高中数学第二章平面向量2.3.3平面向量的坐标运算说课稿新人教A版

合集下载

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,

高考数学一轮复习 平面向量 第2讲 平面向量基本定理及坐标表示教案 文 新人教A版-新人教A版高三全

高考数学一轮复习 平面向量 第2讲 平面向量基本定理及坐标表示教案 文 新人教A版-新人教A版高三全

第2讲 平面向量基本定理及坐标表示一、知识梳理 1.平面向量基本定理(1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标; ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0. [提醒] 当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价. 即两个不平行于坐标轴的共线向量的对应坐标成比例. 常用结论1.若a =(x 1,y 1),b =(x 2,y 2)且a =b ,则x 1=x 2且y 1=y 2. 2.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.二、习题改编1.(必修4P99例8改编)若P 1(1,3),P 2(4,0)且P 是线段P 1P 2的一个三等分点,则点P 的坐标为( )A .(2,2)B .(3,-1)C .(2,2)或(3,-1)D .(2,2)或(3,1)解析:选D.由题意得P 1P →=13P 1P 2→或P 1P →=23P 1P 2→,P 1P 2→=(3,-3).设P (x ,y ),则P 1P →=(x-1,y -3),当P 1P →=13P 1P 2→时,(x -1,y -3)=13(3,-3),所以x =2,y =2,即P (2,2);当P 1P →=23P 1P 2→时,(x -1,y -3)=23(3,-3),所以x =3,y =1,即P (3,1).故选D.2.(必修4P119A 组T8改编)已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n=( )A .-12B.12 C .-2D .2解析:选A.由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n ,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得-(2m -n )=4(3m +2n ),所以m n =-12.故选A.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内的任何两个向量都可以作为一组基底.( ) (2)在△ABC 中,向量AB →,BC →的夹角为∠ABC .( ) (3)同一向量在不同基底下的表示是相同的.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( ) (5)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2 ,μ1=μ2.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 二、易错纠偏常见误区(1)利用平面向量基本定理的前提是基底不能共线; (2)由点的坐标求向量坐标忽视起点与终点致误.1.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④D .③④解析:选B.平面内任意两个不共线的向量都可以作为基底,如图:对于①,AD →与AB →不共线,可作为基底; 对于②,DA →与BC →为共线向量,不可作为基底; 对于③,CA →与DC →是两个不共线的向量,可作为基底;对于④,OD →与OB →在同一条直线上,是共线向量,不可作为基底. 2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)解析:选A.法一:设C (x ,y ), 则AC →=(x ,y -1)=(-4,-3),所以⎩⎪⎨⎪⎧x =-4,y =-2,从而BC →=(-4,-2)-(3,2)=(-7,-4).故选A. 法二:AB →=(3,2)-(0,1)=(3,1), BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).故选A.平面向量基本定理及其应用(师生共研)(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC→=b ,则DE →=( )A.13a +512bB.13a -1312b C .-13a -512bD .-13a +1312b(2)(2020·某某市第一次质量预测)如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=.【解析】 (1)DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)由题图可设CG →=xCE →(x >0),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎪⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.【答案】 (1)C (2)12运算遵法则 基底定分解(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.一般将向量“放入”相关的三角形中,利用三角形法则列出向量间的关系.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该组基底将条件和结论表示成向量的形式,再通过向量的运算来解决.注意同一个向量在不同基底下的分解是不同的,但在每组基底下的分解都是唯一的.1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB →=a ,AC→=b ,则PQ →=( )A.13a +13b B .-13a +13bC.13a -13b D .-13a -13b解析:选A.由题意知PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A.2.已知点A ,B 为单位圆O 上的两点,点P 为单位圆O 所在平面内的一点,且OA →与OB →不共线.(1)在△OAB 中,点P 在AB 上,且AP →=2PB →,若AP →=rOB →+sOA →,求r +s 的值; (2)已知点P 满足OP →=mOA →+OB →(m 为常数),若四边形OABP 为平行四边形,求m 的值. 解:(1)因为AP →=2PB →,所以AP →=23AB →,所以AP →=23(OB →-OA →)=23OB →-23OA →,又因为AP →=rOB →+sOA →, 所以r =23,s =-23,所以r +s =0.(2)因为四边形OABP 为平行四边形, 所以OB →=OP →+OA →, 又因为OP →=mOA →+OB →, 所以OB →=OB →+(m +1)OA →,依题意OA →,OB →是非零向量且不共线, 所以m +1=0, 解得m =-1.平面向量的坐标运算(师生共研)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,→=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n 的值; (3)求M ,N 的坐标及向量MN →的坐标.【解】 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,因为CM →=OM →-OC →=3c , 所以OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). 所以M (0,20).又因为→=ON →-OC →=-2b ,所以ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN →=(9,-18).向量坐标运算问题的一般思路(1)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算.(2)巧借方程思想求坐标:向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.1.已知O 为坐标原点,点C 是线段AB 上一点,且A (1,1),C (2,3),|BC →|=2|AC →|,则向量OB →的坐标是.解析:由点C 是线段AB 上一点,|BC →|=2|AC →|,得BC →=-2AC →.设点B 为(x ,y ),则(2-x ,3-y )=-2(1,2),即⎩⎪⎨⎪⎧2-x =-2,3-y =-4,解得⎩⎪⎨⎪⎧x =4,y =7.所以向量OB →的坐标是(4,7). 答案:(4,7)2.如图所示,以e 1,e 2为基底,则a =.解析:以e 1的起点为原点建立平面直角坐标系,则e 1=(1,0),e 2=(-1,1),a =(-3,1),令a =x e 1+y e 2,即(-3,1)=x (1,0)+y (-1,1),则⎩⎪⎨⎪⎧x -y =-3,y =1,所以⎩⎪⎨⎪⎧x =-2,y =1,即a =-2e 1+e 2.答案:-2e 1+e 2平面向量共线的坐标表示(多维探究) 角度一 利用向量共线求向量或点的坐标已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为.【解析】 因为在梯形ABCD 中,AB ∥CD ,DC =2AB ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC →=(4,2)-(x ,y )=(4-x ,2-y ),AB →=(2,1)-(1,2)=(1,-1),所以(4-x ,2-y )=2(1,-1),即(4-x ,2-y )=(2,-2),所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).【答案】 (2,4)角度二 利用两向量共线求参数已知向量OA →=(k ,12),OB →=(4,5),OC →=(-k ,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D .13【解析】 AB →=OB →-OA →=(4-k ,-7), AC →=OC →-OA →=(-2k ,-2).因为A ,B ,C 三点共线,所以AB →,AC →共线, 所以-2×(4-k )=-7×(-2k ),解得k =-23.【答案】 A(1)向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.(2)两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.1.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =. 解析:因为a =(2,-1),b =(-1,m ), 所以a +b =(1,m -1). 因为(a +b )∥c ,c =(-1,2), 所以2-(-1)·(m -1)=0. 所以m =-1. 答案:-12.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 解:(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0, 即2k -4+5=0,得k =-12.(2)法一:因为A ,B ,C 三点共线, 所以AB →=λBC →,即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ3=mλ,解得m =32.法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3), BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ).因为A 、B 、C 三点共线,所以AB →∥BC →.所以8m -3(2m +1)=0,即2m -3=0,所以m =32.思想方法系列8 坐标法解决平面向量的线性运算(2020·某某某某调研)在直角三角形ABC 中,∠A =90°,AB =3,AC =4,P 在△ABC斜边BC 的中线AD 上,则AP →·(PB →+PC →)的最大值为( )A.2516B.258C.254D .252【解析】 以A 为坐标原点,AB →,AC →的方向分别为x 轴、y 轴正方向建立平面直角坐标系,则B (3,0),C (0,4),BC 中点D ⎝ ⎛⎭⎪⎫23,2,则直线AD 的方程为y =43x .设P ⎝ ⎛⎭⎪⎫x ,43x ,所以PB →=⎝ ⎛⎭⎪⎫3-x ,-43x ,PC →=⎝ ⎛⎭⎪⎫-x ,4-43x ,AP→=⎝ ⎛⎭⎪⎫x ,43x ,AP →·(PB →+PC →)=-509x 2+253x =-509⎝ ⎛⎭⎪⎫x -342+258,所以当x =34时,AP →·(PB →+PC →)的最大值为258.故选B. 【答案】 B系要建得巧,题就解得妙坐标是向量代数化的媒介,而坐标的获得又要借助于直角坐标系,对于某些平面向量问题,若能建立适当的直角坐标系,往往能很快实现问题的转化.常见的建系方法如下:(1)利用图形中现成的垂直关系若图形中有明显互相垂直且相交于一点的两条直线(如矩形、直角梯形等),可以利用这两条直线建立坐标系;(2)利用图形中的对称关系图形中虽没有明显互相垂直交于一点的两条直线,但有一定对称关系(如:等腰三角形、等腰梯形等),可利用自身对称性建系.建立平面直角坐标系的基本原则是尽可能地使顶点在坐标轴上,或在同一象限.如图,在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=.解析:法一:以AB ,AD 所在直线分别为x 轴,y 轴,建立平面直角坐标系,如图所示,设正方形的边长为1,则AM →=⎝ ⎛⎭⎪⎫1,12,BN →=⎝ ⎛⎭⎪⎫-12,1,AC →=(1,1).因为AC →=λAM →+μBN→=⎝ ⎛⎭⎪⎫λ-μ2,λ2+μ,所以⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=65,μ=25,所以λ+μ=85.法二:由AM →=AB →+12AD →,BN →=-12AB →+AD →,得AC →=λAM →+μBN →=⎝ ⎛⎭⎪⎫λ-μ2AB →+⎝ ⎛⎭⎪⎫λ2+μAD →,又AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ2=1,λ2+μ=1,解得⎩⎪⎨⎪⎧λ=65,μ=25.所以λ+μ=85.答案:85[基础题组练]1.已知e 1=(2,1),e 2=(1,3),a =(-1,2).若a =λ1e 1+λ2e 2,则实数对(λ1,λ2)为( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)解析:选B.因为e 1=(2,1),e 2=(1,3),所以a =λ1e 1+λ2e 2=λ1(2,1)+λ2(1,3)=(2λ1+λ2,λ1+3λ2).又因为a =(-1,2),所以⎩⎪⎨⎪⎧2λ1+λ2=-1,λ1+3λ2=2,解得⎩⎪⎨⎪⎧λ1=-1,λ2=1.故选B.2.(2020·某某某某三模)设向量e 1,e 2是平面内的一组基底,若向量a =-3e 1-e 2与b =e 1-λe 2共线,则λ=( )A.13 B .-13C .-3D .3解析:选B.法一:因为a 与b 共线,所以存在μ∈R ,使得a =μb ,即-3e 1-e 2=μ(e 1-λe 2).故μ=-3,-λμ=-1,解得λ=-13.故选B.法二:因为向量e 1,e 2是平面内的一组基底, 故由a 与b 共线可得,1-3=-λ-1,解得λ=-13.故选B.3.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC →=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎫-23,-23B.⎝ ⎛⎭⎪⎫-13,-13C.⎝ ⎛⎭⎪⎫13,13D .⎝ ⎛⎭⎪⎫23,23 解析:选A.易知OC →=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC →=3(-1-x ,-1-y )=(-3-3x ,-3-3y ),由OC →=3EC →知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以E ⎝ ⎛⎭⎪⎫-23,-23.4.(2020·某某豫水中学质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A.233B.33C .3D .2 3解析:选A.如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0). AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.5.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ=.解析:因为a =(1,2),b =(2,3),所以λa +b =(λ,2λ)+(2,3)=(λ+2,2λ+3).因为向量λa +b 与向量c =(-4,-7)共线, 所以-7(λ+2)+4(2λλ=2. 答案:26.已知点A (2,3),B (4,5),C (7,10),若AP →=AB →+λAC →(λ∈R ),且点P 在直线x -2y =0上,则λ的值为.解析:设P (x ,y ),则由AP →=AB →+λAC →,得(x -2,y -3)=(2,2)+λ(5,7)=(2+5λ,2+7λ),所以x =5λ+4,y =7λP 在直线x -2y =0上,故5λ+4-2(7λ+5)=0,解得λ=-23.答案:-237.在平行四边形ABCD 中,E 和F 分别是CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=.解析:选择AB →,AD →作为平面向量的一组基底, 则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →,于是得⎩⎪⎨⎪⎧12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以λ+μ=43.答案:438.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. 解:(1)OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).点M 在第二或第三象限⇔⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,解得t 2<0且t 1+2t 2≠0.故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明:当t 1=1时,由(1)知OM →=(4t 2,4t 2+2). 因为AB →=OB →-OA →=(4,4), AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,所以A ,B ,M 三点共线.[综合题组练]1.若α,β是一组基底,向量γ=x α+y β(x ,y ∈R ),则称(x ,y )为向量γ在基底α,β下的坐标,现已知向量a 在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则a 在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:选D.因为a 在基底p ,q 下的坐标为(-2,2), 即a =-2p +2q =(2,4), 令a =x m +y n =(-x +y ,x +2y ),所以⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧x =0,y =2.所以a 在基底m ,n 下的坐标为(0,2).2.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1 B. 2 C. 3D .2解析:选B.因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →=x 2+y 2,所以x 2+y 2=1,则2xy ≤x 2+y 2=1. 又(x +y )2=x 2+y 2+2xy ≤2, 故x +y 的最大值为 2.3.设OA →=(-2,4),OB →=(-a ,2),OC →=(b ,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b的最小值为.解析:由已知得AB →=(-a +2,-2),AC →=(b +2,-4), 因为A ,B ,C 三点共线,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λ(b +2),-2=-4λ,整理得2a +b =2, 所以1a +1b =12(2a +b )⎝ ⎛⎭⎪⎫1a +1b =12⎝ ⎛⎭⎪⎫3+2a b +b a ≥12⎝ ⎛⎭⎪⎫3+22a b ·b a =32+2(当且仅当a =2-2,b =22-2时等号成立).答案:32+ 24.(2020·某某某某二模)已知W 为△ABC 的外心,AB =4,AC =2,∠BAC =120°,设AW →=λ1AB →+λ2AC →,则2λ1+λ2=.解析:以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,如图所示.根据已知条件可知A (0,0),B (4,0),C (-1,3). 根据外心的性质可知点W 在直线x =2上(如图所示).易知线段AC 中点的坐标为⎝ ⎛⎭⎪⎫-12,32,直线AC 的斜率为-3,故线段AC 的中垂线l的斜率为33(如图所示),方程为y -32=33⎝ ⎛⎭⎪⎫x +12. 令x =2,解得y =433,故W ⎝ ⎛⎭⎪⎫2,433.由AW →=λ1AB →+λ2AC →得⎝ ⎛⎭⎪⎫2,433=λ1(4,0)+λ2(-1,3),即⎩⎪⎨⎪⎧4λ1-λ2=2,3λ2=433,解得⎩⎪⎨⎪⎧λ1=56,λ2=43.所以2λ1+λ2=53+43=3.答案:3。

高二数学平面向量的坐标运算

高二数学平面向量的坐标运算

O i j =( 0 , 1 ) 0 =( 0 , 0)
2.3.2 平面向量的坐标表示
概念理解 1.以原点O为起点作 OA a ,点A的位置由谁确定? 由a 唯一确定 y 2.点A的坐标与向量a 的坐标的关系? 两者相同 j
一一对应 A(x, y)
a
a x
向量a
坐标(x ,y)
O i
3.两个向量相等的充要条件,利用坐标如何表示?
a-b=(2,1)-(-3,4)=(5,-3); 3a+4b=3(2,1)+4(-3,4)
=(6,3)+(-12,16)
=(-6,19)
2.3.3 平面向量的坐标运算
例3. 已知 ABCD的三个顶点A、B、C的坐标分别为
(-2,1)、( -1,3)、(3,4),求顶点D的坐标. 解:设顶点D的坐标为(x,y)
AB ( 1 ( 2), 3 1) (1, 2) DC ( 3 x ,4 y ) 由 AB DC,得
(1,2) (3 x,4 y )
1 3 x 2 4 y x 2 y 2
顶点D的坐标为( 2, 2)
A1
d 2i 3 j (2,3)
2.3.3平面向量的坐标运算
平面向量的坐标运算
1.已知a ( x1 , y1 ), b ( x2 , y2 ),求a+b,a-b. 解:a+b=( x1i + y1 j ) + ( x2 i + y2 j ) =( x1 + x2 )i+( y1+ y2 )j 即 a + b ( x1 x2 , y1 y2 ) a - b ( x1 x2 , y1 y2 )

高中数学第二章平面向量2.2平面向量的线性运算2.2.3向量数乘运算及其几何意义课件新人教A版必修

高中数学第二章平面向量2.2平面向量的线性运算2.2.3向量数乘运算及其几何意义课件新人教A版必修

一级达标重点名校中学课件
2.本例(1)中,若点F为边AB的中点,设a=D→E,b=D→F,用a,b表示D→B. [解] 由题意ab==A12→A→BB--12AA→→DD,, 解得 AA→→BD==4323aa--2343bb,, 所以D→B=A→B-A→D=23a+23b.
一级达标重点名校中学课件
A,B,D三点共线.
(2)先用共线向量定理引入参数λ得
→ AP
=λ
→ AB
,再用向量减法的几何意义向
O→P=xO→A+yO→B变形,最后对比求x+y.
一级达标重点名校中学课件
(1)A,B,D
[(1)∵
→ AB
=e1+2e2,
B→D=
B→C+
→ CD
=-5e1+6e2+7e1-2e2=
2(e1+2e2)=2A→B.
A [对于①,b=-a,有a∥b; 对于②,b=-2a,有a∥b; 对于③,a=4b,有a∥b; 对于④,a与b不共线.]
一级达标重点名校中学课件
4.若|a|=5,b与a方向相反,且|b|=7,则a=________b. 【导学号:84352202】
-57 [由题意知a=-57b.]
一级达标重点名校中学课件
一级达标重点名校中学课件
2.点C是线段AB靠近点B的三等分点,下列正确的是( )
A.A→B=3B→C
B.A→C=2B→C
C.A→C=12B→C
D.A→C=2C→B
D [由题意可知:A→B=-3B→C;A→C=-2B→C=2C→B.故只有D正确.]
一级达标重点名校中学课件
3.如图2-2-27,在平行四边形ABCD中,对角线AC 与BD交于点O,A→B+A→D=λA→O,则λFra bibliotek________.

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

人教A 版高中数学目录必修1第一章集合与函数概念1 1..1 1 集合集合 1 1..2 2 函数及其表示函数及其表示 1 1..3 3 函数的基本性质函数的基本性质第二章基本初等函数(Ⅰ)2.1 1 指数函数指数函数 2 2..2 2 对数函数对数函数 2 2..3 3 幂函数幂函数第三章函数的应用3.1 1 函数与方程函数与方程 3 3..2 2 函数模型及其应用函数模型及其应用必修2第一章空间几何体1 1..1 1 空间几何体的结构空间几何体的结构 1 1..2 2 空间几何体的三视图和空间几何体的三视图和直观图1 1..3 3 空间几何体的表面积与空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 2..1 1 空间点、直线、平面之空间点、直线、平面之间的位置关系2 2..2 2 直线、平面平行的判定直线、平面平行的判定及其性质 2 2..3 3 直线、平面垂直的判定直线、平面垂直的判定及其性质第三章直线与方程3.1 1 直线的倾斜角与斜率直线的倾斜角与斜率 3 3..2 2 直线的方程直线的方程3 3..3 3 直线的交点坐标与距离直线的交点坐标与距离公式必修3第一章算法初步1 1..1 1 算法与程序框图算法与程序框图 1 1..2 2 基本算法语句基本算法语句 1 1..3 3 算法案例算法案例阅读与思考割圆术第二章统计2 2..1 1 随机抽样随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应 2 2..2 2 用样本估计总体用样本估计总体阅读与思考生产过程中的质量控制图2 2..3 3 变量间的相关关系变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 3..1 1 随机事件的概率随机事件的概率阅读与思考天气变化的认识过程 3 3..2 2 古典概型古典概型 3 3..3 3 几何概型几何概型必修4第一章三角函数1 1..1 1 任意角和弧度制任意角和弧度制 1 1..2 2 任意角的三角函数任意角的三角函数1 1..3 3 三角函数的诱导公式三角函数的诱导公式 1 1..4 4 三角函数的图象与性质三角函数的图象与性质 1 1..5 5 函数函数y=Asin y=Asin((ωx+ψ) 1 1..6 6 三角函数模型的简单应三角函数模型的简单应用第二章平面向量 2 2..1 1 平面向量的实际背景及平面向量的实际背景及基本概念 2 2..2 2 平面向量的线性运算平面向量的线性运算 2 2..3 3 平面向量的基本定理及平面向量的基本定理及坐标表示 2 2..4 4 平面向量的数量积平面向量的数量积 2 2..5 5 平面向量应用举例平面向量应用举例第三章三角恒等变换3 3..1 1 两角和与差的正弦、余两角和与差的正弦、余弦和正切公式 3 3..2 2 简单的三角恒等变换简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n 项和2.4等比数列2.5等比数列的前n 项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用的应用3.4生活中的优化问题举例举例选修1-2第一章第一章 统计案例统计案例 1.1 回归分析的基本思想及其初步应用思想及其初步应用 1.2 独立性检验的基本思想及其初步应用本思想及其初步应用第二章第二章 推理与证明推理与证明 2.1 合情推理与演绎证明证明2.2 直接证明与间接证明证明第三章第三章 数系的扩充与复数的引入与复数的引入3.1数系的扩充和复数的概念的概念3.2复数代数形式的四则运算则运算第四章第四章 框图框图 4.1流程图流程图 4.2结构图结构图选修2-1第一章第一章 常用逻辑用语1.1 命题及其关系命题及其关系 1.2 充分条件与必要条件条件1.3 简单的逻辑联结词1.4 全称量词与存在量词量词第二章第二章 圆锥曲线与方程方程2.1 曲线与方程曲线与方程2.2 椭圆椭圆 2.3 双曲线双曲线 2.4 抛物线抛物线第三章第三章 空间向量与立体几何立体几何3.1 空间向量及其运算3.2 立体几何中的向量方法量方法选修2-2第一章第一章 导数及其应用1.1 变化率与导数变化率与导数1.2 导数的计算导数的计算1.3 导数在研究函数中的应用中的应用1.4 生活中的优化问题举例题举例1.5 定积分的概念定积分的概念 1.6 微积分基本定理微积分基本定理 1.7 定积分的简单应用第二章第二章 推理与证明推理与证明 2.1 合情推理与演绎推理推理2.2 直接证明与间接证明证明2.3 数学归纳法数学归纳法第三章 数系的扩充与复数的引入与复数的引入3.1 数系的扩充和复数的概念数的概念3.2 复数代数形式的四则运算四则运算选修2-3第一章第一章 计数原理计数原理1.1 分类加法计数原理与分步乘法计数原理理与分步乘法计数原理1.2 排列与组合排列与组合 1.3 二项式定理二项式定理第二章第二章 随机变量及其分布其分布2.1 离散型随机变量及其分布列及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差的均值与方差2.4 正态分布正态分布 第三章第三章 统计案例统计案例3.1 回归分析的基本思想及其初步应用思想及其初步应用 3.2 独立性检验的基本思想及其初步应用本思想及其初步应用选修3-1第一讲第一讲 早期的算术与几何与几何第二讲第二讲 古希腊数学古希腊数学 第三讲第三讲 中国古代数学瑰宝学瑰宝第四讲第四讲 平面解析几何的产生何的产生第五讲第五讲微积分的诞生 第六讲第六讲 近代数学两巨星巨星第七讲第七讲 千古谜题千古谜题第八讲第八讲 对无穷的深入思考入思考第九讲第九讲 中国现代数学的开拓与发展学的开拓与发展选修3-2选修3-3第一讲第一讲 从欧氏几何看球面看球面第二讲第二讲 球面上的距离和角离和角第三讲第三讲 球面上的基本图形本图形第四讲第四讲 球面三角形球面三角形 第五讲第五讲 球面三角形的全等的全等第六讲第六讲 球面多边形与欧拉公式与欧拉公式第七讲第七讲 球面三角形的边角关系边角关系第八讲第八讲 欧氏几何与非欧几何非欧几何选修3-4第一讲第一讲 平面图形的对称群对称群第二讲第二讲 代数学中的对称与抽象群的概念对称与抽象群的概念 第三讲第三讲 对称与群的故事故事选修4-1第一讲第一讲 相似三角形的判定及有关性质的判定及有关性质第二讲 直线与圆的位置关系位置关系第三讲 圆锥曲线性质的探讨质的探讨选修4-2第一讲 线性变换与二阶矩阵二阶矩阵第二讲 变换的复合与二阶矩阵的乘法与二阶矩阵的乘法 第三讲 逆变换与逆矩阵矩阵第四讲 变换的不变量与矩阵的特征向量量与矩阵的特征向量选修4-3 选修4-4第一讲第一讲 坐标系坐标系 第二讲第二讲 参数方程参数方程选修4-5第一讲 不等式和绝对值不等式对值不等式第二讲 证明不等式的基本方法的基本方法第三讲 柯西不等式与排序不等式与排序不等式第四讲 数学归纳法证明不等式证明不等式选修4-6第一讲第一讲 整数的整除整数的整除 第二讲第二讲 同余与同余方程方程第三讲第三讲 一次不定方程第四讲第四讲 数伦在密码中的应用中的应用选修4-7第一讲第一讲 优选法优选法 第二讲第二讲 试验设计初步选修4-8选修4-9第一讲第一讲 风险与决策的基本概念的基本概念第二讲第二讲 决策树方法决策树方法 第三讲第三讲 风险型决策的敏感性分析的敏感性分析第四讲第四讲 马尔可夫型决策简介决策简介高中人教版(高中人教版(B B )教材目录介绍必修一第一章第一章 集合集合1.1 1 集合与集合的表示方法集合与集合的表示方法集合与集合的表示方法 1 1..2 2 集合之间的关系与运算集合之间的关系与运算集合之间的关系与运算 第二章第二章 函数函数2 2..1 1 函数函数函数 2 2..2 2 一次函数和二次函数一次函数和二次函数一次函数和二次函数 2 2..3 3 函数的应用(Ⅰ)函数的应用(Ⅰ)函数的应用(Ⅰ) 2 2..4 4 函数与方程函数与方程函数与方程第三章第三章 基本初等函数(Ⅰ)3 3..1 1 指数与指数函数指数与指数函数指数与指数函数 3 3..2 2 对数与对数函数对数与对数函数对数与对数函数3 3..3 3 幂函数幂函数幂函数 3 3..4 4 函数的应用(Ⅱ)函数的应用(Ⅱ)函数的应用(Ⅱ)必修二第一章第一章 立体几何初步立体几何初步1.1 1 空间几何体空间几何体空间几何体 1 1..2 2 点、线、面之间的位置点、线、面之间的位置关系关系第二章第二章 平面解析几何初步平面解析几何初步 2 2..1 1 平面真角坐标系中的基平面真角坐标系中的基本公式本公式2 2..2 2 直线方程直线方程直线方程 2 2..3 3 圆的方程圆的方程圆的方程 2 2..4 4 空间直角坐标系空间直角坐标系空间直角坐标系必修三第一章第一章 算法初步算法初步1.1 1 算法与程序框图算法与程序框图算法与程序框图 1 1..2 2 基本算法语句基本算法语句基本算法语句 1 1..3 3 中国古代数学中的算法中国古代数学中的算法案例案例第二章第二章 统计统计2.1 1 随机抽样随机抽样随机抽样 2 2..2 2 用样本估计总体用样本估计总体用样本估计总体 2 2..3 3 变量的相关性变量的相关性变量的相关性第三章第三章 概率概率3.1 1 随机现象随机现象随机现象 3 3..2 2 古典概型古典概型古典概型 3 3..3 3 随机数的含义与应用随机数的含义与应用随机数的含义与应用 3 3..4 4 概率的应用概率的应用概率的应用必修四第一章第一章 基本初等函基本初等函((Ⅱ) 1 1..1 1 任意角的概念与弧度制任意角的概念与弧度制任意角的概念与弧度制 1 1..2 2 任意角的三角函数任意角的三角函数任意角的三角函数 1 1..3 3 三角函数的图象与性质三角函数的图象与性质三角函数的图象与性质第二章第二章 平面向量平面向量 2 2..1 1 向量的线性运算向量的线性运算向量的线性运算 2 2..2 2 向量的分解与向量的坐向量的分解与向量的坐标运算标运算 2 2..3 3 平面向量的数量积平面向量的数量积平面向量的数量积2 2..4 4 向量的应用向量的应用向量的应用第三章第三章 三角恒等变换三角恒等变换3.1 1 和角公式和角公式和角公式 3 3..2 2 倍角公式和半角公式倍角公式和半角公式倍角公式和半角公式 3 3..3 3 三角函数的积化和差与三角函数的积化和差与和差化积和差化积必修五第一章第一章 解直角三角形解直角三角形1.1 1 正弦定理和余弦定理正弦定理和余弦定理正弦定理和余弦定理 1 1..2 2 应用举例应用举例应用举例第二章第二章 数列数列2 2..1 1 数列数列数列 2 2..2 2 等差数列等差数列等差数列 2 2..3 3 等比数列等比数列等比数列第三章第三章 不等式不等式3 3..1 1 不等关系与不等式不等关系与不等式不等关系与不等式 3 3..2 2 均值不等式均值不等式均值不等式3 3..3 3 一元二次不等式及其解一元二次不等式及其解法 3 3..4 4 不等式的实际应用不等式的实际应用不等式的实际应用 3 3..5 5 二元一次不等式(组)二元一次不等式(组)与简单线性规划问题与简单线性规划问题选修1-1第一章第一章 常用逻辑用语常用逻辑用语1.1 1 命题与量词命题与量词命题与量词 1 1..2 2 基本逻辑联结词基本逻辑联结词基本逻辑联结词 1 1..3 3 充分条件、必要条件与充分条件、必要条件与命题的四种形式命题的四种形式第二章第二章 圆锥曲线与方程圆锥曲线与方程2.1 1 椭圆椭圆椭圆 2 2..2 2 双曲线双曲线双曲线 2 2..3 3 抛物线抛物线抛物线第三章第三章 导数及其应用导数及其应用3 3..1 1 导数导数导数 3 3..2 2 导数的运算导数的运算导数的运算 3 3..3 3 导数的应用导数的应用导数的应用选修1-2第一章第一章 统计案例统计案例 第二章第二章 推理与证明推理与证明 第三章第三章 数系的扩充与复数的引入的引入 第四章第四章 框图框图选修4-5第一章第一章 不等式的基本性质和证明的基本方法和证明的基本方法1 1..1 1 不等式的基本性质和一不等式的基本性质和一元二次不等式的解法元二次不等式的解法 1 1..2 2 基本不等式基本不等式基本不等式1 1..3 3 绝对值不等式的解法绝对值不等式的解法绝对值不等式的解法 1 1..4 4 绝对值的三角不等式绝对值的三角不等式绝对值的三角不等式 1 1..5 5 不等式证明的基本方法不等式证明的基本方法不等式证明的基本方法第二章第二章 柯西不等式与排序不等式及其应用不等式及其应用2.1 1 柯西不等式柯西不等式柯西不等式 2 2..2 2 排序不等式排序不等式排序不等式 2 2..3 3 平均值不等式平均值不等式平均值不等式((选学选学) ) 2 2..4 4 最大值与最小值问题,最大值与最小值问题,优化的数学模型优化的数学模型第三章第三章 数学归纳法与贝努利不等式利不等式3.1 1 数学归纳法原理数学归纳法原理数学归纳法原理 3 3..2 2 用数学归纳法证明不等用数学归纳法证明不等式,贝努利不等式式,贝努利不等式。

高中数学第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算课件3新人教A版必修4

高中数学第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算课件3新人教A版必修4
1 (4,2),所以 2
=(2,1).
(2)设点A(x,y),则x= | OA | cos 60=4 3cos 60=2 3,
y= OA sin 60=4 3sin 60=6, 即 A 2 3,6 , 所以


OA= 2 3,6 .


【方法技巧】平面向量坐标运算的技巧 (1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进 行. (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的 坐标运算. (3)向量的线性坐标运算可完全类比数的运算进行.
(x1+x2,y1+y2); ①a+b= _______________ (x1-x2,y1-y2) ; ②a-b= _____________ (λx1,λy1) ③λa= ____________.
(2)重要结论:已知向量 y2),则 的起点A(x1,y1),终点B(x2,
(x2-x1,y2-y1) = _____________.
=(x-5,2-y+2)=(4,6),解得x=9,
2.已知四边形ABCD为平行四边形,O为对角线AC,BD的交点, =(3,7), =(-2,1).求 的坐标.
【解析】因为 DB AB -AD =(-2,1)-(3,7)=(-5,-6),
1 5 所以 OB DB (- ,-3). 2 2
(2)定义坐标:对于平面内的一个向量a,由平面向量基本定理 (x_______ ,y) xi+yj 则有序数对 知,有且只有一对实数x,y,使得a=_____. 叫做向量a的坐标. (3)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).
3.平面向量的坐标运算

平面向量的坐标表示教案新人教A版必修

平面向量的坐标表示教案新人教A版必修

平面向量的坐标表示教案新人教A版必修一、教学目标1. 理解平面向量的概念,掌握向量的定义及其几何表示。

2. 学习平面向量的坐标表示方法,掌握向量坐标的计算规则。

3. 能够运用向量坐标解决简单的问题,提高空间想象力。

二、教学重点与难点1. 重点:平面向量的概念,向量的坐标表示方法。

2. 难点:向量坐标的计算规则,空间向量问题的解决。

三、教学方法与手段1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生理解和掌握向量的坐标表示。

2. 使用多媒体课件、几何画板等教学手段,直观展示向量的几何表示和坐标表示,提高学生的空间想象力。

四、教学过程1. 引入新课:通过复习高中数学中关于向量的基本概念,引导学生思考向量的坐标表示方法。

2. 讲解向量的概念:向量是具有大小和方向的量,可以用箭头表示。

向量的大小称为向量的模,方向的箭头表示向量的方向。

3. 介绍向量的坐标表示:在二维空间中,任意一个向量都可以用两个实数表示其在x轴和y轴上的投影,这两个实数称为向量的坐标。

向量的坐标表示方法可以直观地展示向量在空间中的位置和方向。

4. 讲解向量坐标的计算规则:向量的坐标可以通过向量的起点和终点坐标来计算。

设向量的起点坐标为(x1, y1),终点坐标为(x2, y2),则向量的坐标表示为(x2 x1, y2 y1)。

5. 练习与讨论:让学生通过几何画板等工具,绘制向量的几何表示和坐标表示,并解决一些简单的向量问题。

引导学生讨论向量坐标的特点及其在解决实际问题中的应用。

五、作业布置1. 完成教材中的练习题,巩固向量的坐标表示方法。

2. 结合生活实际,思考向量坐标在解决问题中的应用,举例说明。

六、教学内容与目标1. 内容:本节课将继续学习平面向量的坐标表示,重点掌握向量坐标的几何意义和运算规则。

2. 目标:能够熟练运用向量坐标进行向量的加法、减法和数乘运算,理解向量坐标的几何意义。

七、教学重点与难点1. 重点:向量坐标的加法、减法和数乘运算规则。

平面向量的坐标运算(说课稿)

平面向量的坐标运算(说课稿)
3.创建ቤተ መጻሕፍቲ ባይዱ知识
以学生为主体绝不意味着老师可以袖手旁观,在创设问题情景后学生已进入激活状态,即想说但又不知道怎么说的状态,这时需老师适当加以点拨。指出:选择在平面直角坐标系内与坐标轴的正方向相同的两个单位向量 、 作为基底,任做一个向量 。由平面向量基本定理知,有并且只有一对实数x , y,使
我们把( x , y )叫做向量 的(直角)坐标,记作
平面向量的坐标运算
一、【教材的地位和作用】
本节内容在教材中有着承上启下的作用,它是在学生对平面向量的基本定理有了充分的认识和正确的应用后产生的,同时也为下一节定比分点坐标公式和中点坐标公式的推导奠定了基础;向量用坐标表示后,对立体几何教材的改革也有着深远的意义,可使空间结构系统地代数化,把空间形式的研究从“定性”推到“定量”的深度。引入坐标运算之后使学生形成了完整的知识体系(向量的几何表示和向量的坐标表示),为用“数”的运算解决“形”的问题搭起了桥梁。
[例一]如图,用基底 、 分别表示向量 、 、 、 ,并求它们的坐标;
方法一: = =2 +3 , =(2,3)同理 =(-2,3), =(-2,-3),
=(2,-3)
方法二: A(2,2),B(4,5) =(4,5)-(2,2)=(4-2,5-2)=
(2,3)
同理 =(-2,3), =(-2,-3), =(2,-3)
四、【教法和学法】
本节课尝试一种全新的教学模式,以建构主义理论为指导,教师在本节课中起的根本作用就是“为学生的学习创造一种良好的学习环境”,结合本节课是新授课的特点,我主要从以下几个方面做准备:(1)提供新知识产生的铺垫知识(2)模拟新知识产生过程中的细节和状态,启发引导学生主动建构(3)创设新知识思维发展的前景(4)通过“学习论坛时间”组织学生的合作学习、讨论学习、交流学习(5)通过“老师信箱时间”指导解答学生的疑难问题(6)通过“深化拓展区”培养学生的创新意识和发现能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3.3 平面向量的坐标运算
一、说教材
1、教学目的和作用
本节内容在教材中有着承上启下的作用,它是在学生对平面向量的基本定理有了充分的认识和正确的应用后产生的,同时也为下一节定比分点坐标公式和中点坐标公式的推导奠定了基础。

此外,对立体几何的学习也有着深远的意义。

2、教学目标
⑴知识与能力:会用坐标表示平面向量的加减与数乘运算;能用两端点的坐标,求所构造向量的坐标;
⑵过程与方法:体会向量是处理几何问题的工具. 培养细心、耐心的学习习惯,提高分析问题的能力。

⑶情感态度、价值观:通过引导激发学生的学习兴趣并引发学生思考,充分调动学生的学习积极性。

3、教学重点、难点及依据
重点:平面向量的坐标运算。

难点:对平面向量坐标表示的理解。

4、课时安排和教具准备
我打算用一个课时的时间来讲授这一节内容,使用的教具是直尺、多媒体。

二、说学情
在教学过程中注重因材施教,只有了解了学生的现实状况才能够进行针对性的教学,这样才能取得相应的教学效果。

培养学生的抽象思维能力,所以在教学过程中应该循序渐进,加深他们对基础知识的理解,并加强课堂巩固训练。

三、说教法和依据
教学时我打算采用老师引导式方法,使用导学案教学,充分发挥以学生为学习的主体,他们对课程的兴趣和积极性对于他们的学习过程有着极为重要的作用, 课堂上可以采用小组讨论的和学生发言的方式,调动学生参与的积极性,因为学生是学习的主体,所以要注重学生主体性的发挥。

四、说教学过程
一、自主学习
(一)知识链接:
知识回顾:
(1)向量→
→j ,i 是同一平面内两个相互垂直的单位向量,且方向分别与x 轴y 轴方向相同,a 为这个平面内任一向量,则向量a 可用→→j ,i 表示为 。

也可用坐标表示为 。

如:j 4i 5a += = 。

j i b 32-=→= 。

=-→→b a →a 3= (二)自主探究:(预习教材P96—P98)
探究:平面向量的坐标运算
问题1:已知()11,a x y =,()22,b x y =,λ为一实数,你能用单位向量→
→j ,i 来表示a b +,a b -,=+→→b a
a λ吗? +a
b =___________; -a b =_____________; λa =_____________
问题2:已知()11,a x y =,()22,b x y =,你能用坐标来表示a b +,a b -,a λ的坐标吗? +a b =_________________ _。

-a b =__________________。

λa =____________________ 这就是说,两个向量和(差)的坐标等于
______________________________________。

实数与向量的积的坐标等于______________________________________。

问题3:如图,已知()11,A x y ,()22,B x y ,则怎样用坐标表示向量AB 呢? 则AB =_________=_____________
即一个向量的坐标等于此向量的有向线段
的_______________________________________。

问题4:如图(问题3)
(1)向量的坐标为 ()2121,x x y y -- 是不是只表示AB 这一条向量呢?若不是,说明理由?
(2)你能在上图中标出坐标为()2121,x x y y --的p 点吗?
(3)标出p 点后,你能发现向量的坐标与点的坐标之间的联系吗?
二、例题解析
例4 已知=(2,1),=(-3,4),求+,-,3+4的坐标.
例5
)、(3,4),试求顶点D 的坐标.
三、达标检测(A 、B 1.已知向量b a ,的坐标,求b a +,b a -的坐标。

(1) ) 2 , (5b 4) , (-2a == , (2) 3)- , (-2b 3) , (2a == , 2.已知A,B 两点坐标,求A B B A ,的坐标。

(1)A(3,5) , B(6,9)
(2) A(-3,4) , B(6,3)
3.已知),5,3(),2,1(---=B B A 点 求点A 的坐标。

4.已知向量)43,3(2--+=→x x x a 与→
AB 相等,其中A(1,2),B(3,2),则=x . B 组:
1. 已知()3,1a =-,()1,2b =-,则32a b --等于( )
A.()7,1
B.()7,1--
C.()7 1-,
D.()7,1-
2. 已知(),AB x y =,点B 的坐标为()2,1-,则OA 的坐标为( ) A.()2,1x y -+ B.()2,1x y +- C.()2 1x y ---, D.()2,1x y ++
3.已知向量)
,(点,,2-1-),13(),34(A D A B A --== (1)求线段BD 的中点M 的坐标
(2)求B D 的坐标。

【课堂小结】谈谈本节课你收获了什么?
【作业布置】教材P100练习1,2,3
五、说板书设计
(一)平面坐标的坐标表示 (二)平面向量的坐标运算 ①向量的和 ②向量的差 ③实数与向量的积
六、说教学反思
课程结束后我会对本节课的教学过程进行回顾,将原先的预测和实际效果进行比对,找出有出路的地方,并找出原因。

分别对教学过程的成功点和失误点进行归纳,对于成功点要继续保持,对于失误点要采取相应措施进行改正,争取下次做的更好。

相关文档
最新文档