题库 高考数学试题库全集及参考答案
高三数学测试卷含答案解析

一、选择题(每题5分,共50分)1. 下列函数中,在实数范围内是单调递增的是()A. y = -x^2 + 2xB. y = x^3 - 3xC. y = 2^xD. y = log2(x)答案:C解析:选项A和B都是二次函数,开口向下,存在最大值,不是单调递增。
选项D 是底数为2的对数函数,在定义域内是单调递增的,但题目要求在实数范围内,所以排除。
选项C是指数函数,底数大于1,在整个实数范围内都是单调递增的。
2. 已知等差数列{an}的首项a1=1,公差d=2,则第10项an=()A. 19B. 21C. 23D. 25答案:B解析:等差数列的通项公式为an = a1 + (n-1)d,代入a1=1,d=2,n=10,得an = 1 + (10-1)×2 = 21。
3. 若复数z满足|z-2i|=|z+1|,则复数z在复平面内的对应点在()A. x轴上B. y轴上C. 第一象限D. 第二象限答案:A解析:根据复数的模的定义,|z-2i|表示点z到点(0,2)的距离,|z+1|表示点z到点(-1,0)的距离。
若这两个距离相等,则点z位于这两点的垂直平分线上,即y轴上。
但由于|z-2i|是z到y轴的距离,|z+1|是z到x轴的距离,所以点z在x轴上。
4. 已知函数f(x) = ax^2 + bx + c,若f(1) = 0,f(-1) = 0,则函数的图像与x轴的交点坐标为()A. (1,0),(-1,0)B. (0,1),(0,-1)C. (0,0),(1,0)D. (-1,0),(0,0)答案:A解析:由f(1) = 0和f(-1) = 0可知,1和-1是函数的根,因此函数的图像与x轴的交点坐标为(1,0)和(-1,0)。
5. 在直角坐标系中,点A(2,3),点B(-3,1),则线段AB的中点坐标为()A. (-1,2)B. (-1,1)C. (1,2)D. (1,1)答案:A解析:线段AB的中点坐标为两个端点坐标的算术平均值,即中点坐标为((2-3)/2, (3+1)/2) = (-1,2)。
高三数学试题及解析答案

高三数学试题及解析答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = sin(x)D. f(x) = cos(x)解析:奇函数满足f(-x) = -f(x)的性质。
选项A是偶函数,选项B是偶函数,选项D是偶函数,只有选项C满足奇函数的定义。
因此,正确答案是C。
2. 已知等差数列{an}的首项a1=2,公差d=3,求第5项a5的值。
解析:等差数列的通项公式为an = a1 + (n-1)d。
将已知条件代入公式,得到a5 = 2 + (5-1)×3 = 2 + 12 = 14。
3. 计算下列积分:∫(3x^2 - 2x + 1)dx解析:根据积分的基本公式,我们可以计算出:∫(3x^2 - 2x + 1)dx = x^3 - x^2 + x + C4. 已知圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标和半径。
解析:圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a, b)是圆心坐标,r是半径。
根据题目给出的方程,圆心坐标为(3, 4),半径为5。
二、填空题(每题4分,共12分)1. 若sinθ = 3/5,且θ为锐角,求cosθ的值。
答案:根据勾股定理,cosθ = √(1 - sin²θ) = √(1 -(3/5)²) = 4/5。
2. 已知函数f(x) = x^3 - 2x^2 + 3x - 4,求f(2)的值。
答案:将x=2代入函数f(x),得到f(2) = 2³ - 2×2² + 3×2- 4 = 8 - 8 + 6 - 4 = 2。
3. 求方程2x + 5 = 7x - 3的解。
答案:将方程化简,得到5x = 8,解得x = 8/5。
三、解答题(每题18分,共54分)1. 解不等式:|x - 3| < 2。
高考数学试卷完整版答案

一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 若函数f(x) = x^3 - 3x在区间[0, 2]上单调递增,则f(x)在区间[0, 2]上的最大值是:A. 0B. 2C. 4D. 8答案:C2. 已知等差数列{an}的前n项和为Sn,若S5 = 20,S10 = 60,则公差d为:A. 1B. 2C. 3D. 4答案:C3. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是:A. y = 0B. x = 0C. y = xD. y = -x答案:A4. 函数y = log2(3x - 2)的定义域是:A. (0, +∞)B. (2, +∞)C. (0, 2)D. (-∞, 2)答案:B5. 若等比数列{an}的首项a1 = 1,公比q = 2,则第5项a5的值为:A. 2B. 4C. 8D. 16答案:D6. 若直角三角形的两个锐角分别为30°和60°,则该三角形的面积是:A. √3B. 1C. 2D. 3答案:A7. 已知向量a = (2, -3),向量b = (-1, 2),则向量a与向量b的点积是:A. -7B. -5C. 1D. 3答案:A8. 若函数f(x) = x^2 - 4x + 4在区间[2, +∞)上单调递增,则f(x)在区间[0, 2]上的最大值是:A. 0B. 2C. 4D. 8答案:B9. 若数列{an}满足an = an-1 + an-2,且a1 = 1,a2 = 2,则数列{an}的通项公式是:A. an = 2^n - 1B. an = 2^n + 1C. an = 2^nD. an = 2^n - 2答案:A10. 若函数y = sin(x)的图像向右平移π个单位,则得到的新函数的解析式是:A. y = sin(x - π)B. y = sin(x + π)C. y = -sin(x)D. y = -sin(x + π)答案:B二、填空题(本大题共5小题,每小题5分,共25分。
高考新数学试卷及答案详解

一、选择题1. 下列选项中,不是等差数列的是()A. 2, 5, 8, 11, ...B. 3, 6, 9, 12, ...C. 1, 4, 9, 16, ...D. 1, 3, 5, 7, ...答案:C解析:等差数列的定义是相邻两项之差为常数,而C选项中的相邻两项之差并不为常数,故C不是等差数列。
2. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴是()A. x = -2B. x = 2C. y = -2D. y = 2答案:B解析:函数f(x) = x^2 - 4x + 4可以写成f(x) = (x - 2)^2,这是一个完全平方公式,其对称轴为x = 2。
3. 下列不等式中,正确的是()A. |x| > 0B. |x| ≥ 0C. x^2 ≥ 0D. x^2 ≤ 0答案:B、C解析:绝对值表示一个数的非负值,所以| x | ≥ 0恒成立。
而x的平方也是非负的,所以x^2 ≥ 0也恒成立。
因此,选项B和C都是正确的。
4. 在△ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则△ABC是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 梯形答案:B解析:根据勾股定理,若a^2 + b^2 = c^2,则△ABC是直角三角形。
将a = 3,b = 4,c = 5代入,得到3^2 + 4^2 = 5^2,满足条件,故△ABC是直角三角形。
5. 下列函数中,单调递增的是()A. y = x^2B. y = 2^xC. y = log2(x)D. y = e^x答案:D解析:函数y = e^x是一个指数函数,随着x的增大,y也增大,因此是单调递增的。
而y = x^2、y = 2^x和y = log2(x)在不同区间有不同的单调性。
二、填空题6. 已知数列{an}的通项公式为an = 2n - 1,则第10项an的值为()答案:19解析:将n = 10代入通项公式an = 2n - 1,得到a10 = 210 - 1 = 19。
高考数学试题140道及答案

高考数学试题140道及答案一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x) = x^2 - 4x + 3的零点为x1和x2,则x1 + x2的值为:A. 2B. 3C. 4D. 5答案:B2. 已知向量a = (3, -1),向量b = (2, 2),则向量a与向量b的点积为:A. 4B. 5C. 6D. 7答案:A3. 若sin(α) = 1/2,则cos(2α)的值为:A. 1/2B. -1/2C. 0D. -1答案:B4. 已知数列{an}为等差数列,且a1 = 2,a3 = 6,则数列的公差d为:A. 1B. 2C. 3D. 4答案:B5. 函数y = ln(x)的导数为:A. 1/xB. xC. x^2D. 1/x^2答案:A6. 已知抛物线y = x^2 - 4x + 4的顶点坐标为:A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A7. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且a = 2,则b的值为:A. 2B. 3C. 4D. 5答案:B8. 已知圆的方程为(x - 1)^2 + (y - 2)^2 = 9,圆心到直线x + y - 3 = 0的距离为:A. 1B. 2C. 3D. 4答案:C二、填空题(本题共6小题,每小题5分,共30分)9. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = _______。
答案:3x^2 - 6x10. 已知三角形ABC的边长分别为a = 3,b = 4,c = 5,求三角形的面积S = _______。
答案:611. 已知等比数列{bn}的首项b1 = 2,公比q = 3,求第n项bn = _______。
答案:2 * 3^(n-1)12. 已知直线l的方程为y = 2x + 1,求直线l与x轴的交点坐标为(_______,_______)。
全国高三数学试题及答案

全国高三数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的最小值为m,则m的值为:A. 0B. 1C. 2D. 32. 已知向量a = (3, -1),b = (1, 2),则向量a与b的数量积为:A. 1B. 2C. 3D. 43. 函数y = sin(x) + cos(x)的值域为:A. [-1, 1]B. [-√2, √2]C. [0, 2]D. [1, √2]4. 已知数列{an}的通项公式为an = 2n - 1,求数列的前n项和Sn:A. n^2B. n(n+1)C. n^2 - nD. n^2 + n5. 直线l:2x - y + 3 = 0与直线m:x + 2y - 5 = 0的交点坐标为:A. (1, 2)B. (2, 1)C. (-1, 2)D. (2, -1)6. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,若双曲线的一条渐近线方程为y = 2x,则a与b的关系为:A. a = 2bB. a = b/2C. b = 2aD. b = a/27. 已知三角形ABC中,角A、B、C的对边分别为a、b、c,且满足a^2 + b^2 = c^2,若三角形ABC的面积为3√3,则c的值为:A. 2√3B. 3√3C. 6D. 6√38. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x):A. 3x^2 - 6x + 2B. 3x^2 - 6x + 3C. 3x^2 - 6x + 1D. 3x^2 - 6x + 49. 已知抛物线方程为y^2 = 4x,求抛物线的焦点坐标:A. (1, 0)B. (0, 1)C. (1, 1)D. (0, 0)10. 已知椭圆方程为x^2/16 + y^2/9 = 1,求椭圆的离心率e:A. 1/4B. √5/4C. √3/2D. 3/4二、填空题(每题4分,共20分)11. 已知等差数列{an}的首项a1 = 2,公差d = 3,求该数列的第10项a10的值为______。
高考数学真题及答案解析版

高考数学真题及答案解析版一、选择题1. 题目内容:已知函数f(x) = ax^2 + bx + c在点x=1取得最小值3,且知道a>0,求a+b+c的值。
答案解析:根据题意,函数f(x) = ax^2 + bx + c在x=1处取得最小值,可以得出f(x)的对称轴为x=-b/2a=1,由此可得b=-2a。
又因为f(1)=3,代入得a+b+c=3。
将b=-2a代入,得到a-2a+c=3,即c=5-a。
由于a>0,所以c>5。
综合以上信息,我们可以得出a+b+c=a-2a+5-a=3,解得a=1,进而得到b=-2,c=4。
所以a+b+c=1+(-2)+4=3。
2. 题目内容:设集合A={x|x^2 < 4},B={x|x < 0},求A∪B的值。
答案解析:集合A表示的是所有满足x^2 < 4的x值的集合,即-2 <x < 2。
集合B表示的是所有小于0的x值的集合。
求A∪B,即求A和B的并集,也就是所有属于A或属于B的元素构成的集合。
由于A的范围是-2到2之间,而B是小于0的所有数,因此A∪B的范围是从负无穷到2,即A∪B={x|x < 2}。
3. 题目内容:已知数列{an}满足a1=1,an=3an-1+2(n≥2),求a5的值。
答案解析:根据递推公式an=3an-1+2,我们可以逐步计算数列的前几项。
首先a1=1,然后a2=3a1+2=5,a3=3a2+2=17,a4=3a3+2=53,最后a5=3a4+2=161。
所以a5的值为161。
二、填空题1. 题目内容:若sinθ=0.6,则cosθ的值为______。
答案解析:根据三角函数的基本关系,sin^2θ+cos^2θ=1。
已知sinθ=0.6,所以0.6^2+cos^2θ=1,解得cos^2θ=1-0.36=0.64。
由于cosθ的值在-1到1之间,所以cosθ的值为±√0.64=±0.8。
高考数学试卷完整版及答案

一、选择题(每题5分,共50分)1. 已知函数$f(x) = 2^x - 1$,则函数的值域为()。
A. $(-1, +\infty)$B. $[0, +\infty)$C. $(-\infty, 1)$D. $[1, +\infty)$2. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若$a^2 + b^2 - c^2 = ab$,则角C的度数为()。
A. 30°B. 45°C. 60°D. 90°3. 下列函数中,在定义域内单调递增的是()。
A. $y = -x^2 + 2x - 1$B. $y = 2^x - 3$C. $y = \log_2(x + 1)$D. $y = \frac{1}{x}$4. 已知数列$\{a_n\}$的通项公式为$a_n = 3^n - 2^n$,则数列的前n项和$S_n$为()。
A. $S_n = 3^n - 2^n$B. $S_n = 3^n - 2^{n+1}$C. $S_n = 2^n - 3^n$D. $S_n = 2^{n+1} - 3^n$5. 已知复数$z = a + bi$($a, b \in \mathbb{R}$)满足$|z - 1| = |z + 1|$,则实数a和b的关系为()。
A. $a = 0$B. $b = 0$C. $a^2 = b^2$D. $a^2 + b^2 = 1$6. 下列不等式中,正确的是()。
A. $x^2 + y^2 \geq 2xy$B. $\frac{1}{x^2} + \frac{1}{y^2} \geq \frac{2}{xy}$C. $\log_2(x + 1) \leq \log_2(x - 1)$D. $\sin x + \cos x \leq \sqrt{2}$7. 已知函数$f(x) = x^3 - 3x^2 + 4x - 1$,则函数的极值点为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2012北京,18,13分)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.2.(2012安徽,19,13分)设函数f(x)=ae x++b(a>0).(1)求f(x)在[0,+∞)内的最小值;(2)设曲线y=f(x)在点(2, f(2))处的切线方程为y=x,求a,b的值.3.(2012重庆,16,13分)设f(x)=aln x++x+1,其中a∈R,曲线y=f(x)在点(1, f(1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.4. (2012大纲全国,20,12分)设函数f(x)=ax+cos x,x∈[0,π].(1)讨论f(x)的单调性;(2)设f(x)≤1+sin x,求a的取值范围.5.(2012湖北,17,12分)已知向量a=(cos ωx-sin ωx,sin ωx),b=(-cos ωx-sin ωx,2cos ωx),设函数f(x)=a·b+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈. (1)求函数f(x)的最小正周期(2)若y=f(x)的图像经过点,求函数f(x)在区间上的取值范围6.(2012湖北,18,12分)已知等差数列{a n}前三项的和为-3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.8.(2012河北高三模拟,21,12分)设函数f(x)=x4+bx2+cx+d,当x=t1时, f(x)有极小值. (1)若b=-6时,函数f(x)有极大值,求实数c的取值范围;(2)在(1)的条件下,若存在实数c,使函数f(x)在闭区间[m-2,m+2]上单调递增,求实数m的取值范围;(3)若函数f(x)只有一个极值点,且存在t2∈(t1,t1+1),使f '(t2)=0,证明:函数g(x)=f(x)-x2+t1x在区间(t1,t2)内最多有一个零点.9. (2012沈阳高三模拟,21,12分)已知椭圆+=1(a>b>0)与x轴、y轴的正半轴分别交于A、B两点,原点O到直线AB的距离为,该椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过点P的直线l与椭圆交于M,N两个不同的点,使=4成立?若存在,求出l的方程;若不存在,说明理由.10.(2013高考仿真试题一,20,12分)已知抛物线y2=2px(p>0)的焦点为F,过点F作直线l 与抛物线交于A,B两点,抛物线的准线与x轴交于点C.(1)证明:∠ACF=∠BCF;(2)求∠ACB的最大值,并求∠ACB取得最大值时线段AB的长.11.(2013高考仿真试题二,20,12分)已知中心在原点O,焦点在x轴上,离心率为的椭圆过点.(1)求椭圆的方程;(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.12.(2013高考仿真试题三,20,12分)已知圆x2+y2=1过椭圆+=1(a>b>0)的两焦点,与椭圆有且仅有两个公共点,直线y=kx+m与圆x2+y2=1相切,与椭圆+=1相交于A,B两点. 记λ=·,且≤λ≤.(1)求椭圆的方程;(2)求k的取值范围;(3)求△OAB的面积S的取值范围.13. (2013高考仿真试题五,21,12分)已知函数f(x)=aln x+x2-(1+a)x,其中a∈R.(1)求函数f(x)的单调区间;(2)若f(x)≥0对定义域内的任意x恒成立,求实数a的取值范围;(3)证明:对于任意正整数m,n,不等式++…+>恒成立.14.(2012浙江绍兴一中高三十月月考,20,10分)已知,,其中(e是自然常数).(Ⅰ)求的单调性和极小值;(Ⅱ)求证:在上单调递增;(Ⅲ)求证:.15. (2012江西省临川一中、师大附中联考,20,13分)已知函数,a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).16. (2012北京海淀区高三11月月考,19,14分)已知函数.(Ⅰ)若在处取得极大值,求实数的值;(Ⅱ)若,直线都不是曲线的切线,求的取值范围;(Ⅲ)若,求在区间上的最大值.17.(2012湖北省黄冈中学高三11月月考,21,14分)已知函数在上为增函数,且,,.(1)求的值;(2)当时,求函数的单调区间和极值;(3)若在上至少存在一个,使得成立,求的取值范围.18.(2013湖北黄冈市高三三月质量检测,22,14分)设.(Ⅰ)若对一切恒成立,求的最大值.(Ⅱ)设,且是曲线上任意两点,若对任意的,直线AB的斜率恒大于常数,求的取值范围;(Ⅲ)求证:.答案理数1.(1)f '(x)=2ax,g'(x)=3x2+b.因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,所以f(1)=g(1),且f'(1)=g'(1).即a+1=1+b,且2a=3+b.解得a=3,b=3.(2)记h(x)=f(x)+g(x). 当b=a2时,h(x)=x3+ax2+a2x+1, h'(x)=3x2+2ax+a2.令h'(x)=0,得x1=-,x2=-.a>0时,h(x)与h'(x)的情况如下:x-∞,---,---,+∞h'(x) + 0 - 0 +h(x) ↗↘↗所以函数h(x)的单调递增区间为和;单调递减区间为.当-≥-1,即0<a≤2时,函数h(x)在区间(-∞,-1]上单调递增,h(x)在区间(-∞,-1]上的最大值为h(-1)=a-a2.当-<-1,且-≥-1,即2<a≤6时,函数h(x)在区间内单调递增,在区间上单调递减,h(x)在区间(-∞,-1]上的最大值为h=1.当-<-1,即a>6时,函数h(x)在区间内单调递增,在区间内单调递减,在区间上单调递增.又因h-h(-1)=1-a+a2=(a-2)2>0,所以h(x)在区间(-∞,-1]上的最大值为h=1. 2.(1)f '(x)=ae x-,当f '(x)>0,即x>-ln a时, f(x)在(-ln a,+∞)上递增;当f '(x)<0,即x<-ln a时, f(x)在(-∞,-ln a)上递减.(i)当0<a<1时,-ln a>0, f(x)在(0,-ln a)上递减,在(-ln a,+∞)上递增,从而f(x)在[0,+∞)上的最小值为f(-ln a)=2+b;(ii)当a≥1时,-ln a≤0, f(x)在[0,+∞)上递增,从而f(x)在[0,+∞)上的最小值为f(0)=a++b. (2)依题意f '(2)=ae2-=,解得ae2=2或ae2=-(舍去).所以a=,代入原函数可得2++b=3,即b=.故a=,b=. 3.(1)因f(x)=aln x++x+1,故f '(x)=-+.由于曲线y=f(x)在点(1, f(1))处的切线垂直于y轴,故该切线斜率为0,即f '(1)=0,从而a-+=0,解得a=-1.(2)由(1)知f(x)=-ln x++x+1(x>0),f '(x)=--+==.令f '(x)=0,解得x1=1,x2=-因x2=-不在定义域内,舍去.当x∈(0,1)时, f '(x)<0,故f(x)在(0,1)上为减函数;当x∈(1,+∞)时, f '(x)>0,故f(x)在(1,+∞)上为增函数.故f(x)在x=1处取得极小值f(1)=3. 4.(1)f '(x)=a-sin x. (2分)(i)当a≥1时,f '(x)≥0,且仅当a=1,x=时, f '(x)=0,所以f(x)在[0,π]上是增函数;(ii)当a≤0时, f '(x)≤0,且仅当a=0,x=0或x=π时, f '(x)=0,所以f(x)在[0,π]上是减函数; (iii)当0<a<1时,由f '(x)=0解得x1=arcsin a,x2=π-arcsin a.当x∈[0,x1)时,sin x<a, f '(x)>0, f(x)是增函数;当x∈(x1,x2)时,sin x>a, f '(x)<0, f(x)是减函数;当x∈(x2,π]时,sin x<a, f '(x)>0, f(x)是增函数. (6分)(2)由f(x)≤1+sin x得f(π)≤1,aπ-1≤1,所以a≤.令g(x)=sin x-x,则g'(x)=cos x-.当x∈时,g'(x)>0,当x∈时,g'(x)<0.又g(0)=g=0,所以g(x)≥0,即x≤sin x. (9分)当a≤时,有f(x)≤x+cos x.(i)当0≤x≤时,x≤sin x,cos x≤1,所以f(x)≤1+sin x;(ii)当≤x≤π时, f(x)≤x+cos x=1+-sin≤1+sin x.综上,a的取值范围是. (12分) 5. (1)因为f(x)=sin2ωx-cos2ωx+2sin ωx·cos ωx+λ=-cos 2ωx+sin 2ωx+λ=2sin+λ.由直线x=π是y=f(x)图象的一条对称轴,可得sin=±1,所以2ωπ-=kπ+(k∈Z),即ω=+(k∈Z).又ω∈,k∈Z,所以k=1,故ω=.所以f(x)的最小正周期是.(2)由y=f(x)的图象过点,得f=0,即λ=-2sin=-2sin=-,即λ=-.故f(x)=2sin-,由0≤x≤,有-≤x-≤,所以-≤sin≤1,得-1-≤2sin-≤2-,故函数f(x)在上的取值范围为[-1-,2-]. 6. (1)设等差数列{a n}的公差为d,则a2=a1+d,a3=a1+2d,由题意得解得或所以由等差数列通项公式可得a n=2-3(n-1)=-3n+5或a n=-4+3(n-1)=3n-7.故a n=-3n+5或a n=3n-7.(2)当a n=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列;当a n=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.故|a n|=|3n-7|=记数列{|a n|}的前n项和为S n.当n=1时,S1=|a1|=4;当n=2时,S2=|a1|+|a2|=5;当n≥3时,S n=S2+|a3|+|a4|+…+|a n|=5+(3×3-7)+(3×4-7)+…+(3n-7)=5+=n2-n+10.当n=2时,满足此式,综上,S n=7.(1)当n=k∈N+时,S n=-n2+kn取最大值,即8=S k=-k2+k2=k2,故k2=16,因此k=4,从而a n=S n-S n-1=-n(n≥2).又a1=S1=,所以a n=-n.(2)因为b n==,T n=b1+b2+…+b n=1+++…++,所以T n=2T n-T n=2+1++…+-=4--=4-. 8.(1)因为f(x)=x4+bx2+cx+d,所以f '(x)=x3-12x+c. 设h(x)=x3-12x+c,(2分)由题意知,方程h(x)=0有三个互异的实根,∵h'(x)=3x2-12,令h'(x)=0,得x=±2.x (-∞,-2) -2 (-2,2) 2 (2,+∞) h'(x) + 0 - 0 +h(x) 增c+16(极大值) 减c-16(极小值) 增所以故-16<C<16. span (4<>分)(2)存在c∈(-16,16),使f '(x)≥0,即x3-12x≥-c,所以x3-12x>-16,即(x-2)2(x+4)>0,(*)在区间[m-2,m+2]上恒成立. (6分)所以[m-2,m+2]是不等式(*)解集的子集,所以或m-2>2,即-2或m>4. (8分)(3)证明:由题设,可得存在α,β∈R,使f '(x)=x3+2bx+c=(x-t1)(x2+αx+β),且x2+αx+β≥0恒成立. (9分)又f '(t2)=0,且在x=t2两侧同号,所以f '(x)=(x-t1)(x-t2)2. (10分)另一方面,g'(x)=x3+2bx+c-(x-t1)=x3+(2b-1)x+t1+c=(x-t1)[(x-t2)2-1].因为t12,且t2-t1<1,所以-11-t22<0.所以0<(x-t2)2<1,所以(x-t2)2-1<0,而x-t1>0,所以g'(x)<0,所以g(x)在(t1,t2)内单调递减.从而g(x)在(t1,t2)内最多有一个零点. (12分)9.(Ⅰ)由题意得,直线AB的方程为bx+ay-ab=0(a>b>0),(1分)由=及=,得a=2,b=1. (3分)所以椭圆的方程为+y2=1. (4分)(Ⅱ)当直线l的斜率不存在时,M(0,-1),N(0,1),易知符合条件,此时直线l的方程为x=0. (6分) 当直线l的斜率存在时,设直线l的方程为y=kx+,代入+y2=1得(9+36k2)x2+120kx+64=0.由Δ=14 400k2-256(9+36k2)>0,解得k2>.设M(x1,y1),N(x2,y2),则x1+x2=-,①x1x2=,②(9分)由=4得x1=4x2,③(10分)由①②③消去x1,x2,得=,即=1,无解.综上,存在符合条件的直线l,且其方程为x=0. (12分)10.(1)证明:由题设知,F,C, 设A(x1,y1),B(x2,y2),直线l的方程为x=my+,代入抛物线方程y2=2px,得y2-2pmy-p2=0.则y1+y2=2pm,y1y2=-p2. (4分)不妨设y1>0,y2<0,则tan∠ACF=====,tan∠BCF=-=-,∴tan∠ACF=tan∠BCF,又∠ACF,∠BCF∈(0,π),∴∠ACF=∠BCF. (8分)(2)如(1)所设y1>0,tan∠ACF=≤=1,当且仅当y1=p时取等号,此时∠ACF取最大值,∠ACB=2∠ACF取最大值,并且A,B,|AB|=2p. (12分)失分警示:(1)不能准确地得出∠ACF与∠BCF的正切值.(2)没有注意到∠ACF取得最大值时,y1=p. 11.(1)由题意可设椭圆方程为+=1(a>b>0),则解得所以椭圆方程为+y2=1. (4分)(2)由题意可知,直线l的斜率存在且不为0,OP,OQ的斜率存在,故可设直线l的方程为y=kx+m(m≠0且m≠±1),P(x1,y1),Q(x2,y2),由消去y得(1+4k2)x2+8kmx+4(m2-1)=0,Δ=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0,且x1+x2=,x1x2=.故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.因为直线OP,PQ,OQ的斜率依次成等比数列,所以·==k2,即+m2=0,又m≠0,所以k2=,即k=±.又m≠±1,且Δ>0,∴02<2且m2≠1.又S△OPQ=|x1-x2||m|=|m|=,所以S△OPQ的取值范围为(0,1). (12分) 失分警示:根据直线OP、PQ、OQ的斜率依次成等比数列求出k的值,从而用m表示出S△OPQ. 12.(1)由题意知2c=2,c=1.因为圆与椭圆有且只有两个公共点,从而b=1,故a=,所以所求椭圆方程为+y2=1. (3分)(2)因为直线l:y=kx+m与圆x2+y2=1相切,所以原点O到直线l的距离为=1,即m2=k2+1. (5分)由得(1+2k2)x2+4kmx+2m2-2=0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=. (7分)λ=·=x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2=,由≤λ≤,得≤k2≤1,即k的取值范围是∪. (9分)(3)|AB|2=(x1-x2)2+(y1-y2)2=(1+k2)[(x1+x2)2-4x1x2]=2-,由≤k2≤1,得≤|AB|≤. (11分)设△OAB的AB边上的高为d,则S=|AB|d=|AB|,所以≤S≤. (12分)失分警示:(1)没有将几何关系转化为代数式;(2)计算时不细心或不耐心. 13.f'(x)=+x-(1+a)==.(1)当a≤0时,若0则f '(x)<0,若x>1,则f '(x)>0,故此时函数f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞);当0时,随着x的变化, f '(x),f(x)的变化情况如下表:x (0,a) a (a,1) 1 (1,+∞)f '(x) + 0 - 0 +f(x) 单调递增极大值单调递减极小值单调递增所以函数f(x)的单调递增区间是(0,a),(1,+∞),单调递减区间是(a,1).当a=1时,f '(x)=≥0,函数f(x)的单调递增区间是(0,+∞);当a>1时,同理可得,函数f(x)的单调递增区间是(0,1),(a,+∞),单调递减区间是(1,a). (4分) (2)由于f(1)=--a,显然当a>0时, f(1)<0,此时f(x)≥0不是恒成立的;当a≤0时,根据(1)知,函数f(x)在区间(0,+∞)上的极小值,也是最小值,为f(1)=--a,此时只要f(1)≥0即可,解得a≤-, 故实数a的取值范围是. (7分)(3)证明:由(2)得,当a=-时, f(x)=-ln x+x2-·x≥0,当且仅当x=1时等号成立,即ln x≤x2-x,当x>1时,可以变换为>=,(9分)在上面不等式中分别令x取m+1,m+2,…,m+n,然后不等式两边再相加得++…+>++…+=++…+=-=.所以++…+>. (12分)失分警示:(1)忽略a=1的情形;(2)在证明第(3)问时,没有注意到(2)的结论. 14.(Ⅰ)函数的定义域是,,令,解得;令,解得.当变化时,的变化如下表所示:1- 0 + 0↘极小值↗由表知,函数单调递减区间是,单调递增区间是,的极小值为. ------(4分)(Ⅱ)函数的定义域是,,当时,,∴,∴在上是增函数. ------(7分)(Ⅲ)由(Ⅰ)知函数在上的最小值为,∴,,由(Ⅱ)知函数在上的最大值是,∴,即不等式成立. ------(10分)15.(1)函数的定义域是.,,……..3分令,解得;令,解得.所以函数的单调递增区间为(-1,3),单调递减区间为(3,+∞). ……….5分(2)函数的定义域是,.,此时函数在定义域上是减函数,不存在极值点. ……..7分当时,关于的方程令,解得,………………9分则,若,则,令,解得;令,解得,或.当变化时,的变化如下表所示:- 0 + 0 -↘极小值↗极大值↘由表知,函数的极小值点;极大值点是. ……………..11分若,,令,解得;令,解得.当变化时,的变化如下表所示:+ 0 -↗极大值↘由表知,函数的极大值点是,不存在极小值点.……………..12分综上所得,当时,函数不存在极值点;当时,函数的极小值点,极大值点是;当时,函数的极大值点是,不存在极小值点. ……………..13分16.(Ⅰ),………………2分令,解得,,令,解得或;令,解得.当变化时,,随的变化情况如下表:0 0增极大值减极小值增………………4分由表知,函数在处取得极大值,所以. ………………5分(II),………………6分因为,直线都不是曲线的切线,所以对成立,………………7分则只要的最小值,所以. ………………8分(III) ,,因为所以当时,对成立,在R上是增函数,所以当时,取得最大值;………………9分当时,在时,,是增函数,在时,,是减函数,所以当时,取得最大值;………………10分当时,在时,,单调递减,所以当时,取得最大值;………………11分当时,在时,,是减函数,在时,,是增函数,又,当时,在取得最大值,当时,在取得最大值,当时,在,处都取得最大值.综上所得,当或时,取得最大值;当时,在,处都取得最大值;当时,在取得最大值;当时,取得最大值. ………………14分17.(1),又函数在上为增函数,∴,即恒成立,∵,∴,∴在上恒成立,即在上恒成立,又在的最大值是1,∴,又,∴仅有.……………………4分(2)∵,∴,,∴,令,解得,令,解得;令,解得.∴函数的单调递增区间是,单调递减区间为.当变化时,、的变化情况如下表:+ 0极大值由表知函数的极大值,不存在极小值.……………………9分(3)由(1)知,则,.令,,当时,,∵,∴,,∴恒有,∴此时不存在使得,即此时不存在使得成立;当时,,又,∴,,∴在上恒成立,∴在上是增函数,∴,又在上至少存在一个,使得成立,即恒成立,∴必有,∴,解得,综上所得,的取值范围为.……………………14分18.(Ⅰ)∵f(x)=e x-a (x+1),∴f′(x)=e x-a,∵a>0,f′(x)=e x-a=0的解为x=lna.∴f(x)min=f(lna)=a-a(lna+1)=-alna,∵f(x)≥0对一切x∈R恒成立,∴-alna≥0,∴alna≤0,∴a max=1.(Ⅱ)设是任意的两实数,且,,故,不妨令函数,则上单调递增..,恒成立.=.故. ……9分(Ⅲ)由(1)知e x≥x+1,取x=, 得1-即 . 累加得(故存在正整数a=2.使得.19.(Ⅰ).由的判别式①当即时,恒成立,则在单调递增②当时,在恒成立,则在单调递增③当时,方程的两正根为则在单调递增,单调递减,单调递增综上,当时,只有单调递增区间当时,单调递增区间为,单调递减区间为(Ⅱ)即时,恒成立当时,在单调递增∴当时,满足条件当时,在单调递减则在单调递减此时不满足条件故实数的取值范围为.(Ⅲ)由(2)知,在恒成立.令则,∴.又,∴∴.20.(Ⅰ) 因为f ' (x) =(r+1) (1+x) r-(r+1) =(r+1) [(1+x) r-1], 令f ' (x) =0, 解得x=0.当-1< x< 0时, f ' (x) < 0, 所以f(x) 在(-1,0) 内是减函数;当x> 0时, f ' (x) > 0, 所以f(x) 在(0, +∞) 内是增函数.故函数f(x) 在x=0处取得最小值f(0) =0.(Ⅱ) 由(Ⅰ), 当x∈(-1, +∞) 时, 有f(x) ≥f(0) =0, 即(1+x) r+1≥1+(r+1) x, 且等号当且仅当x=0时成立,故当x> -1且x≠0时, 有(1+x) r+1> 1+(r+1) x. ①在①中, 令x=(这时x> -1且x≠0), 得> 1+.上式两边同乘n r+1, 得(n+1) r+1> n r+1+n r(r+1),即n r< . ②当n> 1时, 在①中令x=-(这时x> -1且x≠0), 类似可得n r> . ③且当n=1时, ③也成立.综合②, ③得< n r< . ④(Ⅲ) 在④中, 令r=, n分别取值81,82, 83, …, 125, 得(8-8) < < (8-8),(8-8) < < (8-8),(8-8) < < (8-8),……(12-12) < < (12-12).将以上各式相加, 并整理得(12-8) < S< (12-8).代入数据计算, 可得(12-8) ≈210.2, (12-8) ≈210.9. 由[S]的定义, 得[S]=211.。