西城区2019-2020年初三数学二模测试
2019届中考北京市西城区2019届九年级二模数学试题(含解析)

北京市西城区九年级模拟测试数学试卷2019.5一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项..只有一个. 1.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A .∠AOB =110° B .∠AOB =∠AOC C .∠AOB +∠AOC =90°D .∠AOB +∠AOC =180°2.改革开放四十年来,北京市民的收入随着经济水平的发展而显著提高. 从储蓄数据来看,2017年北京市民的人民币储蓄存款余额约为2 980 000 000 000元,大致为1978年的3200倍. 将2 980 000 000 000用科学记数法表示应为A .130.29810⨯B .122.9810⨯C .1129.810⨯D .102.9810⨯3.下列图案中,可以看作是轴对称图形又是中心对称图形的是A.B.C.D.4.实数a 在数轴上的对应点的位置如图所示,则实数a 可能是A .3 B .23 C .22D .105.某个几何体的三视图如右图所示,该几何体是A. B. C. D.6.5G 网络是第五代移动通信网络,它将推动我国数字经济发展迈上新台阶. 据预测,2020年到2030O A B C年中国5G 直接经济产出和间接经济产出的情况如下图所示.根据上图提供的信息,下列推断不合理的是A .2030年5G 间接经济产出比5G 直接经济产出多4.2万亿元B .2020年到2030年,5G 直接经济产出和5G 间接经济产出都是逐年增长C .2030年5G 直接经济产出约为2020年5G 直接经济产出的13倍D .2022年到2023年与2023年到2024年5G 间接经济产出的增长率相同7.数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题. 例如:如果a >2,那么a 2>4. 下列命题中,具有以上特征的命题是 A .两直线平行,同位角相等 B .如果1a =,那么1a =C .全等三角形的对应角相等D .如果x y >,那么mx my >8.平面直角坐标系x O y 中,点P (a ,b )经过某种变换后得到的对应点为11'1,122P a b +-(). 已知A ,B ,C 是不共线的三个点,它们经过这种变换后,得到的对应点分别为A ',B ',C '. 若△ABC 的面积为S 1,△A 'B 'C '的面积为S 2,则用等式表示S 1与S 2的关系为 A .1212S S =B .1214S S =C .122S S =D .124S S =二、填空题(本题共16分,每小题2分) 9. 若代数式2x +5在实数范围内有意义,则实数x 的取值范围是 . 10. 若正多边形的一个内角是150°,则这个正多边形的边数是 .11. 有大小两种货车,1辆大货车与3辆小货车额定载重量的总和为23吨,2辆大货车与5辆小货车额定载重量的总和为41吨. 1辆大货车、1辆小货车的额定载重量分 别为多少吨?设1辆大货车的额定载重量为x 吨,1辆小货车的额定载重量为y 吨, 依题意,可以列方程组为 . 12. 已知y 是x 的函数,其函数图象经过(1,2),并且当x >0时,y 随x 的增大而减小.请写出一个满足上述条件的函数表达式: .13. 如图,点A ,B ,C ,D 都在⊙O 上,C 是»BD 的中点,AB=CD . 若∠ODC =50°,则∠ABC 的度数为 °. ABCOD(第13题图)14. 如图,在平面直角坐标系xOy 中,已知点A )3,0(,B (-1,0),菱形ABCD 的顶点C 在x 轴的正半轴上,其对角线BD 的长为 .15. 某水果公司新购进10000千克柑橘,每千克柑橘的成本为9元. 柑橘在运输、存储过程中会有损坏,销售人员从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录如下:柑橘总重量n /千克 50 100 150 200 250 300 350 400 450 500 损坏柑橘重量m /千克 5.5010.5015.1519.4224.2530.9335.3239.2444.5751.54柑橘损坏的频率m n0.110 0.105 0.101 0.097 0.097 0.103 0.101 0.098 0.099 0.103根据以上数据,估计柑橘损坏的概率为 (结果保留小数点后一位);由此可知,去掉损坏的柑橘后,水果公司为了不亏本,完好柑橘每千克的售价至少为 元.16. 我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设正实数x 的不足近似值和过剩近似值分别为b a 和dc (a ,b ,c ,d 都为正整数),即b a <x <d c,则b +d a +c 是x 的更精确的不足近似值或过剩近似值. 已知π=3.14159···,且3110<p <165,则第一次使用“调日法”后得到π的近似分数是4715,它是π的更为精确的不足近似值,即4715<p <165. 那么第三次使用“调日法”后得到π的近似分数是.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:-(-5)-2cos45°+-32+14æèçöø÷-1.18. 解方程:xx+1=1+1x.19.下面是小东设计的“作平行四边形一边中点”的尺规作图过程. 已知:平行四边形ABCD.求作:点M,使点M为边AD的中点.作法:如图,①作射线BA;②以点A为圆心,CD长为半径画弧,交BA的延长线于点E;③连接EC交AD于点M.所以点M就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接AC,ED.∵四边形ABCD是平行四边形,∴AE//CD.∵AE= ,∴四边形EACD是平行四边形()(填推理的依据).∴AM=MD()(填推理的依据).∴点M为所求作的边AD的中点.20. 已知关于x的一元二次方程x2-k+5()x+3k+6=0.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于-2且小于0,k为整数,求k的值.DB CADACB21. 如图,在四边形ABCD中,AB=DC,AD=BC,AD⊥CD. 点E在对角线CA的延长线上,连接BD,BE.(1)求证:AC=BD;(2)若BC=2,BE=13,tanÐABE=23,求EC的长.22.在平面直角坐标系x O y中,直线l:y=a x+b与双曲线y=kx交于点A1,m()和B-2,-1().点A关于x轴的对称点为点C.(1)①求k的值和点C的坐标;②求直线l的表达式;(2)过点B作y轴的垂线与直线AC交于点D,经过点C的直线与直线BD交于点E.若30°£ÐCED£45°,直接写出点E的横坐标t的取值范围.23. 如图,AB是⊙O的直径,CA与⊙O相切于点A,且CA=BA.连接OC,过点A作AD⊥OC于点E,交⊙O于点D,连接DB.(1)求证:△ACE≌△BAD;(2)连接CB交⊙O于点M,交AD于点N.若AD=4,求MN的长.24.某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,下表是y与t的几组对应值,其部分图象如图所示.t0 1 2 3 4 6 8 10 …y0 2 4 2.83 2 1 0.5 0.25 …(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为_______微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约_______小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为_______微克.25.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a. 实心球成绩的频数分布表如下:分组 6.2≤x<6.6 6.6≤x<7.0 7.0≤x<7.4 7.4≤x<7.8 7.8≤x<8.2 8.2≤x<8.6 频数 2 m10 6 2 1b . 实心球成绩在7.0≤x <7.4这一组的是:7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3c . 一分钟仰卧起坐成绩如下图所示:根据以上信息,回答下列问题:(1) ①表中m 的值为__________;②一分钟仰卧起坐成绩的中位数为__________; (2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E 的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.26. 在平面直角坐标系xOy 中. 已知抛物线y =ax 2+bx +a -2的对称轴是直线x =1.(1)用含a 的式子表示b ,并求抛物线的顶点坐标; (2)已知点A 0,-4(),B 2,-3(),若抛物线与线段AB 没有公共点,结合函数图象,求a 的取值范围;(3)若抛物线与x 轴的一个交点为C (3,0),且当m ≤x ≤n 时,y 的取值范围是m ≤y ≤6,结合函女生代码 A B C D E F G H 实心球 8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5 一分钟仰卧起坐*4247*4752*49数图象,直接写出满足条件的m ,n 的值.-5-4-3-2-1-1-2-3-4-51234554321Oy x-5-4-3-2-1-1-2-3-4-51234554321Oy x27. 如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF =AE ,连接DE ,DF ,EF . FH 平分∠EFB 交BD 于点H . (1)求证:DE ⊥DF ; (2)求证:DH =DF :(3)过点H 作HM ⊥EF 于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.28. 对于平面内的∠M A N 及其内部的一点P ,设点P 到直线A M ,A N 的距离分别为 d 1,d 2,称12d d 和21d d 这两个数中较大的一个为点P 关于∠MAN 的“偏率” .在平面直角坐标系xOy 中,(1)点M ,N 分别为x 轴正半轴,y 轴正半轴上的两个点.①若点P 的坐标为(1,5),则点P 关于∠MON 的“偏率”为____________;②若第一象限内点Q(a,b)关于∠MON的“偏率”为1,则a,b满足的关系为____________;(2)已知点A(4,0),B(2,23),连接OB,AB,点C是线段AB上一动点(点C不与点A,B重合). 若点C关于∠AOB的“偏率”为2,求点C的坐标;(3)点E,F分别为x轴正半轴,y轴正半轴上的两个点,动点T的坐标为(t,4),⊙T是以点T为圆心,半径为1的圆. 若⊙T上的所有点都在第一象限,且关于∠EOF的“偏率”都大于3,直接写出t的取值范围.。
北京市西城区2019-2020学年中考第二次质量检测数学试题含解析

北京市西城区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A.B.C.D.2.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°3.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(3,2) B.(4,1) C.(4,3) D.(4,23)4.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A.B.C.D.5.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:阅读时间(小时) 2 2.5 3 3.5 4 学生人数(名)12863则关于这20名学生阅读小时数的说法正确的是( ) A .众数是8 B .中位数是3 C .平均数是3D .方差是0.346.关于x 的方程x 2+(k 2﹣4)x+k+1=0的两个根互为相反数,则k 值是( ) A .﹣1B .±2C .2D .﹣27.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .338.下列图形中,是中心对称但不是轴对称图形的为( )A .B .C .D .9.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为( )A .6B .8C .10D .1210.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432B .98132C .82432D .8813211.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为( ) A .2B .22C .23D .412.下列计算正确的是( ) A .3a 2﹣6a 2=﹣3 B .(﹣2a )•(﹣a )=2a 2 C .10a 10÷2a 2=5a 5 D .﹣(a 3)2=a 6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.14.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB =500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)15.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.16.抛物线221y mx mx =++(m 为非零实数)的顶点坐标为_____________. 17.因式分解:x 2﹣10x+24=_____.18.四张背面完全相同的卡片上分别写有0、·3、9、2、227四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+c 经过A 、B 、C 三点,已知点A (﹣3,0),B (0,3),C (1,0). (1)求此抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点,(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD ⊥AB 于点D .动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标.20.(6分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?21.(6分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.22.(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.23.(8分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.24.(10分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P 顺时针旋转90°得线段PQ.(1)当点Q落到AD上时,∠PAB=____°,PA=_____,»AQ长为_____;(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;(3)在点P运动中,当以点Q为圆心,23BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.25.(10分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:(1)在这次研究中,一共调查了学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?26.(12分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.27.(12分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B 、∠CBD=∠EDB ,∠CBD=∠EBD ,∴∠EBD=∠EDB ,所以B 正确. D 、∵sin ∠ABE=,∵∠EBD=∠EDB ∴BE=DE ∴sin ∠ABE=.由已知不能得到△ABE ∽△CBD .故选C .点睛:本题可以采用排除法,证明A ,B ,D 都正确,所以不正确的就是C ,排除法也是数学中一种常用的解题方法. 2.C 【解析】 【分析】根据勾股定理求解. 【详解】设小方格的边长为1,得, 22222+= ,22222+=,AC=4,∵OC 2+AO 2=222)2)+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C . 【点睛】考点:勾股定理逆定理. 3.D 【解析】 【分析】由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到22AD OA '- 3,于是得到结论. 【详解】解:∵AD′=AD=4,AO=12AB=1,∴,∵C′D′=4,C′D′∥AB,∴C′(4,),故选:D.【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.4.C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C.5.B【解析】【分析】A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【详解】解:A、由统计表得:众数为3,不是8,所以此选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;C、平均数=122 2.5386 3.5433.3520⨯+⨯+⨯+⨯+⨯=,所以此选项不正确;D、S2=120×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]=5.6520=0.2825,所以此选项不正确;故选B.【点睛】本题考查方差;加权平均数;中位数;众数.6.D【解析】【分析】根据一元二次方程根与系数的关系列出方程求解即可.【详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.【点睛】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.7.D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴故选D.【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.8.C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误. 故选C.考点:中心对称图形;轴对称图形.9.C【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=1.故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.10.A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=3E1D1=3×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=3×2,同理可得正六边形A3B3C3D3E3F3的边长=(3)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(3)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD231D132,∴正六边形A2B2C2D2E2F2的边长32,同理可得正六边形A3B3C3D3E3F3的边长=32×2,则正六边形A11B11C11D11E11F11的边长=(32)10×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.11.B【解析】【分析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.【详解】解:∵圆内接正六边形的边长是1,∴圆的半径为1.那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2.∴圆的内接正方形的边长是12.故选B.【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.12.B【解析】【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A,由合并同类项法则可得3a2﹣6a2=﹣3a2,不正确;选项B,单项式乘单项式的运算可得(﹣2a)•(﹣a)=2a2,正确;选项C,根据整式的除法可得10a10÷2a2=5a8,不正确;选项D,根据幂的乘方可得﹣(a3)2=﹣a6,不正确.故答案选B.考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.270【解析】【分析】根据三角形的内角和与平角定义可求解.【详解】解析:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案为:270度.【点睛】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.14.1. 【解析】试题解析:在RtΔABC 中,sin34°=ACAB∴AC=AB×sin34°=500×0.56=1米. 故答案为1. 15.17 【解析】 【分析】根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题. 【详解】解:1-30%-50%=20%,∴2520%1030%1850%17⨯+⨯+⨯=. 【点睛】本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键. 16.()1,1m -- 【解析】【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标. 【详解】y=mx 2+2mx+1=m(x 2+2x)+1 =m(x 2+2x+1-1)+1 =m(x+1)2 +1-m ,所以抛物线的顶点坐标为(-1,1-m ), 故答案为(-1,1-m ).【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键. 17.(x ﹣4)(x ﹣6) 【解析】 【分析】因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可. 【详解】x 2﹣10x+24= x 2﹣10x+(-4)×(-6)=(x ﹣4)(x ﹣6) 【点睛】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.18.34【解析】 【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】∵在0.·3、227这四个实数种,有理数有0.·3227这3个, ∴抽到有理数的概率为34,故答案为34.【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)y=﹣x 2﹣2x+1;(2)(﹣32,154)【解析】 【分析】(1)将A (-1,0),B (0,1),C (1,0)三点的坐标代入y=ax 2+bx+c ,运用待定系数法即可求出此抛物线的解析式;(2)先证明△AOB 是等腰直角三角形,得出∠BAO=45°,再证明△PDE 是等腰直角三角形,则PE 越大,△PDE 的周长越大,再运用待定系数法求出直线AB 的解析式为y=x+1,则可设P 点的坐标为(x ,-x 2-2x+1),E 点的坐标为(x ,x+1),那么PE=(-x 2-2x+1)-(x+1)=-(x+32)2+94,根据二次函数的性质可知当x=-32时,PE 最大,△PDE 的周长也最大.将x=-32代入-x 2-2x+1,进而得到P 点的坐标. 【详解】解:(1)∵抛物线y=ax 2+bx+c 经过点A (﹣1,0),B (0,1),C (1,0),∴9a-3b+c=0{c=3a+b+c=0,解得a=-1{b=-2c=3,∴抛物线的解析式为y=﹣x 2﹣2x+1; (2)∵A (﹣1,0),B (0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周长越大.设直线AB的解析式为y=kx+b,则-3k+b=0 {b=3,解得k=1{b=3,即直线AB的解析式为y=x+1.设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+32)2+94,所以当x=﹣32时,PE最大,△PDE的周长也最大.当x=﹣32时,﹣x2﹣2x+1=﹣(﹣32)2﹣2×(﹣32)+1=154,即点P坐标为(﹣32,154)时,△PDE的周长最大.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.20.(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图21.(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.22.(1),;(2)点的坐标为;(3)点的坐标为和【解析】【分析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.23.(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】【详解】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W 1=4400×120×(1﹣8%)﹣a=485760﹣a (元), 按照方案二所交房款为:W 2=4400×120×(1﹣10%)=475200(元), 当W 1>W 2时,即485760﹣a >475200, 解得:0<a <10560,当W 1<W 2时,即485760﹣a <475200, 解得:a >10560,∴当0<a <10560时,方案二合算;当a >10560时,方案一合算. 【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键. 24. (1)45,1227,62π;(2)满足条件的∠QQ 0D 为45°或135°;(3)BP 的长为275或2725;(4)7210≤CQ≤7. 【解析】 【分析】(1)由已知,可知△APQ 为等腰直角三角形,可得∠PAB ,再利用三角形相似可得PA ,及弧AQ 的长度; (2)分点Q 在BD 上方和下方的情况讨论求解即可.(3)分别讨论点Q 在BD 上方和下方的情况,利用切线性质,在由(2)用BP 0表示BP ,由射影定理计算即可; (4)由(2)可知,点Q 在过点Q o ,且与BD 夹角为45°的线段EF 上运动,有图形可知,当点Q 运动到点E 时,CQ 最长为7,再由垂线段最短,应用面积法求CQ 最小值. 【详解】解:(1)如图,过点P 做PE ⊥AD 于点E由已知,AP =PQ ,∠APQ =90° ∴△APQ 为等腰直角三角形 ∴∠PAQ =∠PAB =45°设PE =x ,则AE =x ,DE =4﹣x ∵PE ∥AB ∴△DEP ∽△DAB∴DEDA=PEAB∴4-x4=3x解得x=12 7∴PA=2PE=122∴弧AQ的长为14•2π•122=627π.故答案为45,1227,62π.(2)如图,过点Q做QF⊥BD于点F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.当点Q在BD的右下方时,同理可得∠PQ0Q=45°,此时∠QQ0D=135°,综上所述,满足条件的∠QQ0D为45°或135°.(3)如图当点Q直线BD上方,当以点Q为圆心,23BP为半径的圆与直线BD相切时过点Q做QF⊥BD于点F,则QF=23BP由(2)可知,PP0=23BP∴BP0=13BP∵AB=3,AD=4 ∴BD=5∵△ABP0∽△DBA ∴AB2=BP0•BD∴9=13BP×5∴BP=27 5同理,当点Q位于BD下方时,可求得BP=27 25故BP的长为275或2725(4)由(2)可知∠QQ0D=45°则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7∴EF22CF+CE2217+2过点C做CH⊥EF于点H由面积法可知CH=FC ECEF•5272∴CQ的取值范围为:210≤CQ≤7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.25.(1)200名;折线图见解析;(2)1210人.【解析】【分析】(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;(2)利用样本估计总体的方法计算即可解答.【详解】(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).补全折线统计图如下:.(2)2200×5060200+=1210(人). 答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.【点睛】本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.26. (1) 2. (2)△ABC ∽△DEF.【解析】【分析】(1)根据已知条件,结合网格可以求出∠ABC 的度数,根据,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC 的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC 与△DEF 相似.【详解】(1)9045135ABC ∠=+=o o o ,2222822BC +==;故答案为 2.(2)△ABC ∽△DEF.证明:∵在4×4的正方形方格中, 135,9045135ABC DEF ∠=∠=+=o o o o ,∴∠ABC=∠DEF. ∵2,22,2,2,AB BC FE DE ==== ∴222, 2.22AB BC DE FE ==== ∴△ABC ∽△DEF.【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键. 27.1.5千米【解析】【分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC与△AMN中,305549ACAB==,151.89AMAN==,∴AC AM AB AN=,∵∠A=∠A,∴△ABC∽△ANM,∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M、N两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则。
北京市西城区2019-2020学年中考第二次适应性考试数学试题含解析

北京市西城区2019-2020学年中考第二次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面计算中,正确的是( )A .(a+b )2=a 2+b 2B .3a+4a=7a 2C .(ab )3=ab 3D .a 2•a 5=a 72.3--的倒数是( )A .13- B .-3 C .3 D .133.如图,O e 是ABC V 的外接圆,已知ABO 50o ∠=,则ACB ∠的大小为( )A .40oB .30oC .45oD .50o4.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)5.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 2 6. “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S 和时间t 的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )A .赛跑中,兔子共休息了50分钟B .乌龟在这次比赛中的平均速度是0.1米/分钟C .兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟7.一元一次不等式2(1+x)>1+3x的解集在数轴上表示为()A. B. C. D.8.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×1069.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:3B.2:3:4 C.1:3:2 D.1:2:310.甲、乙两人分别以4m/s和5m/s的速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()A.B.C.D.11.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-12.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.14.一元二次方程x(x﹣2)=x﹣2的根是_____.15.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.16.规定一种新运算“*”:a*b=13a-14b,则方程x*2=1*x的解为________.17.已知关于x的方程有解,则k的取值范围是_____.18.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C,若∠ACB=30°,AB=3,则阴影部分的面积是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D 作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)如果⊙O的半径为5,sin∠ADE=45,求BF的长.20.(627÷32﹣12015+1)0+2•sin60°.21.(6分)如图,一次函数y=kx+b的图象与反比例函数y= mx(x>0)的图象交于A(2,﹣1),B(12,(1)求一次函数与反比例函数的解析式;(2)求△ABC 的面积.22.(8分)(1)计算:0353tan 60502-+-+sin45° (2)解不等式组:3(1)5211132x x x x ++-⎧⎪+-⎨-≤⎪⎩f 23.(8分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?24.(10分)已知,如图,在坡顶A 处的同一水平面上有一座古塔BC ,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP 攀行了26米,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.求:坡顶A 到地面PO 的距离;古塔BC 的高度(结果精确到1米).25.(10分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A 处测得灯塔P 在北偏东60°方向上,继续航行1小时到达B 处,此时测得灯塔P 在北偏东30°方向上.求∠APB 的度数;已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.26.(12分)抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴正半轴交于点C .(1)如图1,若A (-1,0),B (3,0),① 求抛物线2y x bx c =-++的解析式;② P 为抛物线上一点,连接AC ,PC ,若∠PCO=3∠ACO ,求点P 的横坐标;(2)如图2,D 为x 轴下方抛物线上一点,连DA ,DB ,若∠BDA+2∠BAD=90°,求点D 的纵坐标.27.(12分)(1)计算:0|28(2)2cos45π︒-+.(2)解方程:x 2﹣4x+2=0参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A. (a+b)2=a 2+b 2+2ab ,故此选项错误;B. 3a+4a=7a ,故此选项错误;C. (ab)3=a 3b 3,故此选项错误;D. a 2⋅a 5=a 7,正确。
2019年北京西城区初三二模数学试卷

.
12. 已知 是 的函数,其函数图象经过点
满足上述条件的函数表达式:
.
,并且当
时, 随 的增大而减小,请写出一个
13. 如图,点 、 、 、 都在
的度数为
.
上, 是
的中点,
.若
,则
https:///#/print?id=62be2a948787499db630734e42c3abfd
2020/5/8
教研云资源页
2019年北京⻄城区初三二模数学试卷
一、选择题(本大题共8小题,每题2分,共16分)
1. 如图所示,用量⻆器度量
与
的度数.下列说法中,正确的是( ).
A. B. C. D.
2. 改革开放四十年来,北京市⺠的收入随着经济水平的发展而显著提高.从储蓄数据来看, 年
北京市⺠的人⺠币储蓄存款余额约为
元,大致为 年的 倍.将
用科学记数法表示应为( ).
A.
B.
C.
D.
3. 下列图案中,可以看作是轴对称图形又是中心对称图形的是( ).
A.
B.
C.
D.
https:///#/print?id=62be2a948787499db630734e42c3abfd
1/9
( 2 ) 完成下面的证明.
证明:连接 , ,
∵四边形
是平行四边形,
∴
,
∵
,
∴四边形
是平行四边形(
)(填推理的依据).
∴
(
)(填推理的依据).
∴点 为所求作的边 的中点.
20. 已知关于 的一元二次方程
.
( 1 ) 求证:此方程总有两个实数根.
( 2 ) 若此方程有一个根大于 且小于 , 为整数,求 的值.
〖数学10套合集〗北京市西城区中考第二次模拟数学试题

2019-2020学年数学中考模拟试卷一、选择题1.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角 D.相等的两个角是对顶角2.如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线 EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30°B.35°C.40°D.45°3.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:A.9.7,9.5B.9.7,9.9C.9.6,9.5D.9.6,9.64.小明记录了昆明市年月份某一周每天的最高气温,如表:最高气温A.,B.,C.,D.,5.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕AB上的点O顺时针旋转90°,得到△A′B′C′,连结BC′,若BC′∥A'B′,则OB的值为( )A.52B.3 C.125D.536.如图,P是抛物线y=﹣x2+x+3在第一象限的点,过点P分别向x轴和y轴引垂线,垂足分别为A、B,则四边形OAPB周长的最大值为()A .6B .7.5C .8D .7.边长为2的正方形内接于⊙O ,则⊙O 的半径是( )A .1B C .2D .8.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=( )A.30°B.25°C.20°D.15°9.如图,已知菱形ABCD ,AB=4,BAD=120∠︒,E 为BC 中点,P 为对角线BD 上一点,则PE+PC 的最小值等于( )A.B. C. D.10.如图,已知正方形ABCD 的顶点A 、B 在O 上,顶点C 、D 在O 内,将正方形ABCD 绕点A逆时针旋转,使点D 落在O 上.若正方形ABCD 的边长和O 的半径均为6cm ,则点D 运动的路径长为( )A .2cm πB .32cm π C .cm πD .12cm π 11.如图,点A (0,2),在x 轴上取一点B ,连接AB ,以A 为圆心,任意长为半径画弧,分别交OA 、AB 于点M 、N ,再以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点D ,连接AD 并延长交x 轴于点P .若△OPA 与△OAB 相似,则点P 的坐标为( )A .(1,0)B 0)C .(23,0) D .(0)12.如图, 甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发1小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为s (千米),客车出发的时间为t (小时),它们之间的关系如图所示,则下列结论:①货车的速度是60千米/小时;②离开出发地后,两车第一次相遇时,距离出发地150千米;③货车从出发地到终点共用时7小时;④客车到达终点时,两车相距180千米.正确的有( ) A .1 B .2C .3D .4二、填空题13.因式分解:a 3-ab 2=______________.14.已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .15.2019年春节期间某省某州接待旅游人数大约为1767500人,将这个数据1767500用科学记数法表示为______.16.若矩形两条对角线的夹角是60°,且较短的边长为3,则这个矩形的面积为____.17.某学校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,至少买一个排球,在购买资金恰好用尽的情况下,购买方案有_____种.18.如图,已知AB ∥CD ,OE 平分∠AOD ,OF ⊥OE ,∠CDO =50°,则∠DOF =_____度.三、解答题19.图①、图②均是3×2的正方形网格,每个小正方形的顶点称为格点.线段AB 的端点均在格点上.在图①、图②给定的网格中各画一个△APC ,使点P 在线段AB 上,点C 为格点,且∠APC 的正切值为2.要求:(1)图①中的△APC 为直角三角形,图②中的△APC 为锐角三角形.(2)只用无刻度的直尺,保留适当的作图痕迹.20.如图所示,△ABC中,AB=AC,AD平分∠BAC,点G是BA延长线上一点,点F是AC上一点,AG=AF,连接GF并延长交BC于E.(1)若AB=8,BC=6,求AD的长;(2)求证:GE⊥BC.21.如图,已知▱ABCD.(1)作∠B的平分线交AD于E点。
5-西城区2019-2020年初三数学二模测试答案

北京市西城区九年级模拟测试数学试卷答案及评分标准2020.6一、选择题(本题共16分,每小题2分)170o(2020)3tan301π--+131-···············································································································5分18.解:方程两边乘以3(1)x-,得33(1)2x x x+-=.解得34x.检验:当34x时,3(1)0x-≠.所以,原分式方程的解为3=4x.······························································································································5分19.解:(1)依题意,得△=2(21)412kk .=221k.∵ 221k≥0,∴ 方程总有两个实数根. (2)解:由求根公式,得21)21kkx ,∴ 12x k ,21x .∵ 该方程有一个根大于2,∴ 22k . ∴ 1k .∴ k 的取值范围是1k . ····································································· 5分20.解:(1)如图.(2)DE ,DF ,角平分线上的点到角两边的距离相等.··························································································································· 5分21.证明:(1)∵ AE ∥DC ,CE ∥DA ,∴ 四边形ADCE 是平行四边形.∵ 在Rt △ABC 中, D 为AB 的中点, ∴ AD = BD =CD =12AB . ∴ 四边形ADCE 是菱形.(2)在Rt △ABC 中,AC =BC=2,∴ tan BC CAB AC ∠==.EDCBA∴ ∠CAB =30︒.∵ 四边形ADCE 是菱形. ∴ AE = AD ,∠EAD =2∠CAB =60︒.∴ △ADE 是等边三角形. ······································································· 5分22.解:(1)① 9 .② < ,> . (2)100 . (3)0.25 .·························································································· 5分23.(1)证明:∵ CDCB∴ ∠COD =∠COB .∵ OD = OB , ∴ OC 垂直平分BD .(2)解:① 补全图形,如图所示.② ∵ CE 是⊙O 切线,切点为C ,∴ OC ⊥CE 于点C .记OC 与BD 交于点F ,由(1)可知 OC 垂直BD , ∴ ∠OCE =∠OFB = 90°. ∴ DB ∥CE . ∴∠AEC =∠ABD .在Rt △ABD 中,AD =6,3sin sin 5AEC ABD ∠=∠=,∴ BD = 8,AB = 10. ∴ OA = OB = OC =5.由(1)可知 OC 平分BD ,即DF = BF , ∴ BF =DF =4. ∴132OFAD .∴ CF = 2. 在Rt △CFD 中,2225CDCF DF .······················································································ 6分A24(2)画出函数1y 的图象;(3)答案不唯一,如:① 3.86;② 3. ···························································································· 6分 25.解:(1)∵点A (4,1)在函数my x=(0x > ∴ m = 4.(2)①41y kx k =-+,经过点B (1,5) ∴ 415k k -+=.解得 43k =-.此时区域W 内有2个整点.②∵ 直线l 41y kx k =-+ 过定点A (4,1),∵ n 为整数,当n =6时,直线41y kx k =-+,经过点B (1,6),区域W 内有4个整点, 当n =7时,直线41y kx k =-+,经过点B (1,7),区域W 内有5个整点, 此时,可得 2=-k .当n ≥ 8时,区域W 内的整点个数大于5个. ∴ k 的取值范围是2=-k . ····················································· 6分26.解:(1)当2b =时,2y x bx c =++化为22y x x c =++. ① 1x =-.② ∵ 抛物线的对称轴为直线1x =-, ∴ 点D 的坐标为(-1,0),OD =1.∵ OB =2OD ,∴ OB =2.∵ 点A ,点B 关于直线1x =-对称, ∴ 点B 在点D 的右侧.∴ 点B 的坐标为(2,0).∵ 抛物线22y x x c =++与x 轴交于点B (2,0),∴ 440c ++=. 解得 8c =-.∴ 抛物线的表达式为228=+-y x x .(2)设直线22b y x +=+与x 轴交点为点E , ∴ E (22b +-,0). 抛物线的对称轴为2b x =-, ∴ 点D 的坐标为(2b-,0). ①当 0b >时,2bOD =.∵ OB =2OD , ∴ OB = b .∴ 点A 的坐标为(2b -,0),点B 的坐标为(b ,0).22b x ++ P∴ 2b OD =-. ∵ OB =2OD , ∴ OB = -b .∵ 抛物线2+y x bx c =+与x 轴交于点A ,B ,且A 在B 的左侧, ∴ 点A 的坐标为(0,0),点B 的坐标为(-b ,0).当0 <22b +-时,存在垂直于x 轴的直线分别与直线l :22b y x +=+ 和抛物线交于点P ,Q ,且点P ,Q 均在x 轴下方,解得 b < -2.综上,b 的取值范围是 2b <-或23b >. ····································· 6分27.(1)证明:在正方形ABCD 中,AD ∥BC ,∠BAD = 90°,∴ ∠AGH =∠GHC . ∵ GH ⊥AE , ∴ ∠EAB =∠AGH . ∴ ∠EAB =∠GHC .(2)① 补全图形,如图所示.②AE =.证明:连接AN ,连接EN 并延长,交AB 边于点Q .∵ 四边形ABCD 是正方形, ∴ 点A ,点C 关于BD 对称. ∴ NA =NC ,∠1 =∠2. ∵ PN 垂直平分AE , ∴ NA =NE . ∴ NC =NE . ∴ ∠3 =∠4.在正方形ABCD 中,BA ∥CE ,∠BCD = 90°, ∴∠AQE =∠4.∴∠1+∠AQE =∠2+∠3 =90°. ∴∠ANE =∠ANQ =90°.在Rt △ANE 中,∴AE =. ···························································· 7分28.解:(1) ①()2,0;② C ,D .(2) ① 由题意,0b ≠,若0>b ,当直线l 与以点()2,0-为圆心,1为半径的圆相切时,=b 当直线l 经过点()1,0-时,3=b . G HAFDCEBEC∴b . 若0<b ,当直线l 经过点()1,0时,3=-b .当直线l 与以点()0,0为圆心,3为半径的圆相切时,=-b .∴-b ≤3-.综上,b 的取值范围是-b ≤b .b ··························································· 7分。
西城区2019-2020年初三数学二模测试
九年级模拟测试 数学试卷 第1页(共8页)北 京 市 西 城 区 九 年 级 模 拟 测 试数学试卷 2020.6一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列各组图形中,能将其中一个图形经过平移变换得到另一个图形的是(A ) (B ) (C ) (D )2.中国国家航天局2020年4月24日在“中国航天日”之际宣布,将中国行星探测任务命名为“天问”,将中国首次火星探测任务命名为“天问一号”. 火星具有与地球十分相近的环境,与地球最近的时候距离约5 500万千米,将5 500用科学记数法表示为(A )40.5510⨯ (B )35.510⨯ (C )25.510⨯ (D )25510⨯ 3.图1是某个几何体的平面展开图,该几何体是(A ) (B ) (C ) (D )图14.下列运算中,正确的是(A )23⋅=a a a (B )623÷=a a a (C ) 2222-=a a (D )()22436=a a九年级模拟测试 数学试卷 第2页(共8页)5.如图,实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是(A )3a >(B )10b -<-<(C )a b <- (D )0ab +>6.如图,△ABC 内接于⊙O ,若∠A=45°,OC =2,则BC 的长为 (A (B ) (C )(D )47.某人开车从家出发去植物园游玩,设汽车行驶的路程为S (千米),所用时间为t (分), S 与t 之间的函数关系如图所示.若他早上8点从家出发, 汽车在途中停车加油一次,则下列描述中,不正确...的是 (A )汽车行驶到一半路程时,停车加油用时10分钟 (B )汽车一共行驶了60千米的路程,上午9点5分到达植物园(C )加油后汽车行驶的速度为60千米/时(D )加油后汽车行驶的速度比加油前汽车行驶的速度快8.张老师将自己2019年10月至2020年5月的通话时长(单位:分钟)的有关数据整理如下: ① 2019年10月至2020年3月通话时长统计表② 2020年4月与2020年5月,这两个月通话时长的总和为1100分钟 根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为 (A )550(B )580(C )610(D )630二、填空题(本题共16分,每小题2分) 9.若代数式12x -在实数范围内有意义,则x 的取值范围是_______. 10.因式分解:3-a a =_______.分)九年级模拟测试 数学试卷 第3页(共8页)11.如图,D ,E 分别是△ABC 的边AB ,AC 的中点,若△ADE面积等于______.第11题图 第12题图 12.如图,∠A =∠ABC =∠C =∠D =∠E ,点F 在AB 13.如图,双曲线ky x与直线y =mx 交于A ,B 两点,若点A 坐标为_______.14.如图,用10个大小、形状完全相同的小矩形,拼成一个宽 为50 cm 的大矩形,设每个小矩形的长为 x cm ,宽为y cm ,则可以列出的方程组是______.15.分布统计图和当地90后从事互联网行业岗位分布统计图:互联网行业从业人员年龄分布统计图 90后从事互联网行业岗位分布图对于以下四种说法,你认为正确的是 (写出全部正确说法的序号) . ① 在当地互联网行业从业人员中,90后人数占总人数的一半以上 ② 在当地互联网行业从业人员中,80前人数占总人数的13%③ 在当地互联网行业中,从事技术岗位的90后人数超过总人数的20% ④ 在当地互联网行业中,从事设计岗位的90后人数比80前人数少16.一个袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任 意取出两个球,如果先放入甲盒的球是红球,则另一个球放入乙盒;如果先放入甲盒的球 是黑球,则另一个球放入丙盒.重复上述过程,直到袋中所有的球都被放入盒中. (1)某次从袋中任意取出两个球,若取出的球都没有放入丙盒,则先放入甲盒的球的颜色是 .BCDFE AA E BCD 5%其它产品8%15%19%41%设计市场运营技术九年级模拟测试 数学试卷 第4页(共8页)(2)若乙盒中最终有5个红球,则袋中原来最少有 个球.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27, 28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.0o (2020)3tan 301π--+.18.解方程:21133+=--x x x x .19.已知关于x 的一元二次方程2(21)20x k x k -++=.(1)求证:方程总有两个实数根;(2)若该方程有一个根大于2,求k 的取值范围.20.下面是小明设计的“在已知三角形的一边上取一点,使得这点到这个三角形的另外两边的距离相等”的尺规作图过程: 已知:△ABC .求作:点D ,使得点D 在BC 边上,且到AB ,AC 边的距离相等. 作法:如图,作∠BAC 的平分线,交BC 于点D .则点D 即为所求.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形 (保留作图痕迹); (2)完成下面的证明.证明:作DE ⊥AB 于点E ,作DF ⊥AC 于点F ,∵AD 平分∠BAC ,∴ = ( ) (填推理的依据) .21.如图,在Rt △ABC 中,∠ACB = 90︒,D 为AB 的中点,AE ∥DC ,CE ∥DA . (1)求证:四边形ADCE 是菱形; (2)连接DE ,若AC=BC =2,求证:△ADE 是等边三角形.AB CEDCBA九年级模拟测试 数学试卷 第5页(共8页)22. 某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x ,y ,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:注“●”表示患者,“▲”表示非患者.根据以上信息,回答下列问题: (1)在这40名被调查者中,① 指标y 低于0.4的有 人;② 将20名患者的指标x 的平均数记作1x ,方差记作21s ,20名非患者的指标x 的 平均数记作2x ,方差记作22s ,则1x 2x ,21s 22s (填“>”,“=”或“<”) ;(2)来该院就诊的500名未患这种疾病的人中,估计指标x 低于0.3的大约有 人; (3)若将“指标x 低于0.3,且指标y 低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率是 .23. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,且CD CB ,连接OC ,BD ,OD .(1)求证:OC 垂直平分BD ;(2)过点C 作⊙O 的切线交AB 的延长线于点E ,连接AD ,CD .① 依题意补全图形;② 若AD =6,3sin 5AEC ∠=,求CD 的长. x指标B九年级模拟测试 数学试卷 第6页(共8页)24.如图,在△ABC 中,AE 平分∠BAC 交BC 于点E ,D 是AB 边上一动点,连接CD 交AE 于点P ,连接BP .已知AB = 6 cm ,设B ,D 两点间的距离为x cm ,B ,P 两点间的距离为y 1 cm ,A ,P 两点间的距离为y 2 cm .小明根据学习函数的经验,分别对函数y 1,y 2随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了y 1,2y 与x 的几组对应值:(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,2y ),并画出函数y 1,2y 的图象;(3)结合函数图象,回答下列问题:① 当AP =2BD 时,AP 的长度约为 cm ; ② 当BP 平分∠ABC 时,BD 的长度约为 cm .九年级模拟测试 数学试卷 第7页(共8页)25.在平面直角坐标系xOy 中,函数my x=(0x >)的图象G 与直线41:=-+l y kx k 交于点A (4,1),点B (1,n )(n ≥4,n 为整数)在直线l 上. (1)求m 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 与直线l 围成的区域(不含边界)为W .① 当 n = 5时,求k 的值,并写出区域W 内的整点个数; ② 若区域W 内恰有5个整点,结合函数图象,求k 的取值范围.26. 在平面直角坐标系xOy 中,抛物线2+y x bx c =+与x 轴交于点A ,B (A 在B 的左侧),抛物线的对称轴与x 轴交于点D ,且OB =2OD . (1)当2b =时,① 写出抛物线的对称轴; ② 求抛物线的表达式;(2)存在垂直于x 轴的直线分别与直线l :22b y x +=+和抛物线交于点P ,Q ,且点P , Q 均在x 轴下方,结合函数图象,求b 的取值范围.27. 在正方形ABCD 中,E 是CD 边上一点(CE >DE ),AE ,BD 交于点F . (1)如图1,过点F 作GH ⊥AE ,分别交边AD ,BC 于点G ,H .求证:∠EAB =∠GHC ;(2)AE 的垂直平分线分别与AD , AE , BD 交于点P ,M ,N ,连接CN .① 依题意补全图形;② 用等式表示线段AE 与CN 之间的数量关系,并证明.图1 备用图AFDCEBG HAFD C EB九年级模拟测试 数学试卷 第8页(共8页)28. 对于平面直角坐标系xOy 中的定点P 和图形F ,给出如下定义:若在图形F 上存在一点N ,使得点Q ,点P 关于直线ON 对称,则称点Q 是点P 关于图形F 的定向对称点. (1)如图,(10),A ,(11),B ,(02),P ,① 点P 关于点B 的定向对称点的坐标是 ;② 在点(02),-C,(1,D ,(21),-E 中, 是点P 关于线段AB 的 定向对称点.(2)直线3:=+l y x b 分别与x 轴,y 轴交于点G ,H ,⊙M 是以点(20),M 为圆心,(0)>r r 为半径的圆.① 当1=r 时,若⊙M 上存在点K ,使得它关于线段GH 的定向对称点在线段GH 上,求b 的取值范围;② 对于0>b ,当3=r 时,若线段GH 上存在点J ,使得它关于⊙M 的定向对称点在⊙M 上,直接写出b 的取值范围.。
北京市西城区2019-2020学年中考数学二模考试卷含解析
北京市西城区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将1、2、3、6按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()A.6B.6 C.2D.32.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×103C.5.55×104D.55.5×1033.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=4.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm,设金色纸边的宽为xcm,那么x满足的方程是()A.213014000x x+-=B.2653500x x+-=C.213014000x x--=D.2653500x x--=A .B .C .D .6.下列图形中,既是中心对称图形又是轴对称图形的是( ) A .正五边形 B .平行四边形 C .矩形 D .等边三角形 7.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A .3 B .5 C .23D .258.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC V 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC , 求证:ADE V ∽DBF V .证明:①又DF//AC Q ,DE //BC Q ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴V ∽DBF V .A .③②④①B .②④①③C .③①④②D .②③④①9.一元二次方程(x+3)(x-7)=0的两个根是 A .x 1=3,x 2=-7 B .x 1=3,x 2=7 C .x 1=-3,x 2=7 D .x 1=-3,x 2=-710.点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3)都在反比例函数3y=x-的图象上,且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是( ) A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 311.cos30°的相反数是( )12.如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC=6,则DE 的长为( )A .2B .3C .4D .6二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,在△OAB 中,C 是AB 的中点,反比例函数y=kx(k >0)在第一象限的图象经过A ,C 两点,若△OAB 面积为6,则k 的值为_____.14.如图,矩形OABC 的两边落在坐标轴上,反比例函数y=kx的图象在第一象限的分支过AB 的中点D 交OB 于点E ,连接EC ,若△OEC 的面积为12,则k=_____.15.如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1,则AB=________________.16.如图,Rt △ABC 中,∠ABC =90°,AB =BC ,直线l 1、l 2、l 1分别通过A 、B 、C 三点,且l 1∥l 2∥l 1.若l 1与l 2的距离为5,l 2与l 1的距离为7,则Rt △ABC 的面积为___________17.二次函数()2y ax bx c a 0=++≠中的自变量x 与函数值y 的部分对应值如下表:x…32- 1-12- 012 132 …则2ax bx c 0++=的解为________.18.如图,在菱形ABCD 中,DE ⊥AB 于点E ,cosA=35,BE=4,则tan ∠DBE 的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)(1)计算:﹣14+12sin61°+(12)﹣2﹣(π﹣5)1. (2)解不等式组3(1)72513x x x x --≤⎧⎪⎨--⎪⎩p ①②,并把它的解集在数轴上表示出来.20.(6分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为12.求 x 和 y 的值.21.(6分)如图,在△ABC 中,已知AB=AC=5,BC=6,且△ABC ≌△DEF ,将△DEF 与△ABC 重合在一起,△ABC 不动,△DEF 运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 始终经过点A ,EF 与AC 交于M 点. (1)求证:△ABE ∽△ECM ;(2)探究:在△DEF 运动过程中,重叠部分能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由;(3)当线段AM 最短时,求重叠部分的面积.22.(8分)如图,已知∠AOB 与点M 、N 求作一点P ,使点P 到边OA 、OB 的距离相等,且PM=PN (保留作图痕迹,不写作法)23.(8分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).①用含a的代数式表示小王四月份生产乙种产品的件数;②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.24.(10分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.25.(10分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化、常态化,弘扬社会正能量,截止到2018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:(1)收集、整理数据:从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:0~5小时;B:5~10小时;C:10~15小时;D:15~20小时;E:20~25小时;F:25~30小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:B D E AC ED B F C D D D BE C D E E FA F F A D C DB D FC FDE C E E E C E并将上述数据整理在如下的频数分布表中,请你补充其中的数据:(2)描述数据:根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;(3)分析数据:②校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为人;(4)问题解决:校团委计划组织中考志愿服务活动,共甲、乙、丙三个服务点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率.26.(12分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.27.(12分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1,则(1,5)与(13,1)表示的两数之积是1.故选B.2.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:5550=5.55×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;=,所以B选项不成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβC选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.4.B【解析】【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画由题意,设金色纸边的宽为xcm , 得出方程:(80+2x )(50+2x )=5400, 整理后得:2653500x x +-= 故选:B. 【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键. 5.C 【解析】 【分析】逐一对选项进行分析即可得出答案. 【详解】A 中,利用三角形外角的性质可知12∠>∠,故该选项错误;B 中,不能确定12∠∠,的大小关系,故该选项错误;C 中,因为同弧所对的圆周角相等,所以12∠=∠,故该选项正确;D 中,两直线不平行,所以12∠≠∠,故该选项错误. 故选:C . 【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键. 6.C 【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解. 详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误. B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误. C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确. D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误. 故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率. 7.D 【解析】由勾股定理得,AB=221310+=,AD=222222+=, cosA=AD AB =2210=25,故选D .8.B 【解析】 【分析】根据平行线的性质可得到两组对应角相等,易得解题步骤; 【详解】证明:DE //BC Q ②,ADE B ∠∠∴=④,①又DF//AC Q , A BDF ∠∠∴=③,ADE ∴V ∽DBF V .故选B . 【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似. 9.C 【解析】 【分析】根据因式分解法直接求解即可得. 【详解】∵(x+3)(x ﹣7)=0, ∴x+3=0或x ﹣7=0, ∴x 1=﹣3,x 2=7,本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键. 10.A【解析】【分析】【详解】作出反比例函数3y=x-的图象(如图),即可作出判断:∵-3<1,∴反比例函数3y=x-的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.∴当x1<x2<1<x3时,y3<y1<y2.故选A.11.C【解析】【分析】先将特殊角的三角函数值代入求解,再求出其相反数.【详解】∵cos30°=32,∴cos30°的相反数是32 -,故选C.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.12.B【解析】【分析】∵D 、E 分别是△ABC 边AB 、AC 的中点,∴DE 是△ABC 的中位线,∵BC=6,∴DE=BC=1.故选B .【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】【分析】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,根据C 是AB 的中点得到CN 为AMB V 的中位线,然后设MN NB a ==,CN b =,2AM b =,根据OM AM ON CN ⋅=⋅,得到OM a =,最后根据面积32236a b ab =⋅÷==求得2ab =,从而求得224k a b ab =⋅==.【详解】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,如图Q 点C 为AB 的中点,∴CN 为AMB V 的中位线,∴MN NB a ==,CN b =,2AM b =,Q OM AM ON CN ⋅=⋅,∴()2OM b OM a b ⋅=+⋅,∴OM a =,∴32236AOB S a b ab =⋅÷==V ,∴2ab =,∴224k a b ab =⋅==.故答案为:4.【点睛】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2k ,且保持不变. 14.122. 【解析】【分析】 设AD=a ,则AB=OC=2a ,根据点D 在反比例函数y=k x 的图象上,可得D 点的坐标为(a ,k a),所以OA=k a ;过点E 作EN ⊥OC 于点N ,交AB 于点M ,则OA=MN=k a,已知△OEC 的面积为12,OC=2a ,根据三角形的面积公式求得EN=12a ,即可求得EM=12k a-;设ON=x ,则NC=BM=2a-x ,证明△BME ∽△ONE ,根据相似三角形的性质求得x=24a k ,即可得点E 的坐标为(24a k,12a ),根据点E 在在反比例函数y=k x 的图象上,可得24a k ·12a =k ,解方程求得k 值即可. 【详解】设AD=a ,则AB=OC=2a ,∵点D 在反比例函数y=k x 的图象上, ∴D (a ,k a ), ∴OA=k a, 过点E 作EN ⊥OC 于点N ,交AB 于点M ,则OA=MN=k a ,∵△OEC 的面积为12,OC=2a ,∴EN=12a, ∴EM=MN-EN=k a -12a =12k a -; 设ON=x ,则NC=BM=2a-x ,∵AB ∥OC ,∴△BME ∽△ONE ,∴EM BM EN ON=,即122 12ka xaxa--=,解得x=24ak,∴E(24ak,12a),∵点E在在反比例函数y=kx的图象上,∴24ak·12a=k,解得k=122±,∵k>0,∴k=122.故答案为:122.【点睛】本题是反比例函数与几何的综合题,求得点E的坐标为(24ak,12a)是解决问题的关键. 15.4【解析】∵点C是线段AD的中点,若CD=1,∴AD=1×2=2,∵点D是线段AB的中点,∴AB=2×2=4,故答案为4.16.17【解析】过点B作EF⊥l2,交l1于E,交l1于F,如图,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=12AB⋅BC=12AB2=17.故答案是17.点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解. 17.x2=-或1【解析】【分析】由二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.【详解】解:∵二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),∴此抛物线的对称轴为:直线x=-12,∵此抛物线过点(1,0),∴此抛物线与x轴的另一个交点为:(-2,0),∴ax2+bx+c=0的解为:x=-2或1.故答案为x=-2或1.【点睛】此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键. 18.1.【解析】【分析】求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt △BDE 中得出tan ,DE DBE BE ∠=代入求出即可, 【详解】解:∵四边形ABCD 是菱形,∴AD=AB ,∵cosA=35,BE=4,DE ⊥AB , ∴设AD=AB=5x ,AE=3x ,则5x ﹣3x=4,x=1,即AD=10,AE=6,在Rt △ADE 中,由勾股定理得: 8DE ==,在Rt △BDE 中,8tan 2,4DE DBE BE ∠=== 故答案为:1.【点睛】本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE 的长.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)5;(2)﹣2≤x <﹣12. 【解析】【分析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)先求出两个不等式的解集,再找出解集的公共部分即可.【详解】(1)原式141,=-+- 1341,=-++-=5;(2)解不等式①得,x≥﹣2, 解不等式②得,12x <-,所以不等式组的解集是122x -≤<-.用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.20.x=15,y=1【解析】【分析】根据概率的求法:在围棋盒中有x 颗黑色棋子和y 颗白色棋子,共x+y 颗棋子,如果它是黑色棋子的概率是38,有38x x y +=成立.化简可得y 与x 的函数关系式; (2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y 颗棋子,则取得黑色棋子的概率变为12,结合(1)的条件,可得38101102x x y x x y ⎧⎪+⎪⎨+⎪⎪++⎩==,解可得x=15,y=1. 【详解】依题意得,38101102x x y x x y ⎧=⎪+⎪⎨+⎪=⎪++⎩, 化简得,53010x y x y -=⎧⎨-=-⎩, 解得,1525x y =⎧⎨=⎩., 检验当x=15,y=1时,0x y +≠,100x y ++≠,∴x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.21.(1)证明见解析;(2)能;BE=1或116;(3)9625【解析】【详解】(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC−EC=6−5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴CE AC AC CB=,∴CE=2256 CBAC=,∴BE=6−256=116;∴BE=1或11 6;(3)解:设BE=x,又∵△ABE∽△ECM,∴CM CEBE AB=,即:65CM xx-=,∴CM=22619(3)5555xx x-+=--+,∴AM =5−CM 2116(3)55x =-+, ∴当x =3时,AM 最短为165, 又∵当BE =x =3=12BC 时, ∴点E 为BC 的中点,∴AE ⊥BC ,∴AE =224AB BE -=,此时,EF ⊥AC ,∴EM =22125CE CM -=, S △AEM =116129625525创=. 22.见解析【解析】【分析】作∠AOB 的角平分线和线段MN 的垂直平分线,它们的交点即是要求作的点P.【详解】解:①作∠AOB 的平分线OE ,②作线段MN 的垂直平分线GH ,GH 交OE 于点P .点P 即为所求.【点睛】本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.23.(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-34a ;② a≤1.【解析】【分析】(1)设生产一件甲种产品和每生产一件乙种产品分别需要x 分钟、y 分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解; (2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果; ②根据“小王四月份的工资不少于1500元”即可列出不等式.【详解】(1)设生产一件甲种产品需x 分钟,生产一件乙种产品需y 分钟,由题意得:10103503020850x y x y +=⎧⎨+=⎩, 解这个方程组得:1520x y =⎧⎨=⎩, 答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,∴一小时生产甲产品4件,生产乙产品3件,所以小王四月份生产乙种产品的件数:3(25×8﹣4a )=600-3a 4; ②依题意:1.5a+2.8(600-3a 4)≥1500, 1680﹣0.6a≥1500,解得:a≤1.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.24.(1)①212y x x =-+;②n≤1;(2)ac≤1,见解析. 【解析】【分析】(1)①△=1求解b =1,将点(3,1)代入平移后解析式,即可; ②顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12),关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n ,联立方程组即可求n 的范围; (2)将点(c ,1)代入y =ax 2﹣bx+c 得到ac ﹣b+1=1,b =ac+1,当1<x <c 时,y >1. b 2a ≥c ,b≥2ac ,ac+1≥2ac ,ac≥1;【详解】解:(1)①ax 2﹣bx =x ,ax 2﹣(b+1)x =1,△=(b+1)2=1,b =﹣1,平移后的抛物线y =a (x ﹣1)2﹣b (x ﹣1)过点(3,1),∴4a ﹣2b =1,∴a =﹣12,b =﹣1,原抛物线:y =﹣12x 2+x , ②其顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12), ∴关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n . 由221y=x +x+2n 21y=-x +x 2⎧⎪⎪⎨⎪⎪⎩得:x 2+2n =1有解,所以n≤1.(2)由题知:a >1,将此抛物线y =ax 2﹣bx 向上平移c 个单位(c >1),其解析式为:y =ax 2﹣bx+c 过点(c ,1),∴ac 2﹣bc+c =1 (c >1),∴ac ﹣b+1=1,b =ac+1,且当x =1时,y =c ,对称轴:x =b 2a,抛物线开口向上,画草图如右所示. 由题知,当1<x <c 时,y >1.∴b 2a≥c ,b≥2ac , ∴ac+1≥2ac ,ac≤1;【点睛】本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a 的值不变是解题的关键. 25.(1)7,9;(2)见解析;(3)①在15~20小时的人数最多;②35;(4)13. 【解析】【分析】(1)观察统计图即可得解;(2)根据题意作图;(3)①根据两个统计图解答即可;②根据图1先算出不足10小时的概率再乘以200人即可;(4)根据题意画出树状图即可解答.【详解】解:(1)C的频数为7,E的频数为9;故答案为7,9;(2)补全频数直方图为:(3)①八九年级共青团员志愿服务时间在15~20小时的人数最多;②200×740=35,所以估计九年级200名团员中参加此次义务劳动的人数约为35人;故答案为35;(4)画树状图为:共有9种等可能的结果数,其中两人恰好选在同一个服务点的结果数为3,所以两人恰好选在同一个服务点的概率=39=13.【点睛】本题考查了条形统计图与扇形统计图与树状图法,解题的关键是熟练的掌握条形统计图与扇形统计图与树状图法.26.(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【解析】【分析】(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【详解】(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.根据题意得:101012x x += 方程两边同乘以2x ,得230x =解得:15x =经检验,15x =是原方程的解.∴当15x =时,230x =.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:41560⨯=(万元);方案二:由乙工程队单独完成.所需费用为:2.53075⨯=(万元);方案三:由甲乙两队合作完成.所需费用为:(4 2.5)1065+⨯=(万元).∵756560>>∴应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.27.1【解析】【分析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.【详解】解:原式=1﹣1×+1+=1﹣+1+=1.【点睛】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.。
2019年北京西城区九年级二模数学试题及答案(WORD版)
北京市西城区九年级模拟测试数学试卷2019.5一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项..只有一个. 1.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A .∠AOB =110° B .∠AOB =∠AOC C .∠AOB +∠AOC =90°D .∠AOB +∠AOC =180°2.改革开放四十年来,北京市民的收入随着经济水平的发展而显著提高. 从储蓄数据来看,2017年北京市民的人民币储蓄存款余额约为2 980 000 000 000元,大致为1978年的3200倍. 将2 980 000 000 000用科学记数法表示应为A .130.29810⨯B .122.9810⨯C .1129.810⨯D .102.9810⨯3.下列图案中,可以看作是轴对称图形又是中心对称图形的是A.B.C.D.4.实数a 在数轴上的对应点的位置如图所示,则实数a 可能是A.B. C.D.5.某个几何体的三视图如右图所示,该几何体是A. B. C. D.6.5G 网络是第五代移动通信网络,它将推动我国数字经济发展迈上新台阶. 据预测,2020年到2030年中国5G 直接经济产出和间接经济产出的情况如下图所示.根据上图提供的信息,下列推断不合理的是A .2030年5G 间接经济产出比5G 直接经济产出多4.2万亿元B .2020年到2030年,5G 直接经济产出和5G 间接经济产出都是逐年增长C .2030年5G 直接经济产出约为2020年5G 直接经济产出的13倍D .2022年到2023年与2023年到2024年5G 间接经济产出的增长率相同7.数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题. 例如:如果a >2,那么a 2>4. 下列命题中,具有以上特征的命题是 A .两直线平行,同位角相等 B .如果1a =,那么1a =C .全等三角形的对应角相等D .如果x y >,那么mx my >8.平面直角坐标系x O y 中,点P (a ,b )经过某种变换后得到的对应点为P '12a +1,12b -1æèçöø÷. 已知A ,B ,C 是不共线的三个点,它们经过这种变换后,得到的对应点分别为A ',B ',C '. 若△ABC 的面积为S 1,△A 'B 'C '的面积为S 2,则用等式表示S 1与S 2的关系为A .1212S S =B .1214S S =C .122S S =D .124S S =二、填空题(本题共16分,每小题2分) 9. 若代数式2x +5在实数范围内有意义,则实数x 的取值范围是 . 10. 若正多边形的一个内角是150°,则这个正多边形的边数是 .11. 有大小两种货车,1辆大货车与3辆小货车额定载重量的总和为23吨,2辆大货车与5辆小货车额定载重量的总和为41吨. 1辆大货车、1辆小货车的额定载重量分 别为多少吨?设1辆大货车的额定载重量为x 吨,1辆小货车的额定载重量为y 吨, 依题意,可以列方程组为 .12. 已知y 是x 的函数,其函数图象经过(1,2),并且当x >0时,y 随x 的增大而减小.请写出一个满足上述条件的函数表达式: . 13. 如图,点A ,B ,C ,D 都在⊙O 上,C 是的中点,AB=CD . 若∠ODC =50°,则∠ABC 的度数为 °.(第13题图) (第14题图)14. 如图,在平面直角坐标系xOy 中,已知点A(,B-1,0(),菱形ABCD 的顶点C 在x 轴的正半轴上,其对角线BD 的长为 .15. 某水果公司新购进10000千克柑橘,每千克柑橘的成本为9元. 柑橘在运输、存储过程中会有损坏,销售人员从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的数据记录如下:根据以上数据,估计柑橘损坏的概率为 (结果保留小数点后一位);由此可知,去掉损坏的柑橘后,水果公司为了不亏本,完好柑橘每千克的售价至少为元.16. 我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设正实数x 的不足近似值和过剩近似值分别为b a 和dc (a ,b ,c ,d 都为正整数),即ba <x <d c,则b +d a +c 是x 的更精确的不足近似值或过剩近似值. 已知π=3.14159···,且3110<p <165,则第一次使用“调日法”后得到π的近似分数是4715,它是π的更为精确的不足近似值,即4715<p <165. 那么第三次使用“调日法”后得到π的近似分数是.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.ABOD17. 计算:.18. 解方程:.19. 下面是小东设计的“作平行四边形一边中点”的尺规作图过程. 已知:平行四边形ABCD .求作:点M ,使点M 为边AD 的中点. 作法:如图,①作射线BA ;②以点A 为圆心,CD 长为半径画弧,交BA 的延长线于点E ; ③连接EC 交AD 于点M . 所以点M 就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成下面的证明.证明:连接AC ,ED .∵四边形ABCD 是平行四边形, ∴AE //CD .∵AE = ,∴四边形EACD 是平行四边形( )(填推理的依据). ∴AM =MD ( )(填推理的依据). ∴点M 为所求作的边AD 的中点.20. 已知关于x 的一元二次方程.(1)求证:此方程总有两个实数根; (2)若此方程有一个根大于-2且小于0,k 为整数,求k 的值.21. 如图,在四边形ABCD 中,AB =DC ,AD =BC ,AD ⊥CD . 点E 在对角线CA 的延长-(-5)-2cos45°+-+14æèçöø÷-1x x +1=1+1xx2-k +5()x +3k +6=0线上,连接BD ,BE .(1)求证:AC =BD ;(2)若BC =2,BE=,求EC 的长.22. 在平面直角坐标系x O y 中,直线l :y =a x +b 与双曲线交于点A 1,m ()和B -2,-1().点A 关于x 轴的对称点为点C .(1)①求k 的值和点C 的坐标;②求直线l 的表达式;(2)过点B 作y 轴的垂线与直线AC 交于点D ,经过点C 的直线与直线BD 交于点E .若30°£ÐCED £45°,直接写出点E 的横坐标t 的取值范围.23. 如图,AB 是⊙O 的直径,CA 与⊙O 相切于点A ,且CA =BA .连接OC ,过点A 作AD ⊥OC 于点E ,交⊙O 于点D ,连接DB . (1)求证:△ACE ≌△BAD ;(2)连接CB 交⊙O 于点M ,交AD 于点N .若AD =4,求MN 的长.24. 某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后 2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y (单位:微克)与服药后的时间t (单位: 小时)之间近似满足某种函数关系,下表是y 与t 的几组对应值,其部分图象如图tan ÐABE=23y =k x(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为_______微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约_______小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为_______微克.25.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩在≤<这一组的是:7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3c. 一分钟仰卧起坐成绩如下图所示:根据以上信息,回答下列问题:(1)①表中m的值为__________;②一分钟仰卧起坐成绩的中位数为__________;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:其中有名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这名女生中恰好有人两项测试成绩都达到了优秀,于是体育委员推测女生E 的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.26. 在平面直角坐标系xOy 中.已知抛物线y =ax 2+bx +a -2的对称轴是直线x =1.(1)用含a 的式子表示b ,并求抛物线的顶点坐标; (2)已知点A 0,-4(),B 2,-3(),若抛物线与线段AB 没有公共点,结合函数图象,求a 的取值范围;(3)若抛物线与x 轴的一个交点为C (3,0),且当m≤x ≤n 时,y 的取值范围是m ≤y ≤6,结合函数图象,直接写出满足条件的m ,n 的值.27. 如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF =AE ,连接DE ,DF ,EF . FH平分∠EFB 交BD 于点H . (1)求证:DE ⊥DF ; (2)求证:DH =DF :(3)过点H 作HM ⊥EF 于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.EE28. 对于平面内的∠M A N 及其内部的一点P ,设点P 到直线A M ,A N 的距离分别为 d 1,d 2,称12d d 和21d d 这两个数中较大的一个为点P 关于∠MAN 的“偏率” .在平面直角坐标系xOy 中,(1)点M ,N 分别为x 轴正半轴,y 轴正半轴上的两个点.①若点P 的坐标为(1,5),则点P 关于∠MON 的“偏率”为____________; ②若第一象限内点Q (a ,b )关于∠MON 的“偏率”为1,则a ,b 满足的关 系为____________;(2)已知点A (4,0),B (2,OB ,AB ,点C 是线段AB 上一动点(点C 不与点A ,B 重合). 若点C 关于∠AOB 的“偏率”为2,求点C 的坐标;(3)点E ,F 分别为x 轴正半轴,y 轴正半轴上的两个点,动点T 的坐标为(t ,4), ⊙T 是以点T 为圆心,半径为1的圆. 若⊙T 上的所有点都在第一象限,且关于∠EOF的“偏率”都大于,直接写出t 的取值范围.EE北京市西城区2019年九年级模拟测试数学试卷答案及评分参考 2019.5一、选择题(本题共16分,每小题2分)28题,每小题7分)17.解:原式=5242-⨯+ ………………………………………………………4分=9+ …………………………………………………………………5分18.解:两边同乘(1)x x +,得2(1)1x x x x =+++. ……………………………………2分 整理得 21x =-.解得 12x =-. ……………………………………………………………………4分 经检验,12x =-是原方程的解. 5分19.解:(1)补全的图形如图所示; (2)CD ,平行四边形的对角线互相平分. 20.(1)证明:依题意,得2[(5)]4(36)k k ∆=-+-+ ……………………………………1分221k k =-+ 2(1)k =-.∵2(1)0k -≥,∴此方程总有两个实数根. ………………………………………………2分(2)解:解方程得 x =∴方程的两个根为12x k=+,23x=.……………………………………4分由题意可知,220k-<+<,即42k-<<-.∵k为整数,∴3k=-.……………………………………………………………………5分21.(1)证明:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.…………………………………………1分∵AD⊥CD,∴∠ADC=90°.∴四边形ABCD是矩形.∴AC=BD.…………………………………………………………………2分(2)解:过点E作EF⊥CB交CB的延长线于点F,如图,则∠EFB=90°.∵四边形ABCD是矩形,∴∠ABC=90°.∴∠ABC=∠EFB.∴EF∥AB.∴∠ABE=∠FEB. (3)∴tan∠FEB=tan∠ABE=23.∴FBEF =23.设FB=2x(x >0),则EF=3x.∵222BE EF FB=+,BE∴222(3)(2)x x=+,解得x=1.∴FB=2,EF=3.………………………………………………………………4分∵BC=2,∴FC=FB+BC=4.∴5EC==.……………………………………………………5分22.解:(1)①∵点B(2-,1-)在双曲线kyx=上,∴2k=.……………………………………………………………………1分∵点A(1,m)在双曲线2yx=上,∴2m=.∵点A关于x轴的对称点为点C,∴点C的坐标为(1,2-).………………………………………………2分②∵直线l:y ax b=+经过点A(1,2)和B(2-,1-),∴2,12.a b a b =+⎧⎨-=-+⎩ 解得1,1.a b =⎧⎨=⎩∴直线l 的表达式为1y x =+. ……………………………………………3分(2)10t ≤或21t ≤≤ ………………………………………………5分23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ……………………………………………………………1分∵AD ⊥OC 于点E ,∴∠AEC =90°.∴∠AEC =∠ADB .∵CA 与⊙O 相切于点A ,∴CA ⊥BA . …………………………………………………………………2分 ∴∠CAB =90°.即∠CAE +∠DAB =90°.∵∠CAE +∠ACE =90°,∴∠DAB =∠ACE .∵CA =BA ,∴△ACE ≌△BAD . 3分(2)解:连接AM ,如图.∵AD ⊥OC 于点E ,AD =4,∴AE =ED =12AD =2.∵△ACE ≌△BAD ,∴BD =AE =2,CE =AD =4.在Rt △ABD 中,AB == ………………………………4分在Rt △ABC 中,BC ==.∵∠CEN =∠BDN =90°,∠CNE =∠BND ,∴△CEN ∽△BDN .∴2CN CE BN BD==.∴13BN BC ==………………………………………………………5分 ∵AB 是⊙O 的直径,∴∠AMB =90°,即AM ⊥CB .∵CA =BA ,∠CAB =90°,∴BM =12∴MN BM BN =-. …………………………………………………6分24.解:本题答案不唯一,如:(1)图象如图所示;………………………2分(2)①1.41,7.75; …………………………………………………………………5分②4.25. ………………………………………………………………………6分25.解:(1)①9; ……………………………………………………………………………1分②45; …………………………………………………………………………2分(2)①131506530⨯=(人). ………………………………………………………4分 答:估计全年级女生实心球成绩达到优秀的人数约为65人.②同意,理由答案不唯一,如:如果女生E 的仰卧起坐成绩未达到优秀,那么只有A ,D ,F 有可能两项测试成绩都达到优秀,这与恰有4人两项测试成绩都达到优秀矛盾,因此女生E 的一分钟仰卧起坐成绩达到了优秀.………………………………………………………………………………6分26.解:(1)∵12b a-=, ∴2b a =-. ……………………………………………………………………1分∴抛物线为222y ax ax a =-+-.当1x =时,222y a a a =-+-=-,∴抛物线的顶点为(1,2-). ………………………………………………2分(2)若0a >,抛物线与线段AB 没有公共点;若0a <,当抛物线经过点B (2,3-)时,它与线段AB 恰有一个公共点,此时3442a a a -=-+-,解得1a =-.∵抛物线与线段AB 没有公共点,∴结合函数图象可知,10a -<<或0a >. ………………………………4分(3)2,5m n =-⎧⎨=⎩ 或 25.m n ⎧=+⎪⎨=⎪⎩…………………………………………………6分 27.(1)证明:∵四边形ABCD 是正方形,∴AD =CD ,∠EAD =∠BCD =∠ADC =90°.∴∠EAD =∠FCD =90°.∵CF =AE ,∴△AED ≌△CFD . ………………………………………………………1分∴∠ADE =∠CDF .∴∠EDF =∠EDC +∠CDF =∠EDC +∠ADE =∠ADC =90°.∴DE ⊥DF . …………………………………………………………………2分(2)证明:∵△AED ≌△CFD ,∴DE =DF .∵∠EDF =90°,∴∠DEF =∠DFE =45°. ∵∠ABC =90°,BD 平分∠ABC ,∴∠DBF =45°.∵FH 平分∠EFB ,∴∠EFH =∠BFH .∵∠DHF =∠DBF +∠BFH =45°+∠BFH ,∠DFH =∠DFE +∠EFH =45°+∠EFH ,∴∠DHF =∠DFH .∴DH =DF . …………………………………………………………………4分(3)22EF AB HM =-. ………………………………………………………………5分证明:过点H 作HN ⊥BC 于点N ,如图.∵正方形ABCD 中,AB =AD ,∠BAD =90∴BD ==.∵FH 平分∠EFB ,HM ⊥EF ,HN ⊥BC ,∴HM =HN .∵∠HBN =45°,∠HNB =90°,∴BH =2sin 45HN ==.∴DH =BD -BH .∵EF =2cos45DF =, ∴22EF AB HM =-. ……………………………………………………7分28.解:(1)①5; ……………………………………………………………………………1分②a =b ; …………………………………………………………………………2分(2)∵点A (4,0),B (2,∴OA =4,OB 4=,AB 4=.∴OA =OB =AB .∴△OAB 是等边三角形.∴∠OAB =∠OBA =60°.过点C 作CD ⊥OA 于点D ,CH ⊥OB 于点H ,如图,则∠CDA =∠CHB =90°.∴△ACD ∽△BCH .∴CD CA CH CB=. ∵点C 关于∠AOB 的“偏率”为2, ∴2CD CH =或2CH CD =.当2CD CH =时,则2CA CB=. ∴2833CA AB ==. ∴4cos603DA CA =⋅=,43sin 60CD CA =⋅=. ∴83OD OA DA =-=.∴点C 的坐标为(83同理可求,当2CH CD =时,点C 的坐标为(103).∴点C 的坐标为(83103, …………………………5分(3)1t <<2t >+7分。
北京市西城区2019-2020学年第二次中考模拟考试数学试卷含解析
北京市西城区2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则cos∠ECB为()A.35B.31313C.23D.213132.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.3.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为()A.25°B.30°C.35°D.40°4.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()A.13B.23C.12D.255.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b6.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC7.如图,函数y1=x3与y2=1x在同一坐标系中的图象如图所示,则当y1<y2时()A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0D.﹣1<x<0或x>18.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于A.90°B.180°C.210°D.270°9.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x﹣1 C.34y x=D.1yx=10.在实数0,2-,1,5中,其中最小的实数是()A.0B.2-C.1D.511.不等式﹣12x+1>3的解集是()A.x<﹣4 B.x>﹣4 C.x>4 D.x<412.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△ACD:S△ACB=1:1.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于__________.14.正十二边形每个内角的度数为.15.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.16.已知关于x 的函数y=(m﹣1)x2+2x+m 图象与坐标轴只有2 个交点,则m=_______.17.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.18.对于函数y= 2x,当函数y﹤-3时,自变量x的取值范围是____________ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=2x﹣4的图象与反比例函数y=kx的图象交于A、B两点,且点A的横坐标为1.(1)求反比例函数的解析式;(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.20.(6分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.21.(6分)如图所示,直线y=12x+2与双曲线y=k x相交于点A(2,n),与x 轴交于点C . (1)求双曲线解析式; (2)点P 在x 轴上,如果△ACP 的面积为5,求点P 的坐标.22.(8分)已知点O 是正方形ABCD 对角线BD 的中点.(1)如图1,若点E 是OD 的中点,点F 是AB 上一点,且使得∠CEF=90°,过点E 作ME ∥AD ,交AB 于点M ,交CD 于点N .①∠AEM=∠FEM ; ②点F 是AB 的中点;(2)如图2,若点E 是OD 上一点,点F 是AB 上一点,且使,请判断△EFC 的形状,并说明理由;(3)如图3,若E 是OD 上的动点(不与O ,D 重合),连接CE ,过E 点作EF ⊥CE ,交AB 于点F ,当时,请猜想的值(请直接写出结论).23.(8分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣3.24.(10分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.25.(10分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)26.(12分)路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120 角,锥形灯罩的轴线AD与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)27.(12分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元;(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.【详解】解:连接EB,由圆周角定理可知:∠B=90°,设⊙O的半径为r,由垂径定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:13∴cos∠ECB=CBCE=1313,故选D.【点睛】本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.2.C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C3.B【解析】【分析】如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.【详解】如图,连接OA,OB,OC,OE.∵∠EBC+∠EDC =180°,∠EDC =130°,∴∠EBC =50°,∴∠EOC =2∠EBC =100°,∵AB =BC =CE ,∴弧AB =弧BC =弧CE ,∴∠AOB =∠BOC =∠EOC =100°,∴∠AOE =360°﹣3×100°=60°,∴∠ABE =12∠AOE =30°. 故选:B .【点睛】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.B【解析】【分析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】 ①若第一次摸到的是白球,则有第一次摸到白球的概率为23,第二次,摸到白球的概率为12,则有211323⨯=;②若第一次摸到的球是红色的,则有第一次摸到红球的概率为13,第二次摸到白球的概率为1,则有11133⨯=,则两次摸到的球的颜色不同的概率为112333+=. 【点睛】掌握分类讨论的方法是本题解题的关键.5.D【解析】试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误;B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D.由选项C可得,此选项正确.故选D.考点:实数与数轴6.D【解析】【分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=BD BC CD BC AB AC==.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.7.B【解析】【分析】根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1<y2时所对应的x的取值范围.【详解】根据图象知,一次函数y1=x3与反比例函数y2=1x的交点是(1,1),(-1,−1),∴当y1<y2时,, 0<x<1或x<-1;故答案选:B.【点睛】本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.8.B【解析】【详解】试题分析:如图,如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B9.D【解析】A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x 的增大而减小,故此选项错误B、k>0,y随x增大而增大,故此选项错误C、B、k>0,y随x增大而增大,故此选项错误D、y=1x(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确10.B【解析】【分析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.【详解】解:∵0,-2,1-2<0<1,∴其中最小的实数为-2;故选:B.【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.11.A【解析】【分析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解.【详解】移项得:−12x>3−1,合并同类项得:−12x>2,系数化为1得:x<-4. 故选A.本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.12.D【解析】【分析】①根据作图过程可判定AD是∠BAC的角平分线;②利用角平分线的定义可推知∠CAD=10°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB是等腰三角形,由等腰三角形的“三合一”性质可以证明点D在AB的中垂线上;④利用10°角所对的直角边是斜边的一半,三角形的面积计算公式来求两个三角形面积之比.【详解】①根据作图过程可知AD是∠BAC的角平分线,①正确;②如图,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正确;③∵∠1=∠B=10°,∴AD=BD,∴点D在AB的中垂线上,③正确;④如图,∵在直角△ACD中,∠2=10°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,S△DAC=AC∙CD=AC∙AD.∴S△ABC=AC∙BC=AC∙AD=AC∙AD,∴S△DAC:S△ABC=AC∙AD:AC∙AD=1:1,④正确.故选D.【点睛】本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.224πcm【解析】解:它的侧面展开图的面积=12•1π•4×6=14π(cm1).故答案为14πcm1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.150【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【详解】试题分析:正十二边形的每个外角的度数是:36012=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为150°.15.(2,0)【解析】【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,∵A(m,﹣3)和点B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,设P(a,0),∴a+1=3,a=2,∴P(2,0),故答案为(2,0).【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.16.1 或 0 【解析】【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m 的值.【详解】解:(1)当 m ﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴 交点坐标为(﹣12,0);与 y 轴交点坐标(0,1).符合题意. (2)当 m ﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0,解得,(m ﹣12)2<54,解得 m 或 m . 将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点, 这时:△=4﹣4(m ﹣1)m=0,解得:m=12.故答案为1 或 0 . 【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.17.4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是»AB 的中点,∴∠COD=45°,∴22,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积 =22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.18.-23<x<0 【解析】【分析】根据反比例函数的性质:y 随x 的增大而减小去解答.【详解】解:函数y=2x中,y 随x 的增大而减小,当函数y ﹤-3时 223? x 3x -∴- 又Q 函数y= 2x中,x 0≠ 203x ∴-<< 故答案为:-23<x<0. 【点睛】此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=6x;(2)(4,0)或(0,0) 【解析】【分析】(1)把x=1代入一次函数解析式求得A 的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B 的坐标,后利用△ABP 的面积为8,可求P 点坐标.【详解】解:(1)把x=1代入y=2x ﹣4,可得y=2×1﹣4=2,∴A(1,2),把(1,2)代入y=kx,可得k=1×2=6,∴反比例函数的解析式为y=6x;(2)根据题意可得:2x﹣4=,解得x1=1,x2=﹣1,把x2=﹣1,代入y=2x﹣4,可得y=﹣6,∴点B的坐标为(﹣1,﹣6).设直线AB与x轴交于点C,y=2x﹣4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则×|x﹣2|×(2+6)=8,解得x=4或0,∴点P的坐标为(4,0)或(0,0).【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连接 AD,CD. ① 依题意补全图形;
②
若 AD=6, sin AEC
3
,求 CD
的长.
5
九年级模拟测试 数学试卷 第 5页(共 8页)
24.如图,在△ABC 中,AE 平分∠BAC 交 BC 于点 E,D 是 AB 边上一动点,连接 CD 交 AE 于点 P,连接 BP.已知 AB = 6 cm,设 B,D 两点间的距离为 x cm,B,P 两点间的距离为 y1 cm,A,P 两点间的距离为 y2 cm. 小明根据学习函数的经验,分别对函数 y1,y2 随自变 量 x 的变化而变化的规律进行了探究.
坐标为_______.
14.如图,用 10 个大小、形状完全相同的小矩形,拼成一个宽
为 50 cm 的大矩形,设每个小矩形的长为 x cm,宽为 y cm,
则可以列出的方程组是______.
15.某调查机构对某地互联网行业从业情况进行调查统计,得到当地互联网行业从业人员年龄
分布统计图和当地 90 后从事互联网行业岗位分布统计图:
将收集到的数据整理后,绘制统计图如下:
注“●”表示患者,“▲”表示非患者. 根据以上信息,回答下列问题:
(1)在这 40 名被调查者中,
① 指标 y 低于 0.4 的有
人;
② 将 20 名患者的指标 x 的平均数记作 x1 ,方差记作 s12 ,20 名非患者的指标 x 的
平均数记作 x2 ,方差记作 s22 ,则
25.在平面直角坐标系
中,函数 y m ( x 0 )的图象 G 与直线 l :y kx 4k 1 交于 x
点 A(4,1),点 B(1,n)(n≥4,n 为整数)在直线 l 上.
(1)求 m 的值;
(2)横、纵坐标都是整数的点叫做整点.记图象 与直线 l 围成的区域(不含边界)为 W.
① 点 P 关于点 B 的定向对称点的坐标是
;
② 在点 C(0, 2) , D(1, 3) , E(2,1) 中,
是点 P 关于线段 AB
的
定向对称点.
(2)直线 l:y 3 x b 分别与 x 轴,y 轴交于点 G,H,⊙M 是以点 M (2,0) 为圆心, 3
r(r 0) 为半径的圆. ① 当 r 1 时,若⊙M 上存在点 K,使得它关于线段 GH 的定向对称点在线段 GH
(1)某次从袋中任意取出两个球,若取出的球都没有放入丙盒,则先放入甲盒的球的颜色
九年级模拟测试 数学试卷 第 3页(共 8页)
是. (2)若乙盒中最终有 5 个红球,则袋中原来最少有 个球. 三、解答题(本题共 68 分,第 17-22 题,每小题 5 分,第 23-26 题,每小题 6 分,第 27,
北京市西城区九年级模拟测试
数学试卷
2020.6
1. 本试卷共 8 页,共三道大题,28 道小题。满分 100 分。考试时间 120 分钟。 考 2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。 生
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 须 知 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
下面是小明的探究过程,请补充完整: (1)按照下表中自变量 x 的值进行取点、画图、测量,
分别得到了 y1, y2 与 x 的几组对应值:
x/cm y1/cm y2/cm
0
1
2
3
4
5
6
2.49 2.64 2.88 3.25 3.80 4.65 6.00
4.59 4.24 3.80 3.25 2.51
(D)
(D)
九年级模拟测试 数学试卷 第 1页(共 8页)
5.如图,实数 a,b 在数轴上的对应点的位置如图所示,则正确的结论是
(A) a 3
(B) 1 b 0
(C) a b
6.如图,△ABC 内接于⊙O,若∠A=45°,OC=2,则 BC 的长为
(D) a b 0
(A)
(B)
(C)
(D)4
根据以上信息,推断张老师这八个月的通话时长的中位数可能的最大值为
(A)550
(B)580
(C)610
(D)630
二、填空题(本题共 16 分,每小题 2 分)
9.若代数式
x
1
2
在实数范围内有意义,则
x
的取值范围是_______.
10.因式分解: a3 a =_______.
九年级模拟测试 数学试卷 第 2页(共 8页)
① 当 n = 5 时,求 k 的值,并写出区域 W 内的整点个数;
② 若区域 W 内恰有 5 个整点,结合函数图象,求 k 的取值范围.
26. 在平面直角坐标系xOy中,抛物线 y x2 +bx c 与x轴交于点A,B(A在B的左侧),
抛物线的对称轴与x轴交于点D,且OB=2OD.
(1)当 b 2 时,
① 写出抛物线的对称轴;
② 求抛物线的表达式;
(2)存在垂直于 x 轴的直线分别与直线 l : y x b 2 和抛物线交于点 P,Q,且点 P,
2
Q 均在 x 轴下方,结合函数图象,求 b 的取值范围.
27. 在正方形 ABCD 中,E 是 CD 边上一点(CE >DE),AE,BD 交于点 F. (1)如图 1,过点 F 作 GH⊥AE,分别交边 AD,BC 于点 G,H. 求证:∠EAB =∠GHC; (2)AE 的垂直平分线分别与 AD, AE, BD 交于点 P,M,N,连接 CN. ① 依题意补全图形; ② 用等式表示线段 AE 与 CN 之间的数量关系,并证明.
图1
备用图
九年级模拟测试 数学试卷 第 7页(共 8页)
28. 对于平面直角坐标系 xOy 中的定点 P 和图形 F,给出如下定义:若在图形 F 上存在一点 N,使得点 Q,点 P 关于直线 ON 对称,则称点 Q 是点 P 关于图形 F 的定向对称点.
(1)如图, A(1,0) , B(1,1) , P(0,2) ,
28 题,每小题 7 分) 解答应写出文字说明、演算步骤或证明过程. 17.计算: 12 ( 2020)0 3tan 30o 3 1 .
18.解方程: x 1 2x . x 1 3x 3
19.已知关于 x 的一元二次方程 x2 (2k 1) x 2k 0 . (1)求证:方程总有两个实数根;
④ 在当地互联网行业中,从事设计岗位的 90 后人数比 80 前人数少
16.一个袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中
任
意取出两个球,如果先放入甲盒的球是红球,则另一个球放入乙盒;如果先放入甲盒的球
是黑球,则另一个球放入丙盒.重复上述过程,直到袋中所有的球都被放入盒中.
x1
x2 , s12
s22 (填“>”,“=”或“<”) ;
(2)来该院就诊的 500 名未患这种疾病的人中,估计指标 x 低于 0.3 的大约有 人;
(3)若将“指标 x 低于 0.3,且指标 y 低于 0.8”作为判断是否患有这种疾病的依据,则 发
生漏判的概率是 . 23. 如图,AB 是⊙O 的直径,C,D 是⊙O 上两点,且 C»D = C»B ,连接 OC,BD,OD.
11.如图,D,E 分别是△ABC 的边 AB,AC 的中点,若△ADE 的面积为 1,则△ABC 的 面积等于______.
第 11 题图
第 12 ቤተ መጻሕፍቲ ባይዱ图
第 13 题图
12.如图,∠A=∠ABC=∠C=∠D=∠E,点 F 在 AB 的延长线上,则∠CBF 的度数是__.
13.如图,双曲线 y k 与直线 y=mx 交于 A,B 两点,若点 A 的坐标为(2,3),则点 B 的 x
(2)连接 DE,若 AC = 2 3 ,BC =2,
求证:△ADE 是等边三角形.
九年级模拟测试 数学试卷 第 4页(共 8页)
22. 某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指
标 x , y ,于是他分别在这种疾病的患者和非患者中,各随机选取 20 人作为调查对象,
上,求 b 的取值范围; ② 对于 b 0 ,当 r 3 时,若线段 GH 上存在点 J,使得它关于⊙M 的定向对称点
在⊙M 上,直接写出 b 的取值范围.
九年级模拟测试 数学试卷 第 8页(共 8页)
互联网行业从业人员年龄分布统计图
90 后从事互联网行业岗位分布图
对于以下四种说法,你认为正确的是
(写出全部正确说法的序号) .
① 在当地互联网行业从业人员中,90 后人数占总人数的一半以上
② 在当地互联网行业从业人员中,80 前人数占总人数的 13%
③ 在当地互联网行业中,从事技术岗位的 90 后人数超过总人数的 20%
8.张老师将自己 2019 年 10 月至 2020 年 5 月的通话时长(单位:分钟)的有关数据整理如下: ① 2019 年 10 月至 2020 年 3 月通话时长统计表
时间
10 月 11 月 12 月 1 月 2 月 3 月
时长(单位:分钟) 520 530
550
610
650
660
② 2020 年 4 月与 2020 年 5 月,这两个月通话时长的总和为 1100 分钟
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共 16 分,每小题 2 分) 第 1-8 题均有四个选项,符合题意的选项只有一个.
1.下列各组图形中,能将其中一个图形经过平移变换得到另一个图形的是
(A)
(B)
(C)