化学反应工程复习+公式指导
反应工程公式总结

反应速率为:
������������
=
−
1 ������
������������������ ������������
;������������
=
−1
������
������������������ ������������
;������������
=
1 ������
������������������ ������������
因此 tafel方程只适用于强极化范围。
《反应工程》学习总结
参考资料: 《反应工程》第二版 李绍芬
主要学习:
1.反应动力学基础 2.吸附与脱附
1.反应动力学基础
化学反应速率:以反应
������������������ + ������������������ → ������������������ 为例:
又因为
������������
=
������������������,所以对于恒容过程,������������
= − ������������������
������������
该式以浓度对时间的变化率表
示化
学反应速率
2.动力学方程
基元反应的速率方程(幂函数型速率方程):
������:反应速率常数,是温度的函数
总之不论是可逆还是不可逆反应。反应速率 都是随着转化率增大而降低的。
4.反应速率与转化率的关系
单一反应:������������������ + ������������������ → ������������������
������������ = ������0[exp
专升本化学基础公式与反应大全

专升本化学基础公式与反应大全化学是一门充满奥秘和神奇的学科,对于准备专升本考试的同学来说,掌握化学基础公式和反应是至关重要的。
本文将为大家系统地梳理和总结专升本化学中的重要基础公式与反应,帮助大家更好地复习和备考。
一、化学计量关系1、物质的量(n)、质量(m)和摩尔质量(M)的关系公式:n = m / M例如,计算 16 克氧气(O₂)的物质的量,氧气的摩尔质量为 32 g/mol,则物质的量 n = 16 g / 32 g/mol = 05 mol。
2、气体摩尔体积(Vm)、物质的量(n)和气体体积(V)的关系在标准状况(0℃,101 kPa)下,气体摩尔体积约为 224 L/mol。
公式:V = n × Vm比如,2 mol 氢气(H₂)在标准状况下的体积为 V = 2 mol × 224 L/mol = 448 L。
3、物质的量浓度(c)、溶质的物质的量(n)和溶液体积(V)的关系公式:c = n / V若要配制 1 mol/L 的氯化钠(NaCl)溶液 500 mL,需要氯化钠的物质的量为 05 mol。
二、化学反应速率1、化学反应速率(v)的计算公式公式:v =Δc /Δt其中,Δc 表示物质浓度的变化量,Δt 表示时间变化量。
2、影响化学反应速率的因素(1)浓度:反应物浓度增大,反应速率加快。
(2)温度:温度升高,反应速率加快。
(3)压强(对于有气体参与的反应):压强增大,反应速率加快。
(4)催化剂:能显著改变反应速率。
三、化学平衡1、化学平衡的特征(1)逆:可逆反应。
(2)等:正反应速率等于逆反应速率。
(3)动:动态平衡,反应仍在进行。
(4)定:各物质的浓度保持不变。
(5)变:条件改变,平衡发生移动。
2、化学平衡常数(K)对于反应 aA + bB ⇌ cC + dD,平衡常数 K = C^c × D^d / A^a ×B^b3、影响化学平衡移动的因素(1)浓度:增大反应物浓度或减小生成物浓度,平衡向正反应方向移动。
化学化学反应公式

化学化学反应公式化学反应公式是用化学符号和数字表示化学反应的简洁且准确的方式。
它包括反应物、生成物以及它们之间的关系。
在化学领域中,化学反应公式被广泛应用,帮助人们理解和研究各种化学反应。
一、化学反应公式的构成化学反应公式通常由反应物、箭头和生成物组成。
反应物位于箭头的左侧,生成物位于箭头的右侧。
箭头表示了反应的方向,从反应物指向生成物。
化学符号表示化学元素,数字表示元素或化合物的摩尔比例。
例如,将两个氢气分子(H2)与一个氧气分子(O2)反应,得到两个水分子(H2O),可以表示为:2H2 + O2 → 2H2O二、化学反应公式的应用化学反应公式可以用于描述各种类型的反应,如合成反应、分解反应、置换反应等。
它们可以帮助我们了解反应物在反应过程中如何转化为生成物,以及所涉及的能量变化。
合成反应是指两个或多个反应物结合,生成一个或多个生成物的反应。
例如,将氢气与氧气反应生成水的合成反应可以表示为:2H2 + O2 → 2H2O分解反应是指一个反应物分解为两个或多个生成物的反应。
例如,将过氧化氢分解为水和氧气的分解反应可以表示为:2H2O2 → 2H2O + O2置换反应是指两个反应物中的一个元素被另一个元素替代的反应。
例如,将铜与银硝酸反应生成银和铜硝酸的置换反应可以表示为:Cu + 2AgNO3 → 2Ag + Cu(NO3)2化学反应公式还可用于计算反应的摩尔比例、反应的产物和反应物之间的摩尔关系,从而帮助研究人员预测反应的产物和优化反应条件。
三、化学反应公式的补充信息化学反应公式虽然可以提供反应物和生成物之间的化学变化,但不能提供有关反应速率、反应机理和反应条件的详细信息。
为了更好地理解和解释反应,我们还需要其他实验数据和信息。
除了化学反应公式,还有一种更详细的表示方法称为离子方程式。
离子方程式不仅包括反应物和生成物之间的化学变化,还显示了溶液中所涉及的离子。
它可以更好地描述在水中发生的离子反应。
反应工程 公式总结

4.反应速率与转化率的关系
5.多相催化与吸附
过渡状态理论认为化学反应速 率决定于反应物和反应产物间 形成过度络合物的自由能。催 化剂的存在正是使自由能减少, 从而使催化反应的速率远远大 于非催化反应。对于复合反应, 催化剂起到定向作用,即加速 主反应,使目的产物收率增加, 改善反应的选择性。 物理吸附:分子引力起作用 化学吸附:化学键力起作用 理想吸附(朗格谬尔模型): 1.吸附表面能量均匀,吸附位能 量相同; 2.被吸附分子间作用力不计; 3.单层吸附。 真实吸附:催化剂表面不均,分子间作用 力
学习总结
2016.12.7
电化学极化
《反应工程》学习总结
参考资料: 《反应工程》第二版 李绍芬
主要学习:
1.反应动力学基础 2.吸附与脱附
1.反应动力学基础
2.动力学方程
3.温度对反应速率的影响
根据2.2图,曲线为等速曲线,r=0为平衡 曲线,相应的为平衡转化率。随温度升高, 平衡转化率增大。下方为非0等速线,且 r4>r3>r2>r1 可知,温度一定时,反应速 率随着转化率增大而减小。转化率一定时, 反应速率随温度升高而升高。
根据左图,可逆放热反应反应速率随温度 升高即可能增加也可能减小,图中曲线为 等转化率曲线。当温度较低时,反应速率 随温度上升而增加较快,在到达某一极值 时,速率开始随温度上升而下降。极大值 点叫做最佳温度。
对于不同反应速率下的反应,都有一个极大 值点,即转化率最大。对应的温度为最佳温 度。连接所有等速率曲线的转化率最大点构 成的曲线叫最佳温度曲线。 总之不论是可逆还是不可逆反应。反应速率 都是随着转成。
5.1吸附速率与脱附速率
化学反应工程期末总结公式

化学反应工程期末总结公式一、引言化学反应工程是化学工程学科的一门重要课程,主要研究化学反应的基本原理、反应动力学以及工业生产中的应用,是化学工业生产过程中不可或缺的一环。
在本学期的学习过程中,通过课堂教学、实验操作、文献阅读等方式,我对化学反应工程的基本知识以及实践应用有了更深入的了解。
本文将对本学期所学的内容进行总结和回顾,以期更好地巩固和应用所学知识。
二、理论知识1. 反应动力学反应动力学是研究化学反应速率及其影响因素的学科。
在化学反应工程中,我们需要了解反应动力学的基本原理,包括反应速率方程、活化能、反应速率常数等等。
了解这些基本概念可以帮助我们预测和控制反应过程中的各项参数。
2. 反应器设计反应器是进行化学反应的装置,反应器设计是化学反应工程中的重要内容。
在反应器设计中,我们需要考虑如何选择适当的反应器类型、确定反应器的尺寸和形状、设计反应器的加热与冷却系统等等。
反应器设计的好坏直接影响着反应的效率和产率。
3. 反应工艺优化反应工艺优化是化学反应工程中的关键环节,通过对反应条件的调节和优化,可以提高反应的选择性、产率和效率。
在反应工艺优化中,我们需要了解如何确定最佳反应温度、确定最佳反应物配比、考虑催化剂的选择和回收等等。
反应工艺优化是提高化学反应工程生产效益的重要途径。
三、实验操作本学期我参与了多个化学反应工程实验的操作,通过实际操作加深了对化学反应工程理论知识的理解和应用。
以下是本学期所参与的几个实验。
1. 酯化反应实验在酯化反应实验中,我们使用乙酸和乙醇作为反应物,通过酯化反应制备乙酸乙酯。
在实验操作过程中,我们需要确定合适的反应温度、反应物配比和催化剂用量,以提高酯化反应的效率和产率。
2. 氧化反应实验在氧化反应实验中,我们使用硫酸铜作为催化剂,将苯乙烯氧化为苯乙烯醇。
实验中,我们需要选取合适的反应温度、氧化剂用量和反应物浓度,以提高氧化反应的选择性和产率。
3. 加氢反应实验在加氢反应实验中,我们使用负载型催化剂,将丙二酸二丁酯加氢转化为丙二醇。
化学反应工程第七次课

FA
FA
xA
W1
1
W2
2
xA
1 2
xA
影响显著
高流速区 无影响 低流速区 影响显著
无影响
W
结论:
FA0
W
FA0
W
FA0
实验曲线落在同一条上,则外扩散影响消除。若实验 曲线在低流速下不一致,高流速下一致则应选择高流速区 域操作。
b、消除内扩散的影响 目的 方法 减少内扩散阻力 减小颗粒直径 内表面充分暴露 消除内扩散
(1)外扩散与内扩散影响的消除
气 相 主 体
c A c AS
c Ai
由于传递条件的限制,使气固相催化反应过程中,c A c AS c Ai, 而要确定反应的本征动力学,必须确定r=f(c Ai ),因为c Ai无法直接 得,所以,需要c A、c AS、c Ai 之间的关系。当催化剂没有内外扩散阻 力时,也就是内扩散与外扩散均消除了,则有:c A c AS c Ai。此时, 催化剂的本征动力学方程容易测得。
优点: • 可以直接测出反应速率,数据 处理简单; • 催化剂用量少,转化率低,易 实现等温。 缺点: • 分析精度要求高; • 配料复杂; • 沟流等对实验结果影响较大。
FA0 ( rA ) ( x A 2 x A1 ) W
x A1 x A2 即 2
化学反应工程课程期末复习

2. 基础方程 化学动力学方程
计算反应速率
计算反应体积 计算温度变化
物料衡算方程
热量衡算方程 动量衡算方程
计算压力变化
输入
消耗
累积
输出
输入量=输出量+消耗量+累积量
(输入量-输出量-消耗量=累积量)
第四节
等温条件下理想反应器的设计分析
一、间歇反应器的设计
1.间歇反应器的特点
①由于剧烈搅拌、混合,反应器内有效空间中各位置的 物料温度、浓度都相同;
8 7.398
试求反应的速率方程
解:由于题目中给的数据均是醋酸转化率较低时
的数据,可以忽略逆反应的影响,而丁醇又大大
过量,反应过程中丁醇浓度可视为不变。所以反
应速率方程为:
dcA m n n rA kcB cA k cA dt
将实验数据分别按0、1和2级处理并得到t-f(cA)的关系
YR=xA×SR
产物R的收率:
1. 每100kg乙烷(纯度100%)在裂解器中裂解,产生46.4kg乙烯,乙 烷的单程转化率为60%,裂解气经分离后,所得到的产物气体中含有 4kg乙烷,其余为反应的乙烷返回裂解器。求乙烯的选择性、收率、总 收率和乙烷的总转化率。 解:由于单程转化率为60%,则反应掉的乙烷量为60kg。由题可知, 乙烷的循环量为36kg,补充的新鲜乙烷量为64kg。
CH3COOH+C4H9OH=CH3COOC4H9+H2O
醋酸和丁醇的初始浓度分别为0.2332和
1.16kmolm-3。测得不同时间下醋酸转化量如表所示。
t/hr 醋酸转化量 ×102/kmol.m-3
0 0
1 1.636
2 2.732
化学反应的动力学计算和方程式

化学反应的动力学计算和方程式化学反应的动力学计算和方程式是化学反应速率和化学平衡两个方面的内容。
一、化学反应速率化学反应速率是指化学反应在单位时间内物质浓度的变化量。
化学反应速率常用公式表示为:[ v = ]其中,v表示反应速率,ΔC表示物质浓度的变化量,Δt表示时间的变化量。
化学反应速率与反应物浓度、反应物性质、温度、催化剂等因素有关。
根据反应物浓度的变化,化学反应速率可以分为以下三种情况:1.零级反应:反应速率与反应物浓度无关,公式为v = k。
2.一级反应:反应速率与反应物浓度成正比,公式为v = k[A]。
3.二级反应:反应速率与反应物浓度的平方成正比,公式为v = k[A]^2。
二、化学平衡化学平衡是指在封闭系统中,正反应速率和逆反应速率相等时,各组分浓度不再发生变化的状态。
化学平衡常数K表示为:[ K = ]其中,[products]表示生成物的浓度,[reactants]表示反应物的浓度。
化学平衡的计算一般采用勒夏特列原理,通过改变温度、压力、浓度等条件,使平衡向正反应或逆反应方向移动,从而达到新的平衡状态。
三、化学反应的动力学计算化学反应的动力学计算主要包括求解反应速率常数k和化学平衡常数K。
1.反应速率常数k的求解:根据实验数据,利用公式v = k[A]m[B]n,可以求解出反应速率常数k。
2.化学平衡常数K的求解:根据实验数据,利用公式K = ,可以求解出化学平衡常数K。
四、化学反应方程式的书写化学反应方程式是表示化学反应的符号表示法。
化学反应方程式包括反应物、生成物和反应条件。
在书写化学反应方程式时,应注意以下几点:1.反应物和生成物之间用加号“+”连接。
2.反应物和生成物的化学式要正确。
3.反应物和生成物的系数要满足质量守恒定律。
4.反应条件(如温度、压力、催化剂等)应写在化学反应方程式的上方或下方。
综上所述,化学反应的动力学计算和方程式是化学反应速率和化学平衡两个方面的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学反应工程复习总结一、知识点1.化学反应工程的研究对象与目的,研究内容。
化学反应工程的优化的技术指标。
2.化学反应动力学转化率、收率与选择性的概念。
反应速率的温度效应和活化能的意义。
反应速率的浓度效应和级数的意义。
3.理想反应器与典型反应特征理想反应器的含义。
等温间歇反应器的基本方程。
简单不可逆反应和自催化反应的特征和计算方法。
可逆反应、平行反应和串联反应的动力学特征和计算方法。
4.理想管式反应器管式平推流反应器的基本方程典型反应的计算。
停留时间、空时和空速的概念。
膨胀因子和膨胀率的概念。
5.连续流动釜式反应器全混流模型的意义。
全混流反应器的基本方程全混流反应器的计算。
循环反应器的特征与计算方法。
返混的概念、起因、返混造成的后果。
返混对各种典型反应的利弊及限制返混的措施。
6.停留时间分布与非理想流动停留时间分布的意义,停留时间分布的测定方法。
活塞流和全混流停留时间分布表达式,固相反应的计算方法。
多釜串联模型的基本思想,模型参数微观混合对反应结果的影响。
7.反应器选型与操作方式简单反应、自催化和可逆反应的浓度效应特征与优化。
平行反应、串联反应的浓度效应特征与优化。
反应器的操作方式、加料方式。
8.气固催化反应中的传递现象催化剂外部传递过程分析,极限反应速率与极限传递速率。
Da和外部效率因子的定义及相互关系。
流速对外部传递过程的影响。
催化剂内部传递过程分析,Φ和内部效率因子的定义及相互关系。
扩散对表观反应级数及表观活化能的影响。
一级反应内外效率因子的计算。
内外传递阻力的消除方法。
9.热量传递与反应器热稳定性定态、热稳定性、临界着火温度、临界熄火温度的概念。
催化剂颗粒热稳定性条件和多态特性。
全混流反应器、管式固定床反应器热稳定条件。
最大允许温差。
绝热式反应器中可逆放热反应的最优温度分布。
二、具体内容解析 一、 绪论 1.研究对象是工业反应过程或工业反应器 研究目的是实现工业反应过程的优化 2. 决策变量:反应器结构、操作方式、工艺条件 3.优化指标——技术指标:反应速率、选择性、能耗 掌握转化率、收率与选择性的概念 4.工程思维方法二、化学反应动力学1. 反应类型:简单反应、自催化、可逆、平行、串联反应基本特征、分析判断2. 化学反应速率的工程表示3. 工业反应动力学规律可表示为:a) 浓度效应——n 工程意义是:反应速率对浓度变化的敏感程度。
b) 温度效应——E 工程意义是:反应速率对温度变化的敏感程度。
已知两个温度下的反应速率常数k ,可以按下式计算活化能E : E ——cal/mol ,j/mol T ——K R = = j/ 三、PFR 与CSTR 基本方程工程问题1. 理想间歇:⎰⎰-=--==Af A Af A x x AAA c c A A R r dx c r dc v V t 00)()(00 2. 理想PFR : ⎰⎰-=--==Af A Af A x x AA A c c A A R p r dx c r dc v V 00)()(00τ 3. CSTR : )()(00A AA A A A R p r x c r c c v V -=--==τ 4. 图解法四、简单反应的计算n=1,0,2级反应特征 0(1)A A A c c x =-浓度、转化率、反应时间关系式 PFR →CSTR ,CSTR ←PFR基本关系式 PFR (间歇) CSTR n=00A A p c x k τ= 0A A p c x k τ=n=1 1ln 1p A k x τ=- 0A A m A c c kc τ-= n=2 011p A A k c c τ=- 02AA A m c c kc τ-=0 x Af x Aττ五、可逆反应 A P))((21AeACCkk-+=温度效应:浓度效应:PFR积分式CSTR:由基本方程导出六、平行反应211211nAnAnASPPCkCkCkrrr+=+=β,温度效应:温度升高有利于活化能大的反应浓度效应:浓度升高有利于级数大的反应计算:由基本方程PFR、CSTR推出①反应器选型与组合优化:β~C A曲线——对应面积=C Pβ~X A曲线——对应面积=C P/C A0②最优加料方式:p163-164平行反应P 111mBnApCCkr=A+BS 222mBnAsCCkr=七、串联反应k1k2P(主反S(副反应)A P S温度效应:温度升高有利于活化能大的反应(同平行反应)浓度效应:凡是使A P C C /增大的因素对串连反应选择率总是不利的。
①串联反应的计算PFR CSTRt k A A e C C 10-=物料衡算②串联反应的最优反应时间、转化率与最大收率 PFR CSTR八、自催化反应A +P P +Pk 1 k 2PPAA T C C C C kt C //ln000==九、变分子反应①空速SV 的物理意义与因次 ②膨胀率的定义01===-=A A A x x x A V V V ε③膨胀因子的物理含义ab a s p A )()(+-+=δ④变分子反应中停留时间t 与空时τ的大小关系 十、循环反应器的计算 十一、返混反应器组合优化1. 不同年龄的物料相互之间的混合——返混(CSTR ) 相同年龄的物料相互之间的混合——混合(间歇反应器)2. 返混的起因:①空间上的反向流动②不均匀的速度分布3. 返混的结果:反应器内的浓度变化(↑↓P A C C )4. 改善措施:分割——横向分割和纵向分割5. )(t f 和)(t F 含义6. 数学期望-t 与方差2tσ 无因次方差222-=tt σσθ7. CSTR ---=ttett f 1)( tt e t F --=1)( 12=θσPFR )(t f 和)(t F 02=θσ8. 固相反应的计算9. 微观混合对反应结果的影响(1) 大于一级的反应,上凹曲线,不利 (2) 小于一级的反应,下凹曲线,有利 (3) 一级反应的情况,线性关系,无关十五、热量传递与反应器的热稳定性1. 定态条件r g Q Q = 热稳定条件3121Re Sc A Sh =2. 放热曲线与移热曲线,影响因素。
多态—A 、B 、C 点的稳定性3. 最大允许温差 ERT T T T c 2max)(=-=∆三、名词解释优化的经济指标:1.技术上是可行的;2.经济上的合理的;3.生产的安全程度。
生产成本中原料费用比例大小已成为现代工业生产过程先进性的重要标志。
三个决策变量:1.结构变量;2.操作方式。
3.工艺条件。
反应器的操作方式按其操作连续性可以分为间歇操作,连续操作和半连续操作。
工业反应过程开发就其核心问题而言,需要解决三方面的问题;1.反应器的合理选型;2.反应器操作的优选条件;3.反应器的工程放大。
均相反应应当满足的两个条件:1.反应系统可以成为均相;2.预混合过程的时间远小于反应时间.活化能的工程意义是反应速率对反应温度敏感程度的一种度量。
活化能越大,表明反应速率对温度变化愈敏感,即温度的变化会使反应反应速率发生较大的变化。
反应级数的工程意义是表示反应速率对于反应物浓度变化的敏感程度。
反应级数的高低并不单独决定反应速率的大小,但反应了反应速率对浓度的敏感程度。
级数越高,浓度变化对反应速率的影响越大。
(P34)反应器设计基本方程:反应器设计的基本方程包括反应动力学方程式。
物料衡算方程式、热量衡算方程式和动量衡算方程式。
反应动力学方程式是化学反应器设计的基础。
自催化反应指的是反应产物本身具有催化作用,能加速反应的进行。
自催化反应的特性是自催化反应必须加入微量产物才能启动。
平行反应选择率的温度效应是:提高温度有利于活化能高的反应;反之,降低温度则有利于活化能低的反应。
平行反应选择率与反应物浓度的关系:提高反应物浓度C A,有利于级数高的反应;反之,降低反应物浓度C A,则有利于级数低的反应。
空时、空速和停留时间:空时又称空间时间,其定义为反应器体积V R与流体进反应器的体积流量v0的比值。
空速是空时的倒数,其物理意义是单位时间单位反应器体积所能处理进口物料的体积。
停留时间指的是反应物料从进入反应器时算起到离开反应器时为止所经历的时间。
表征反应前后分子数变化程度的方法有膨胀率法和膨胀因子法。
膨胀率的定义:是反应组分A全部转化后系统体积变化的分率。
膨胀因子:是原料A消耗1摩尔时,反应系统总物质的量的变化。
返混:停留时间不动的物料之间的混合,称为逆向混合或返混。
返混的原因:1.设备中存在不同尺度的环流;2.不均匀的速度分布。
主要措施是分割。
1停留时间分布的表达有停留时间分布密度和停留时间分布函数。
2停留时间分布密度,以f(x)来表达。
其定义为,在定常条件下的连续流动系统中,对于某一瞬间t=0时流入反应器的物料,在反应器出口流体物料中停留时间介于t与t+dt之间的物料所占的分率应为f(t)dt。
3停留时间分布函数,以F(t)表示。
其定义为,在定常态下的连续流动系统中,相对于t=0瞬间流入反应器内的物料,在反应器出口物料流中停留时间小于t的物料所占的分率。
4停留时间分布的实验测定:停留时间分布通常由实验测定,主要方法是应答技术,即用一定的方法将示踪物加入反应器进口,然后在反应器出口物料中检测示踪物的信号,以获得示踪物在反应器中停留时间分布规律的实验数据。
5示踪物的输入方法有阶跃注入法、脉冲注入法及周期输入法等。
6示踪物的基本要求:1.示踪物必须与进料具有相同或非常接近的流动性能,两者应具有尽可能相同的物理性质。
2.示踪物要具有易于检测的特殊物质,而且这种物质的检测愈灵敏、愈简捷,试验结果就越精确。
3.示踪物不能与反应物料发生化学反应或被吸附,否则就无法进行对示踪物的物料衡算。
4.用于多相系统检测的示踪物不发生由一相转移到另一相的情况。
连续反应过程的考察方法:在同一个连续釜式反应器中分别进行均相反应和固相反应采用的是完全不同的两种分析方法。
两种方法的根本区别在于考察的对象不同;均相反应是以反应器作为考察对象,而固相反应则以反应物料为考察对象。
滴际混合:是指液滴合并、再分散过程起到了液滴之间的相互混合的作用,称为滴际混合。
扩散模型:扩散模型是一种适合于返混程度较小的非理想流动的流动模型。
所谓扩散模型即是仿照一般的分子扩散系数来表征反应器内的质量传递,用一个轴向有效扩散系数D e来表征一维的返混。
也就是把具有一定返混的流动简化为在一个平推流流动上叠加一个轴向的扩散。
它是基于如下的基本假设:1.沿着与流体流动方向垂直的每一个截面上具有均匀的径向浓度;2.在每一个截面上和沿流体流动方向,流体速度和扩散系数均为一恒定值3.物料浓度是流体流动距离的连续函数。
多级全混流模型多级全混流模型是假设一个实际设备中的返混情况等效于若干级全混釜串联式的返混。