10.解:延长AH交BC于E点,延长CH交AB于F点,如图,∵三个等圆O1,O2,O3有公共点H,∴∠1所对的弧BH与∠4所对的弧BH为等弧;∠2所对的弧CH与∠5所对的弧CH为同弧;∠3所对的弧AH与∠6所对的弧AH为同弧,∴∠1=∠4,∠2=∠5,∠3=∠6,∵∠1+∠2+∠3+∠4+∠5+∠6=180°,∴2∠2+2∠3+2∠4=180°,2∠1+2∠3+2∠2=180°,∴∠2+∠3+∠4=90°,∠1+∠3+∠2=90°,∴AE⊥BC,CF⊥AB,∴点H为△ABC的垂心.故选:C.二.填空题(共7小题)11.解:设AL与⊙O交于点D,与OH交于点N,连接OD,交BC于点M,连接CO并延长交⊙O于点G,连接GA、GB、AO,如图所示,∵CG是⊙O的直径,∴∠CBG=∠CAG=90°,∴BG⊥BC,AG⊥AC.∵H为△ABC的垂心,∴AE⊥BC,BF⊥AC,∴AE∥BG,AG∥BF,∴四边形AGBH是平行四边形,∴BG=AH.∵AL平分∠BAC,∴∠BAD=∠CAD,∴=,根据垂径定理的推论可得:OD⊥BC.∵AE⊥BC,∴OD∥AE,∴∠ODA=∠EAD.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EAD.∵AL垂直于OH,∴∠ANO=∠ANH=90°.在△ANO和△ANH中,,∴△ANO≌△ANH(ASA),∴AO=AH,∴BG=AH=AO=1.在Rt△GBC中,∵BG=1,GC=2,∴BC==.故答案为:.12.解:由勾股定理和相似图形的性质可知,⊙O1的面积+⊙O2的面积=⊙O3的面积,∵⊙O3可使生产成本节约3元,∴1块这样的残料可使生产成本节约6元.则10块这样的残料可使生产成本节约6×10=60元.故答案为:60.13.解:延长AM交BC于D,延长CM交AB于E,作直径BF,连结AF,如图,∵BF为⊙的直径,∴∠BAF=90°,∴sin F==,∴AB=10•sin F=10•sin∠ACB,又∵点M为△ABC的垂心,∴AD⊥BC,CE⊥AB,∴∠ADB=∠AEC=90°,∴△AEM∽△ADB,∴=,即AM=,在Rt△AEC中,∠EAC=60°,AC=2AE,即AE=AC,在Rt△ADC中,sin∠ACD=,即AD=AC•sin∠ACD,∴AM==5.故答案为5.14.解:如图,连接BO并延长交圆于F,连接CF,AH,连接AF,CH,过点O作ON⊥BC于N,∵BF是⊙O的直径,∴∠BCF=∠BAF=90°,∴ON∥FC,∵OB=OF,∴ON是△BCF的中位线,∴CF=2ON.∴BN=CN=BC=5,在Rt△OBN中,OB=OA=6,BN=5,∴ON==,∴CF=2ON=2,∵H是△ABC的垂心,∴AH⊥BC,∵CF⊥BC,∴AH∥CF,同理可得:CH∥AF,∴四边形AHCF是平行四边形,∴AH=CF=2∵H是△ABC的垂心,∴AH⊥BC,∵ON⊥BC,∴AH∥ON,∴∠OAH=∠NOM,∵OH⊥AM,∴∠AOH=∠ONM=90°,∴△AOH∽△ONM,∴,∴,∴OM=.故答案为.15.解:如图:∵E、F分别是△OAB与△OBC的重心,∴,∴EF∥AC,同理:FG∥BD,HG∥AC,HE∥BD,∴ERUQ,RUSF,USGT,THQU,EFGH是平行四边形,∵,∴,同理:,∴,∴,同理:,,.∴.16.解:如图,过I分别作三边的垂线,垂足为D、F、G,设AB=c,BC=a,AC=b,ID=IH=IG=r,由△ABC∽△EIG∽△IFH,得=,=,解得a=,b=,由勾股定理,得c2=a2+b2,得1=+,解得r=,又ab=2S△ABC=r(a+b+c),∴=r(++c),解得c=m+n+=m+n+,∴S△ABC=ab==()2(m+n+)2=.故答案为:.17.解:∵I是锐角三角形ABC的内心,∴∠DBI=∠ABC,∵A1、B1、C1分别是点I关于边BC,CA,AB的对称点,∴ID=A1D=IA1,∠BDI=90°,∵点B在△A1B1C1的外接圆上,∴IB=IA1,∴ID=IB,∴∠IBD=30°,∴∠ABC=60°.故答案为:60°.三.解答题(共8小题)18.解:(1)如图:连接BO并延长交⊙O于点G,连接AG、CG、CO,延长CH交AB于F,延长BH交AC于E,延长AH交BC于N,作OM⊥BC于M.∵BG是直径,∴GA⊥AB,GC⊥BC,∵H为垂心,∴BE⊥AC,CF⊥AB,AN⊥BC,∴GA∥CH,GC∥AH,∴AGCH是平行四边形,∴AG=GC,∵∠BA C=60°,OB=OC,∴∠OBC=∠OCB=30°,∴OM=OB=,BM=,∴BC=,又∵OM=CG,∴AH=2OM=1,设凹四边形的面积为S,则S=S△AHB+S△AHC=×AH×BN+×AH×CN=×AH×BC=,(2)∵BE⊥AC,CF⊥AB,AN⊥BC,∠BAC=60°,∴∠ACF=30°,∴∠CHE=60°,∴∠BHC=120°,∴B、C、H、O四点共圆,∵∠OBC=∠OCB=30°,∴∠CHP=∠OBC=30°,∴∠OHC=∠OCP=150°,∴△OHC∽△OCP,∴OH•OP=OC2=1.19.证明:如图:∵OD⊥BC,FM⊥BC,∴OD∥FM,∵OF⊥AB,DM⊥AB,∴OF∥DM,∵DMFO是平行四边形,同理OFKE,ODNE均为平行四边形,∴MD∥KE,MD=KE,∴MDEK也是平行四边形,∴DE=MK,同理DF=KN,EF=MN∴△DEF≌△KMN(SSS).于点Q,20.证明:如图,延长AP交⊙O2连接AH,BD,QB,QC,QH.因为AB为⊙O的直径,1所以∠ADB=∠BDQ=90°.(5分)故BQ为⊙O的直径.2于是CQ⊥BC,BH⊥HQ.(10分)又因为点H为△ABC的垂心,所以AH⊥BC,BH⊥AC.所以AH∥CQ,AC∥HQ,四边形ACQH为平行四边形.(15分)所以点P为CH的中点.(20分)21.证明:(1)作IG⊥AB于G点,连BI,BD,如图,∴AG=(AB+AC﹣BC),而BC=(AB+AC),∴AG=BC,又∵AD平分∠BAC,AE平分∠BAC的外角,∴∠EAD=90°,∴O点在DE上,即ED为⊙O的直径,而BD弧=DC弧,∴ED垂直平分BC,即BH=BC,∴AG=BH,而∠BAD=∠DAC=∠DBC,∴Rt△AGI≌Rt△BHD,∴AI=BD;(2)∵∠BID=∠BAI+∠ABI,而∠BAI=∠DBC,∠ABI=∠CBI,∴∠DBI=∠BID,∴ID=DB,而AI=BD,∴AI=ID,∴OI为三角形AED的中位线,∴OI=AE.22.(1)证明:如图1,连接BH并延长交AC于E,∴BE⊥AC,过O作OF⊥AC于F,则F为AC的中点,连接CH,取CH中点N,连接FN,DN,则FN∥AM,AH=2FN,DN∥BE,∵AM⊥BC,OD⊥BC,∴OD∥AM,∴FN∥OD,∵BE⊥AC,OF⊥AC,∴BE∥OF,∵OD⊥BC,∴D为BC中点,∵N为CH中点,∴DN∥BE,∴DN∥OF,∴四边形ODNF是平行四边形,∴OD=FN,∵AH=2FN,∴AH=2OD.(2)解:如图2,连接OB,OC,∴OA=OB,∵OA=AH,∴OB=AH,由(1)知,AH=2OD,∴OB=2OD,在Rt△ODB中,cos∠BOD==,∴∠BOM=60°,∵OD⊥BC,∴∠BOC=2∠BOD=120°,∴∠BAC=∠BOC=60°.23.证明:(1)∵H2是△BDF的垂心,⊥BF,∴DH2DB=90°﹣∠B,∴∠H2同理:∠H 3DC =90°﹣∠C ,∴∠H 2DH 3=180°﹣∠H 2DB ﹣∠H 3DC =∠B +∠C , ∵H 1是△AEF 的垂心,∴∠H 1EF =90°﹣∠AFE ,∠H 1FE =90°﹣∠AEF , ∴∠EH 1F =180°﹣∠H 1EF ﹣∠H 1FE =180°﹣(90°﹣∠AFE )﹣(90°﹣∠AEF ) =180°﹣∠A =∠B +∠C ,∴∠H 2DH 3=∠FH 1E ;(2)如图,由(1)知,∠FH 1E =∠B +∠C , ∵∠FDE =∠A ,∠A +∠B +∠C =180°, ∴∠FH 1E +∠EDF =180°,∴H 1在△DEF 的外接圆上,同理:H 2,H 3也在△DEF 的外接圆上, ∴D ,H 2,F ,H 1,E ,H 3六点共圆, 由(1)知,∠EH 1F =∠H 2DH 3, ∴EF =H 2H 3,同理:DF =H 1H 3,DE =H 1H 2,∴△DEF ≌△H 1H 2H 3(SSS ).24.证明:(1)如图延长AH 交BC 于T . ∵H 是△ABC 的垂心,∴∠THC =∠HFA =90°,∵∠THC =∠AHF ,∴∠HCT =∠FAH ,在Rt △AFH 中,∵AM =MH ,∴FM=AM=MH,∴∠FAH=∠MFA,∴∠MFA=∠HCT,∵BG⊥CM,∴∠BFC=∠BGC=90°,∴B、C、G、F四点共圆,∴∠AFG=∠BCG,∴∠AFM+∠MFG=∠HCT+∠MCF,∴∠MFG=∠GCF.(2)∵∠FMG=∠FMC,∠MFG=∠MCF,∴△MFG∽△MCF,∴=,∴MF2=MG•MC,∵MA=MF,∴MA2=MG•MC,∴=,∵∠AMG=∠AMC,∴△MAG∽△MCA,∴∠MCA=∠HAG.25.证明:如图,设BK交CG于E,连接AG,AK,∵A,K,M,C四点共圆,∴∠AC B=∠AKG(外角等于内对角),∵H是△ABC的垂心,∴AH⊥BC,CH⊥AB,∵四边形AHCD是平行四边形,∴CH∥AD,AH∥CD,∴CD⊥BC,AD⊥AB,∴∠BCD=∠BAD=90°,∴∠BAD+∠BCD=180°,∴点A,B,C,D四点共圆,∴∠5=∠ACB=∠AKG,∵AH⊥BC,MN⊥AB,AD⊥AB,∴∠1=∠2=∠4,∵AG∥BD,∴∠3=∠4=∠2,在△ANG和△ANK中,,∴△ANG≌△ANK,∴GN=KN=MK,∴MK=KG,∵直线BKE截得△GMC,由梅涅劳斯定理得:,∵点M是CB中点,∴CB=2BM,∴GE=EC,∴直线BK平分线段CG.。
2024全国初中数学竞赛试题

1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。
江苏数学竞赛初中试题及答案

江苏数学竞赛初中试题及答案试题一:代数基础题题目:已知 \( a \) 和 \( b \) 是两个正整数,且 \( a^2 - b^2 = 21 \),求 \( a \) 和 \( b \) 的值。
答案:根据差平方公式,\( a^2 - b^2 = (a+b)(a-b) \)。
已知\( a^2 - b^2 = 21 \),我们可以将21分解为两个因数的乘积,即\( 21 = 3 \times 7 \)。
考虑到 \( a \) 和 \( b \) 是正整数,我们可以得出 \( a = 7 \),\( b = 3 \)。
试题二:几何题题目:在一个直角三角形中,如果一个锐角是另一个锐角的两倍,求这个三角形的三个角度数。
答案:设较小的锐角为 \( x \) 度,则较大的锐角为 \( 2x \) 度。
根据直角三角形的性质,三个角的和为180度,因此有 \( x + 2x + 90 = 180 \)。
解这个方程,我们得到 \( 3x = 90 \),所以 \( x = 30 \)。
因此,较小的锐角是30度,较大的锐角是60度,直角是90度。
试题三:数列题题目:一个数列的前三项为 \( 2, 4, 7 \),从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:根据题意,数列的前几项为:2, 4, 7, (2+4+7), (4+7+13), ...即:2, 4, 7, 13, 24, 41, 75, 130, 231, ...第10项的值为 \( 231 \)。
试题四:逻辑推理题题目:有5个盒子,每个盒子里都装有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人从每个盒子里都拿了一个球,但没有人拿到两个相同数量的球。
每个人拿的球的总数都是6个。
问每个人分别从哪些盒子里拿球?答案:设5个人分别为A、B、C、D、E。
根据题意,每个人拿的球的总数都是6个,且没有人拿到两个相同数量的球。
我们可以列出以下可能的组合:- A: 1, 2, 3- B: 1, 3, 4- C: 1, 4, 5- D: 2, 3, 5- E: 2, 4由于每个人拿的球的总数都是6个,我们可以排除E的组合,因为2+4=6,没有第三个球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛试题之三角形
满分: 100 分
时间:100分钟
一.选择题(共6小题,每题3分,共18分)
1.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则∠B的度数为()
A.40° B.70° C.70°或20° D.40°或70°
2.如图,在△ABC中,∠C=90°,AB=,BD平分∠ABC交AC于D,若AD∶DC=5∶2,则点D到AB的距离为()
A.10 B. 4 C.
D.
3.如图,△ABC中,AB=AC=BD,∠ADC=108°,则下列选项不正确的是()
A.点D是线段BC的黄金分割点 B.△ABD中∠BAD的角平分线与CD 相等
C.BC-AD=CA D.CD=BC
4.如图,△ABC中,∠B、∠C的角平分线相交于点O,过点O分别作三边的平行线,若AB∶BC∶CA=6∶7∶5,则阴影部分面积之和与△ABC面积之比为()
A.B.C. D.
5.已知在Rt△ABC中,D为AC上一点,
,则等于()A. B.2 C. D.
A
第7题
D
第4题
C
B
第3题
第2题
6.老师给小明一道数学题,要求他将题补充完整:某农民要在一块面积为144米2的矩形荒地上建一个花坛, 花坛四周是宽度为1米的小路,中央是矩形的花圃,要
求花圃面积为99.2米2.已知小明列出的方程为,那么小明找的等量关系是()
A.荒地的长或宽B.四周小路的面积C.花圃的长或宽D.只有设两个未知数才能解决问题
二.填空题(共8小题,每小题3分,共24分)
7.如图所示,□ABCD中,∠BCD的平分线CE交AD于点E,DE = 2AE = 4cm,梯形ABCE的面积为12.8cm2,则CE的长为_______。
8.将两只三角板如图所示的放置,有两条边恰好完全重合,记上、下两块三角板的面积分别
为、,若能覆盖它们的最小的圆面积为,则______。
第8题
9.三边皆为整数的等腰三角形的周长为11,则其面积的可能值
有。
10.腰长为2 cm的等腰三角形的面积为1 cm2,则它的底边长为。
11.如图,BD是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,已知AE∶FC=9∶5,AB=30cm,BC=26cm,则△DEF的面积为。
12.如图,把一张矩形纸片ABCD沿BD对折,使点C落在E处,BE与AD相交于点O,若BC=8,,则AE= 。
13.如图,△ABC中,BC=5,AB的中垂线PD交BC于D,AC的中垂线QE交BC于E,PQ分别交AD、CE于点F、G,则折线DFGE的长度为。
14. 如图,将矩形ABCD沿EF折叠,使得点A恰与点C重合;已知折痕EF =5cm,且折叠后所得图形的面积与原矩形面积之比等于11∶16,那么原矩形的周长为。
第14题
第13题
第12题
第11题
三.解答题(共8大题,共58分)
15.(5分)如图,在ΔABC中,.用尺规作图作AC边上的中线BD(保留作图痕迹,不要求写作法、证明),并求BD的长。
16.如图,△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线;
(1)(3分)若CD=5,求AC的长;
(2)(4分)求证:AB=AC+CD。
17.如图,已知在△ABC中,AB=AC,AB的垂直平分线D交AC于点E,CE的垂直平分线正好经过点B,与A相交于点F;
(1)(3分)求∠A的度数;(2)(4分)求cos∠CBE。
18.如图,在矩形ABCD中,AB=6,BC=8,将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处。
(1)(3分)求梯形ABCE的面积;(2)(3分)延长EF交BC于点G,试求。
19.△ABC中,,AB的中垂线OD交BC边于点D,连结AD;
(1) (2分)求∠DAC的度数;
(2) (3分)求△ABC的面积;
(3)(3分)直线DO与CA的延长线交于点E,试求BE。
20. 如图,正方形ABCD内一点P,
;
(1)(2分)求;
(2)(3分)求证:;
(3)(2分)求PB。
21.如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC Q
向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移
动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒;
(1) (2分)当t = 4时,求线段PQ的长度;
(2) (3分)当t为何值时,△PCQ的面积等于16cm2?
(3)(3分)点O为AB的中点,连结OC,能否使得PQ⊥OC?若能,求出t的值;若不能,请说明理由。
O
22. 在△ABC中,AB=BC=2,∠ABC=80°,BD、AE分别是
∠ABC、∠BAC的角平分线,且交于点O,F、G分别为AB、AC上一点,使得
CB=CF=CG;
(1)(2分)求证:;
(2)(2分)请找出图中的相似三角形(不包括全等三角形);
(3)(6分)求证:AF的长是方程的一个根;
BF的长是方程的一个根。