【典型题】高考数学试卷(含答案)
2024年高考数学试卷(新课标Ⅱ卷)(含答案)

2024年普通高等学校招生全国统一考试(新课标II 卷)数学本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知1i z =--,则z =( )A. 0B. 1C.D. 2【答案】C 【解析】【分析】由复数模的计算公式直接计算即可.【详解】若1i z =--,则z ==.故选:C.2. 已知命题p :x "ÎR ,|1|1x +>;命题q :0x $>,3x x =,则( )A. p 和q 都是真命题 B. p Ø和q 都是真命题C. p 和q Ø都是真命题 D. p Ø和q Ø都是真命题【答案】B 【解析】【分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p Ø是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q Ø是假命题,综上,p Ø和q 都是真命题.故选:B.3. 已知向量,a b r r满足1,22a a b =+=r r r ,且()2b a b -^r r r ,则b =r ( )A.12B.C.D. 1【答案】B 【解析】【分析】由()2b a b -^r r r 得22b a b =×r r r ,结合1,22a a b =+=r r r ,得22144164a b b b +×+=+=r r r r ,由此即可得解.【详解】因为()2b a b -^r r r ,所以()20b a b -×=r r r ,即22b a b =×r r r,又因为1,22a a b =+=r r r,所以22144164a b b b +×+=+=r r r r ,从而=r b 故选:B.4. 某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是( )A. 100块稻田亩产量的中位数小于1050kgB. 100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C. 100块稻田亩产量的极差介于200kg 至300kg 之间D. 100块稻田亩产量的平均值介于900kg 至1000kg 之间【答案】C 【解析】【分析】计算出前三段频数即可判断A ;计算出低于1100kg 频数,再计算比例即可判断B ;根据极差计的算方法即可判断C ;根据平均值计算公式即可判断D.【详解】对于 A, 根据频数分布表可知, 612183650++=<,所以亩产量的中位数不小于 1050kg , 故 A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100´´+´+´+´+´+´=,故D 错误.故选;C.5. 已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ¢,P ¢为垂足,则线段PP ¢的中点M 的轨迹方程为( )A. 221164x y +=(0y >)B. 221168x y +=(0y >)C. 221164y x +=(0y >)D. 221168y x +=(0y >)【答案】A 【解析】【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ¢,因为M 为PP ¢的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 6. 设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x Î-时,曲线()y f x =与()y g x =恰有一个交点,则=a ( )的A. 1-B.12C. 1D. 2【答案】D 【解析】【分析】解法一:令()()21,cos a x F x ax G x =-=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =-Î-,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x Î-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x Î-,则220,1cos 0x x ³-³,当且仅当0x =时,等号成立,可得221cos 0x x +-³,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--Î-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-Î-,又因为220,1cos 0x x ³-³当且仅当0x =时,等号成立,可得()0h x ³,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.7. 已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( )A.12B. 1C. 2D. 3【答案】B 【解析】【分析】解法一:根据台体体积公式可得三棱台的高h =,做辅助线,结合正三棱台的结构特征求得AM =111ABC A B C -补成正三棱锥-P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V -=,进而可求正三棱锥-P ABC .【详解】解法一:分别取11,BC B C 的中点1,D D,则11AD A D ==可知1111166222ABC A B C S S =´´==´=V V 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -=+=,解得h =,如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,的则1AA=,DN AD AM MN x=--=-,可得1DD==,结合等腰梯形11BCC B可得22211622BB DD-æö=+ç÷èø,即()221616433x x+=++,解得x=,所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC A B C-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV V--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则11661832P ABCV d-=´´´=,解得d=,取底面ABC的中心为O,则PO^底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAOÐ==.故选:B.8. 设函数()()ln()f x x a x b=++,若()0f x³,则22a b+的最小值为()A.18B.14C. 12D. 1【答案】C【解析】【分析】解法一:由题意可知:()f x 的定义域为(),b ¥-+,分类讨论a -与,1b b --的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【详解】解法一:由题意可知:()f x 的定义域为(),b ¥-+,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-£-a b ,当(),1x b b Î--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b Î--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b Î--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ¥Î-+时,可知()0,ln 0x a x b +³+³,此时()0f x ³;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a Î--时,可知()0,ln 0x a x b ++,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a æö+=++=++³ç÷èø,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b ¥-+,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b Î--时,()ln 0x b +<,故0x a +£,所以10b a -+£;()1,x b ¥Î-+时,()ln 0x b +>,故0x a +³,所以10b a -+³;故10b a -+=, 则()2222211112222a b a a a æö+=++=++³ç÷èø,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.【点睛】关键点点睛:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9. 对于函数()sin 2f x x =和π()sin(24g x x =-,下列正确的有( )A. ()f x 与()g x 有相同零点 B. ()f x 与()g x 有相同最大值C. ()f x 与()g x 有相同的最小正周期D. ()f x 与()g x 的图像有相同的对称轴【答案】BC 【解析】【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =ÎZ ,即为()f x 零点,令π()sin(204g x x =-=,解得ππ,28k x k =+ÎZ ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+Û=+ÎZ ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+Û=+ÎZ ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC10. 抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A. l 与A e 相切B. 当P ,A ,B 三点共线时,||PQ =C. 当||2PB =时,PA AB^D. 满足||||PA PB =的点P 有且仅有2个【答案】ABD 【解析】【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【详解】A 选项,抛物线24y x =的准线为=1x -,A e 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A e 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ^,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)ABk --==--,不满足1PA AB k k =-;于是PA AB ^不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22æöç÷èø,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360D =-´=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t æöç÷èø,由PB l ^可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360D =-´=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD11. 设函数32()231f x x ax =-+,则( )A. 当1a >时,()f x 有三个零点B. 当0a <时,0x =是()f x 的极大值点C. 存在a ,b ,使得x b =为曲线()y f x =的对称轴D. 存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD 【解析】【分析】A 选项,先分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a ¢=-=-,由于1a >,故()(),0,x a ¥¥Î-È+时()0f x ¢>,故()f x 在()(),0,,a ¥¥-+上单调递增,(0,)x a Î时,()0f x ¢<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a ¢=-,a<0时,(,0),()0x a f x ¢Î<,()f x 单调递减,,()0x Î+¥时()0f x ¢>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为33332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=ìï-=íï-=-î,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax ¢=-,()126f x x a ¢¢=-,由()02af x x ¢¢=Û=,于是该三次函数的对称中心为,22a a f æöæöç÷ç÷èøèø,由题意(1,(1))f 也是对称中心,故122aa =Û=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x =Û=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b Û+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ¢¢=的解,即,33bb f a a æöæö--ç÷ç÷èøèø是三次函数的对称中心三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12. 记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =________.【答案】95【解析】【分析】利用等差数列通项公式得到方程组,解出1,a d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=ìí+++=î,解得143a d =-ìí=î,则()10110910104453952S a d ´=+=´-+´=.故答案为:95.13. 已知a 为第一象限角,b 为第三象限角,tan tan 4a b +=,tan tan 1a b =+,则sin()a b +=_______.【答案】【解析】【分析】法一:根据两角和与差的正切公式得()tan a b +=-,再缩小a b +的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得()tan tan tan 1tan tan a b a b a b ++===--因为π3π2π,2π,2ππ,2π22k k m m a b æöæöÎ+Î++ç÷ç÷èøèø,,Z k m Î,则()()()22ππ,22π2πm k m k a b +Î++++,,Z k m Î,又因为()tan 0a b +=-<,则()()3π22π,22π2π2m k m k a b æö+Î++++ç÷èø,,Z k m Î,则()sin 0a b +<,则()()sin cos a b a b +=-+,联立 ()()22sin cos 1a b a b +++=,解得()sin a b +=.法二: 因为a 为第一象限角,b 为第三象限角,则cos 0,cos 0a b ><,cos a ==,cos b ==,则sin()sin cos cos sin cos cos (tan tan )a b a b a b a b a b +=+=+4cos cos a b =====故答案为:14. 在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.【答案】 ①. 24 ②. 112【解析】【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124´´´=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. 记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC V 的周长.【答案】(1)π6A =(2)2++【解析】【分析】(1)根据辅助角公式对条件sin 2A A +=进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【小问1详解】方法一:常规方法(辅助角公式)由sin 2A A +=可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,333A A ÎÞ+Î,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A +=,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=Û=,解得cos A =又(0,π)A Î,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =+<<,则π()2sin (0π)3f x x x æö=+<<ç÷èø,显然π6x =时,max ()2f x =,注意到π()sin 22sin()3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A ¢==,即tan A =,又(0,π)A Î,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==r r ,由题意,sin 2a b A A ×==r r,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ×==r r r rr r r r ,则2cos ,2cos ,1a b a b =Û=r r r r ,此时,0a b =rr ,即,a b r r 同向共线,根据向量共线条件,1cos sin tanA A A×=Û=又(0,π)AÎ,故π6A=方法五:利用万能公式求解设tan2At=,根据万能公式,22sin21tA At==++,整理可得,2222(2(20((2t t t-+==-,解得tan22At==-,根据二倍角公式,22tan1tAt==-,又(0,π)AÎ,故π6A=小问2详解】由题设条件和正弦定理sin sin2sin2sin sin cosC c B B C C B B=Û=,又,(0,π)B CÎ,则sin sin0B C¹,进而cos B=π4B=,于是7ππ12C A B=--=,sin sin(π)sin()sin cos sin cosC A B A B A B B A=--=+=+=由正弦定理可得,sin sin sina b cA B C==,即2ππ7πsin sin sin6412b c==,解得b c==故ABCV的周长为2++16. 已知函数3()e xf x ax a=--.(1)当1a=时,求曲线()y f x=在点()1,(1)f处的切线方程;(2)若()f x有极小值,且极小值小于0,求a的取值范围.【答案】(1)()e110x y---=(2)()1,+¥【【解析】【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a £和0a >两种情况,利用导数判断单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可;解法二:求导,可知()e ¢=-xf x a 有零点,可得0a >,进而利用导数求()f x 的单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可.【小问1详解】当1a =时,则()e 1x f x x =--,()e 1xf x ¢=-,可得(1)e 2f =-,(1)e 1f ¢=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.【小问2详解】解法一:因为()f x 的定义域为R ,且()e ¢=-x f x a ,若0a £,则()0f x ¢³对任意x ÎR 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x ¢>,解得ln x a >;令()0f x ¢<,解得ln x a <;可知()f x 在(),ln a -¥内单调递减,在()ln ,a +¥内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a¢=+>,可知()g a 在()0,¥+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+¥;解法二:因为()f x 的定义域为R ,且()e ¢=-x f x a ,若()f x 有极小值,则()e ¢=-x f x a 有零点,令()e 0x f x a ¢=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x ¢>,解得ln x a >;令()0f x ¢<,解得ln x a <;可知()f x 在(),ln a -¥内单调递减,在()ln ,a +¥内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,符合题意,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,因为则2,ln 1y a y a ==-在()0,¥+内单调递增,可知()g a 在()0,¥+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+¥.17. 如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC °Ð=,30BAD °Ð=,点E ,F 满足25AE AD = r r ,12AF AB =r r ,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ^;(2)求面PCD 与面PBF 所成的二面角的正弦值.【答案】(1)证明见解析(2【解析】【分析】(1)由题意,根据余弦定理求得2EF =,利用勾股定理的逆定理可证得EF AD ^,则,EF PE EF DE ^^,结合线面垂直的判定定理与性质即可证明;(2)由(1),根据线面垂直的判定定理与性质可证明PE ED ^,建立如图空间直角坐标系E xyz -,利用空间向量法求解面面角即可.【小问1详解】由218,,52AB AD AE AD AF AB ==== r r r r,得4AE AF ==,又30BAD °Ð=,在AEF △中,由余弦定理得2EF ===,所以222AE EF AF +=,则AE EF ^,即EF AD ^,所以,EF PE EF DE ^^,又,PE DE E PE DE =ÌI 、平面PDE ,所以EF ^平面PDE ,又PD Ì平面PDE ,故EF ^PD ;【小问2详解】连接CE,由90,3ADC ED CD °Ð===,则22236CE ED CD =+=,在PEC V中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ^,由(1)知PE EF ^,又,EC EF E EC EF =ÌI 、平面ABCD ,所以PE ^平面ABCD ,又ED Ì平面ABCD ,所以PE ED ^,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,(2,0,PC PD PB PF =-=-=-=- r r r r,设平面PCD 和平面PBF 的一个法向量分别为1122(,,),(,,)n x y z m x y z ==r r,则11100n PC n PD ì×==ïí×==ïî r r r r ,222224020mPB x m PF x ì×=+-=ïí×=-=ïî r r r r ,令122,y x ==,得11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-r r,所以cos =设平面PCD 和平面PBF 所成角为q ,则sin q ==即平面PCD 和平面PBF .18. 某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i 15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?【答案】(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【解析】【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q éù=--ëû甲,331(1)P q p éù=--×ëû乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【小问1详解】甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,\比赛成绩不少于5分的概率()()3310.610.50.686P =--=.【小问2详解】(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q éù=--ëû甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p éù=--×ëû乙,0p q <<Q ,3333()()P P q q pq p p pq \-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq éù=-+++-×-+-+--ëû()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P \>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q éù==-+--×-ëû,()()()3213511C 1P X p q q éù==--×-ëû,3223(10)1(1)C (1)P X p q q éù==--×-ëû,33(15)1(1)P X p q éù==--×ëû,()332()151(1)1533E X p q p p p q éù\=--=-+×ëû记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+×()()15[()()3()]E X E Y pq p q p q pq p q \-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,\应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.19. 已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,的记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++V 的面积,证明:对任意的正整数n ,1n n S S +=.【答案】(1)23x =,20y = (2)证明见解析 (3)证明见解析【解析】【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可.【小问1详解】由已知有22549m =-=,故C 的方程为229x y -=.当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y -=联立得到22392x x +æö-=ç÷èø.解得3x =-或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q -,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.【小问2详解】由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =-+,与229x y -=联立,得到方程()()229n n x k x x y --+=.展开即得()()()2221290n n n n kxk y kx x y kx ------=,由于(),n n n P x y 已经是直线()n n y k x x y =-+和229x y -=的公共点,故方程必有一根n x x =.从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k---=-=--,相应的()2221n n nn n y k y kx y k x x y k +-=-+=-.所以该直线与C 的不同于n P 的交点为222222,11n n n n n nn ky x k x y k y kx Q k k æö--+-ç÷--èø,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x ----,故n Q 一定在C 的左支上.所以2212222,11n n n n n nn x k x ky y k y kx P k k +æö+-+-ç÷--èø.这就得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k ++-=-.所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++-+--=---()()22222121111n n n n n n n x k x kx k k k x y x y k k k+++++==-=----.再由22119x y -=,就知道110x y -¹,所以数列{}n n x y -是公比为11kk+-的等比数列.【小问3详解】方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b = r ,(),UW c d = r,则12UVW S ad bc =-V .(若,,U V W 在同一条直线上,约定0UVW S =V )1,2UW UV UW =× r r===12ad bc ===-.证毕,回到原题.由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k++-=-,故()()22211222221211111n n n n n n n n n n n n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +¹,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n mx y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+æöæö=-+-+-ç÷ç÷+-èøèø()22111211mmn n k k x y k k æö-+æöæö=--ç÷ç÷ç÷ç÷+-èøèøèø911211m mk k k k æö-+æöæö=-ç÷ç÷ç÷ç÷+-èøèøèø.而又有()()()111,n n n n n n P P x x y y +++=---- r ,()122121,n n n n n n P P x x y y ++++++=-- r ,故利用前面已经证明的结论即得()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==---+--V ()()()()12112112n n n n n n n n x x y y y y x x ++++++=-----()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=-+---2219119119112211211211k k k k k k k k k k k k æö-+-+-+æöæöæöæö=-+---ç÷ç÷ç÷ç÷ç÷ç÷+-+-+-èøèøèøèøèø.这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n n n y k y kx y k++-=-,故()()22211222221211111n n n n n n n n n n n n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +¹,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n mx y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+æöæö=-+-+-ç÷ç÷+-èøèø()22111211mmn n k k x y k k æö-+æöæö=--ç÷ç÷ç÷ç÷+-èøèøèø911211mmk k k k æö-+æöæö=-ç÷ç÷ç÷ç÷+-èøèøèø.这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++-+æö-=-=-ç÷+-èø,以及221313229121n n n n n n n n k x y y x x y y x k ++++++æö+æö-=-=-ç÷ç÷ç÷-èøèø.两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++---=---.移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++--+=--+.故()()()()321213n n n n n n n n y y x x y y x x ++++++--=--.而()333,n n n n n n P P x x y y +++=-- r ,()122121,n n n n n n P P x x y y ++++++=-- r.所以3n n P P + r 和12n n P P ++ r平行,这就得到12123n n n n n n P P P P P P S S +++++=V V ,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.。
全国统一高考数学试卷(新课标)(含解析版)(1)

全国统一高考数学试卷(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+25.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD 的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E 相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.全国统一高考数学试卷(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】11:计算题.【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【考点】9S:数量积表示两个向量的夹角.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)已知复数Z=,则|z|=()A.B.C.1D.2【考点】A5:复数的运算.【专题】11:计算题.【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【考点】6H:利用导数研究曲线上某点切线方程.【专题】1:常规题型;11:计算题.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【考点】LG:球的体积和表面积.【专题】11:计算题.【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【考点】EF:程序框图.【专题】28:操作型.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【考点】3K:函数奇偶性的性质与判断.【专题】11:计算题.【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)若cos α=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【考点】7C:简单线性规划.【专题】11:计算题;16:压轴题.【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【考点】3A:函数的图象与图象的变换;3B:分段函数的解析式求法及其图象的作法;4H:对数的运算性质;4N:对数函数的图象与性质.【专题】13:作图题;16:压轴题;31:数形结合.【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【考点】J1:圆的标准方程;J9:直线与圆的位置关系.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【考点】CE:模拟方法估计概率;CF:几何概型.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【考点】L7:简单空间图形的三视图.【专题】15:综合题;16:压轴题.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【考点】HR:余弦定理.【专题】11:计算题;16:压轴题.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD 得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BDcos135°AC2=CD2+AD2﹣2AD•CDcos45°即AB2=BD2+2+2BD ①AC2=CD2+2﹣2CD ②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD (4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【考点】84:等差数列的通项公式;85:等差数列的前n项和.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LY:平面与平面垂直.【专题】11:计算题;14:证明题;35:转化思想.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.0013.841 6.63510.828附:K2=.【考点】BL:独立性检验.【专题】11:计算题;5I:概率与统计.【分析】(1)由样本的频率率估计总体的概率,(2)求K2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K2的观测值因为9.967>6.635,且P(K2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【考点】K4:椭圆的性质.【专题】15:综合题.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【考点】6B:利用导数研究函数的单调性.【专题】15:综合题;53:导数的综合应用.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【考点】N9:圆的切线的判定定理的证明;NB:弦切角.【专题】14:证明题.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【考点】J3:轨迹方程;JE:直线和圆的方程的应用;Q4:简单曲线的极坐标方程;QJ:直线的参数方程;QK:圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【考点】3A:函数的图象与图象的变换;7E:其他不等式的解法;R5:绝对值不等式的解法.【专题】11:计算题;13:作图题;16:压轴题.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.。
《常考题》数学高考题经典练习题(含答案解析)

一、选择题1.下列函数图像与x 轴均有公共点,其中能用二分法求零点的是( )A .B .C .D .2.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .173.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( )A .49B .29C .12D .134.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A .19B .29C .49D .718 5.函数2||()x x f x e -=的图象是( )A .B .C .D .6.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i7.若,αβ是一组基底,向量γ=x α+y β (x,y ∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量α在基底p =(1,-1), q =(2,1)下的坐标为(-2,2),则α在另一组基底m =(-1,1), n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)8.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( ) A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角 9.当1a >时, 在同一坐标系中,函数x y a -=与log a y x =-的图像是( ) A . B .C .D .10.设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A .2B .3C .2D .511.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM = A .534 B .532 C .532 D .13212.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .3213.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C .3D .2 14.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( ) A .12 B .122± C .1102± D .3222± 15.已知复数z 满足()12i z +=,则复数z 的虚部为( )A .1B .1-C .iD .i -二、填空题16.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42sin a A =,且C 为锐角,则ABC ∆面积的最大值为________.17.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm . 18.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.19.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.20.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.21.若45100a b ==,则122()a b+=_____________.22.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.23.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.24.在区间[1,1]-上随机取一个数x ,cos2x π的值介于1[0,]2的概率为 . 25.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 三、解答题26.已知函数()ln f x x x =.(1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1x f x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈)27.选修4-5:不等式选讲:设函数()13f x x x a =++-.(1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.28.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈,且{}n a 为正项等比数列,12a =,324b b =+.(1)求数列{}n a 与{}n b 的通项公式;(2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.29.如图,在几何体111ABC A B C -中,平面11A ACC ⊥底面ABC ,四边形11A ACC 是正方形,1l //B C BC ,Q 是1A B 的中点,1122,3AC BC B C ACB π==∠=(I )求证:1//QB 平面11A ACC(Ⅱ)求二面角11A BB C --的余弦值.30.已知0,0a b >>.(1)211ab a b≥+ ;(2)若a b >,且2ab =,求证:224a b a b +≥-.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.C2.B3.C4.C5.A6.B7.D8.B9.D10.A11.C12.B13.B14.A15.B二、填空题16.【解析】【分析】由利用正弦定理求得再由余弦定理可得利用基本不等式可得从而利用三角形面积公式可得结果【详解】因为又所以又为锐角可得因为所以当且仅当时等号成立即即当时面积的最大值为故答案为【点睛】本题主17.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为18.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A时直线19.【解析】【分析】利用通项公式即可得出【详解】解:(1+3x)n的展开式中通项公式:Tr+1(3x)r=3rxr∵含有x2的系数是54∴r=2∴54可得6∴6n∈N*解得n=4故答案为4【点睛】本题考20.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小21.【解析】【分析】根据所给的指数式化为对数式根据对数的换地公式写出倒数的值再根据对数式的性质得到结果【详解】则故答案为【点睛】本题是一道有关代数式求值的问题解答本题的关键是熟练应用对数的运算性质属于基22.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H点则底面三角形的外接圆半径23.【解析】【分析】先还原几何体再从底面外心与侧面三角形的外心分别作相应面的垂线交于O即为球心利用正弦定理求得外接圆的半径利用垂径定理求得球的半径即可求得表面积【详解】由该四棱锥的三视图知该四棱锥直观图24.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率25.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据函数图象理解二分法的定义,函数f(x)在区间[a,b]上连续不断,并且有f(a)•f (b)<0.即函数图象连续并且穿过x轴.【详解】解:能用二分法求零点的函数必须在给定区间[a,b]上连续不断,并且有f(a)•f(b)<0A、B中不存在f(x)<0,D中函数不连续.故选C.本题考查了二分法的定义,学生的识图能力,是基础题.2.B解析:B【解析】【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果.【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=,样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.3.C解析:C【解析】【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果.【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键. 4.C解析:C【解析】试题分析:由题为古典概型,两人取数作差的绝对值的情况共有36种,满足|a-b|≤1的有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,2)(2,1)(3,2)(2,3)(3,4)(4,3)(5,4)(4,5)(5,6)(6,5)共16种情况,则概率为;164369p == 考点:古典概型的计算. 5.A【解析】【分析】通过(0)1f=,和函数f(x)>0恒成立排除法易得答案A.【详解】2||()x xf x e-=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B,故选A【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.6.B解析:B【解析】【分析】利用复数的运算法则解得1iz=-+,结合共轭复数的概念即可得结果.【详解】∵复数z满足21iiz=-,∴()()()2121111i iiz ii i i+===---+,∴复数z的共轭复数等于1i--,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.7.D解析:D【解析】【分析】【详解】由已知α=-2p+2q=(-2,2)+(4,2)=(2,4),设α=λm+μn=λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),则由224λμλμ-+=⎧⎨+=⎩解得2λμ=⎧⎨=⎩∴α=0m+2n,∴α在基底m, n下的坐标为(0,2).8.B解析:B【解析】用反证法证明数字命题时,应先假设要证的命题的否定成立,而要证命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,所以应假设三角形的内角至少有两个钝角,故选B .9.D解析:D【解析】【分析】根据指数型函数和对数型函数单调性,判断出正确选项.【详解】由于1a >,所以1x x a y a -=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合.故选:D.【点睛】本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.10.A解析:A【解析】【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径, A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上, 22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.11.C解析:C【解析】试题分析:先求得M(2,32,3)点坐标,利用两点间距离公式计算得CM=532,故选C.考点:本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用.点评:简单题,应用公式计算.12.B解析:B【解析】【分析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
数学高考真题答案及解析版

数学高考真题答案及解析版一、选择题1. 本题考查函数的性质和应用。
设函数f(x) = 2^x - 3,若f(x) = 5,则x = 2。
因为f(x)在R上是增函数,所以f(x) > 5 当 x > 2。
因此,选项A正确。
2. 根据题目,我们需要求解不等式。
首先,将不等式整理为标准形式:3x - 2 > 7。
解得x > 3,所以选项C是正确答案。
3. 题目涉及三角函数的图像和性质。
正弦函数y = sin(x)在区间[0,2π]内的最大值为1,最小值为-1。
因此,选项B描述正确。
4. 这是一个关于复数的问题。
设复数z = a + bi,其中a和b是实数。
根据题目条件,z的模长为5,即√(a^2 + b^2) = 5。
又因为z的实部为3,即a = 3。
代入模长公式,解得b = 4。
所以,复数z = 3 +4i,选项D正确。
5. 本题要求我们利用概率的基本原理计算事件的概率。
根据古典概型,事件A的概率P(A) = 事件A的基本事件数 / 总的基本事件数。
这里,事件A是抽取到红色球,有3个红色球和5个蓝色球,总共8个球。
所以,P(A) = 3/8。
选项B是正确答案。
二、填空题1. 题目要求求解几何级数的和。
根据等比数列求和公式,S = a(1 -r^n) / (1 - r),其中a是首项,r是公比,n是项数。
将题目中的数值代入公式,得到S = 1(1 - 2^5) / (1 - 2) = 31/(-1) = -31。
2. 本题考查圆的方程和直线与圆的位置关系。
设圆心为O(0,0),半径r = 3。
直线方程为y = x + 1。
圆心到直线的距离d = |0 - 0 + 1|/ √2 = 1/√2。
因为 d < r,所以直线与圆相交。
根据相交弦的性质,弦长l = 2√(r^2 - d^2) = 2√(9 - 1/2) = √34。
三、解答题1. 首先,我们需要证明函数f(x) = x^3 - 3x^2 + 2x在区间[0,3]上是单调递增的。
高考数学试卷加答案解析

一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = ax^2 + bx + c的图象开口向上,且与x轴有两个交点,则下列说法正确的是:A. a > 0, b^2 - 4ac < 0B. a < 0, b^2 - 4ac < 0C. a > 0, b^2 - 4ac > 0D. a < 0, b^2 - 4ac > 02. 已知等差数列{an}的前n项和为Sn,且S5 = 25,S10 = 55,则第25项a25的值为:A. 6B. 7C. 8D. 93. 在△ABC中,角A、B、C的对边分别为a、b、c,且sinA + sinB + sinC = 3,则△ABC为:A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形4. 函数f(x) = x^3 - 3x + 2在区间[0, 2]上的最大值为:A. 2B. 1C. 0D. -15. 若复数z满足|z - 1| = |z + 1|,则z的实部为:A. 0B. 1C. -1D. 不存在6. 已知数列{an}满足an = 3an-1 + 2n,且a1 = 1,则数列{an}的前n项和为:A. 3^n - 1B. 3^n + 1C. 2^n - 1D. 2^n + 17. 在平面直角坐标系中,点A(1, 2),点B(-2, 1),则线段AB的中点坐标为:A. (-1, 1.5)B. (-1, 0.5)C. (0, 1.5)D. (0, 0.5)8. 若函数f(x) = log2(x + 1) + log2(x - 1)在区间[0, 2]上单调递增,则x的取值范围为:A. 0 < x < 1B. 1 < x < 2C. 0 < x < 2D. x > 29. 已知函数f(x) = ax^2 + bx + c在x = 1时取得极小值,则下列说法正确的是:A. a > 0, b > 0B. a > 0, b < 0C. a < 0, b > 0D. a < 0, b < 010. 若平面α与平面β所成的二面角为θ,则sinθ的最大值为:A. 1B. 0C. 1/2D. 1/√2二、填空题(本大题共5小题,每小题5分,共25分。
高考数学练习卷及含答案 (3)

普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、在长方体ABCD—A′B′C′D′的12条棱中,与棱AA′成异面直线的棱有()A.3条B.4条C.6条D.8条2、如图1在正方体ABCD—A′B′C′D′中,直线AC与直线BC′所成的角为() A.30°B.60°C.90°D.45°3、若a∥α,⊂bα,则a和b的关系是()A.平行B.相交C.平行或异面D.以上都不对4、已知PD⊥矩形ABCD所在的平面(图2),图中相互垂直的平面有()A.1对B.2对C.3对D.5对5、棱长为2的正方体内切球的表面积为()A.π4B.π16C.π8D.π26.函数sin24y xπ⎛⎫=+⎪⎝⎭在一个周期内的图像可能是()PA BCD图27.在ABC △中,若2AB BC CA === ,则AB BC ⋅ 等于()A.23- B.23 C.-2 D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是()A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m 10.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120F M F M ⋅= ,那么点M 到x 轴的距离是()A. B. C.2 D.111.等边△ABC 的边长为a,过△ABC 的中心O 作OP⊥平面ABC,且OP=63a,则点P 到△ABC 的边的距离为()A.a B.32a C.33a D.63a 12.已知函数f (x)是定义域为R 的奇函数,给出下列6个函数:①g (x)=sin x (1-sin x)1-sin x ;②g (x)=sin(52π+x);③g (x)=1+sin x-cos x 1+sin x+cos x;④g (x)=lg sin x ;⑤g (x)=lg(x2+1+x);⑥g (x)=2ex+1-1。
2022年高考真题:数学(新高考II卷)【含答案及解析】
2022年普通⾼等学校招⽣全国统⼀考试(新⾼考全国Ⅱ卷)数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,1,2,4,11A B x x =-=-£,则A B =I ( )A.{1,2}- B.{1,2}C.{1,4}D.{1,4}-2.(22i)(12i)+-=( )A.24i-+ B.24i-- C.62i+ D.62i-3.中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AA k k k OD DC CB BA ====,若123,,k k k 是公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A. 0.75B. 0.8C. 0.85D. 0.94.已知(3,4),(1,0),t ===+r r r r r a b c a b ,若,,<>=<>r r r ra cbc ,则t =( )A.6- B.5- C. 5D. 65.有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有多少种( )A. 12种B. 24种C. 36种D. 48种6.角,a b 满足sin()cos()sin 4p a b a b a b æö+++=+ç÷èø,则( )A .tan()1a b += B.tan()1a b +=-C.tan()1a b -= D.tan()1a b -=-7.正三棱台高为1,上下底边长分别为,所有顶点在同一球面上,则球的表面积是( )A.100πB.128πC.144πD.192π8.若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==å( )A.3- B.2- C. 0D. 1二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.函数()sin(2)(0π)f x x j j =+<<的图象以2π,03æöç÷èø中心对称,则()A.y =()f x 在5π0,12æöç÷èø单调递减B.y =()f x 在π11π,1212æö-ç÷èø有2个极值点C.直线7π6x =是一条对称轴D.直线2y x =-是一条切线10.已知O 为坐标原点,过抛物线2:2(0)C y px p =>的焦点F 的直线与C 交于A ,B 两点,点A 在第一象限,点(,0)M p ,若||||AF AM =,则()A. 直线AB 的斜率为B.||||OB OF =C.||4||AB OF > D.180OAM OBM Ð+Ð<°11.如图,四边形ABCD 为正方形,ED ^平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A.322V V =B.312V V =C.312V V V =+ D.3123V V =12.对任意x ,y ,221+-=x y xy ,则()A.1x y +£ B.2x y +³-C.222x y +£D.221x y +³三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量X 服从正态分布()22,N s,且(2 2.5)0.36P X <£=,则( 2.5)P X >=____________.14.写出曲线ln ||y x =过坐标原点的切线方程:____________,____________.15.已知点(2,3),(0,)A B a -,若直线AB 关于y a =的对称直线与圆22(3)(2)1x y +++=存在公共点,则实数a 的取值范围为________.16.已知椭圆22163x y +=,直线l 与椭圆在第一象限交于A ,B 两点,与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MN ==l 的方程为___________.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+££中元素个数.18.记ABC V 的三个内角分别为A ,B ,C ,其对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知1231,sin 23S S S B -+==.(1)求ABC V 的面积;(2)若sin sin 3A C =,求b .19.在某地区进行流行病调查,随机调查了100名某种疾病患者的年龄,得到如下的样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值作代表);(2)估计该地区一人患这种疾病年龄在区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%,从该地区任选一人,若此人年龄位于区间[40,50),求此人患该种疾病的概率.(样本数据中的患者年龄位于各区间的频率作为患者年龄位于该区间的概率,精确到0.0001)20.如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ^,E 是PB 的中点.(1)求证://OE 平面PAC ;(2)若30ABO CBO Ð=Ð=°,3PO =,5PA =,求二面角C AE B --的正弦值.21.设双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M ,请从下面①②③中选取两个作为条件,证明另外一个条件成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.22.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *ÎNln(1)n ++>+L .答案及解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,1,2,4,11A B x x =-=-£,则A B =I ()A.{1,2}- B.{1,2}C.{1,4}D.{1,4}-【答案】B 【解析】【分析】求出集合B 后可求A B I .【详解】{}|02B x x =££,故{}1,2A B =I ,故选:B.2.(22i)(12i)+-=()A.24i -+ B.24i-- C.62i+ D.62i-【答案】D 【解析】【分析】利用复数的乘法可求()()22i 12i +-.【详解】()()22i 12i 244i 2i 62i +-=+-+=-,故选:D.3.中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AA k k k OD DC CB BA ====,若123,,k k k 是公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A. 0.75B. 0.8C. 0.85D. 0.9【答案】D 【解析】【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项.【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===,依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D4.已知(3,4),(1,0),t ===+rrrrra b c a b ,若,,<>=<>r rr ra cbc ,则t =()A.6- B.5- C. 5D. 6【答案】C 【解析】【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得【详解】解:()3,4c t =+r ,cos ,cos ,a c b c =r r r,即931635t t c c+++=r r ,解得5t =,故选:C5.有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有多少种()A. 12种 B. 24种C. 36种D. 48种【答案】B 【解析】【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224´´=种不同的排列方式,故选:B6.角,a b 满足sin()cos()sin 4p a b a b a b æö+++=+ç÷èø,则()A.tan()1a b += B.tan()1a b +=-C.tan()1a b -= D.tan()1a b -=-【答案】D 【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin a b a b a b a b a a b ++-=-,即:sin cos cos sin cos cos sin sin 0a b a b a b a b -++=,即:()()sin cos 0a b a b -+-=,所以()tan 1a b -=-,故选:D7.正三棱台高为1,上下底边长分别为,所有顶点在同一球面上,则球的表面积是()A.100πB.128πC.144πD.192π【答案】A 【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以122,2sin 60sin 60r r ==o o,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =121d d -=或121d d +=1=或1+=,解得225R =符合题意,所以球的表面积为24π100πS R ==.故选:A .8.若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==å()A.3-B.2-C.0D.1【答案】A 【解析】【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f L 的值,即可解出.【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=L .由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-å.故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.函数()sin(2)(0π)f x x j j =+<<的图象以2π,03æöç÷èø中心对称,则()A.y =()f x 在5π0,12æöç÷èø单调递减B.y =()f x 在π11π,1212æö-ç÷èø有2个极值点C. 直线7π6x =是一条对称轴D. 直线2y x =-是一条切线【答案】AD 【解析】【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f j æöæö=+=ç÷ç÷èøèø,所以4ππ3k j +=,k ÎZ ,即4ππ,3k k j =-+ÎZ ,又0πj <<,所以2k =时,2π3j =,故2π()sin 23f x x æö=+ç÷èø.对A ,当5π0,12x æöÎç÷èø时,2π2π3π2,332x æö+Îç÷èø,由正弦函数sin y u =图象知()y f x =在5π0,12æöç÷èø上是单调递减;对B ,当π11π,1212x æöÎ-ç÷èø时,2ππ5π2,322x æö+Îç÷èø,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点;对C ,当7π6x =时,2π23π3x +=,7π()06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y x æö¢=+=-ç÷èø得:2π1cos 232x æö+=-ç÷èø,解得2π2π22π33x k +=+或2π4π22π,33x k k +=+ÎZ ,从而得:πx k =或ππ,3x k k =+ÎZ ,所以函数()y f x =在点0,2æöç÷ç÷èø处的切线斜率为02π2cos 13x k y ==¢==-,切线方程为:(0)2y x -=--即2y x =-.故选:AD .10.已知O 为坐标原点,过抛物线2:2(0)C y px p =>的焦点F 的直线与C 交于A ,B 两点,点A 在第一象限,点(,0)M p ,若||||AF AM =,则()A. 直线AB的斜率为 B.||||OB OF =C.||4||AB OF > D.180OAM OBM Ð+Ð<°【答案】ACD 【解析】【分析】由AF AM =及抛物线方程求得3(,)42p A ,再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得(,)33p B -,即可求出OB 判断B 选项;由抛物线的定义求出2512pAB =即可判断C 选项;由0OA OB ×<u u u r u u u r ,0MA MB ×<u u u r u u u r 求得AOB Ð,AMB Ð为钝角即可判断D 选项.【详解】对于A ,易得(,0)2pF ,由AF AM =可得点A 在FM 的垂直平分线上,则A 点横坐标为3224p pp +=,代入抛物线可得2233242p y p p =×=,则3(,)42p A ,则直线AB的斜率为2342p p =-,A 正确;对于B,由斜率为可得直线AB的方程为x =,联立抛物线方程得220y py p -=,设11(,)B x y,则126p y p +=,则13y =-,代入抛物线得2123p x æö-=×ç÷ç÷èø,解得13p x =,则(,)33p B -,则=,B 错误;对于C ,由抛物线定义知:325244312p p p AB p p OF =++=>=,C 正确;对于D,2333(,)(,)0423343234p p p p p OA OB æö×=×-=×+×-=-<ç÷ç÷èøuu u r u u u r ,则AOB Ð为钝角,又2225(,)(,)0423343236p p p p p MA MB æöæö×=-×--=-×-+×-=-<ç÷ç÷ç÷èøèøuu u r uu u r ,则AMB Ð为钝角,又360AOB AMB OAM OBM Ð+Ð+Ð+Ð=o ,则180OAM OBM Ð+Ð<o ,D 正确.故选:ACD.11.如图,四边形ABCD 为正方形,ED ^平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V,则()A.322V V = B.312V V =C.312V V V =+D.3123V V =【答案】CD 【解析】【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可.【详解】设22AB ED FB a ===,因为ED ^平面ABCD ,FB ED P ,则()2311114223323ACD V ED S a a a =××=×××=V ,()232111223323ABC V FB S a a a =××=×××=V ,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ^,又ED ^平面ABCD ,AC Ì平面ABCD ,则ED AC ^,又ED BD D =I ,,ED BD Ì平面BDEF ,则AC ^平面BDEF ,又12BM DM BD ===,过F 作FG DE ^于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ====,3EF a ==,222EM FM EF +=,则EM FM ^,2122EFM S EM FM a =×=V ,AC =,则33123A EFM C EFM EFM V V V AC S a --=+=×=V ,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.12.对任意x ,y ,221+-=x y xy ,则()A.1x y +£B.2x y +³-C.222x y +£D.221x y +³【答案】BC 【解析】【分析】根据基本不等式或者取特值即可判断各选项的真假.【详解】因为22222a b a b ab ++æö££ç÷èø(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +æö+-=£ç÷èø,解得22x y -£+£,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=£,解得222x y +£,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y æö-+=ç÷èø,设cos ,sin 22y x y q q -==,所以cos ,x y q q q ==,因此22225cos sin cos 13x y q q q q =+=+++42π2sin 2,23363q æöéù=+-Îç÷êúèøëû,所以当,33x y ==-时满足等式,但是221x y +³不成立,所以D 错误.故选:BC .三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量X 服从正态分布()22,N s,且(2 2.5)0.36P X <£=,则( 2.5)P X >=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为()22,X N s:,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<£=-=.故答案为:0.14.14.写出曲线ln ||y x =过坐标原点的切线方程:____________,____________.【答案】①.1ey x =②.1ey x =-【解析】【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得;【详解】解:因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x¢=,所以001|x x y x =¢=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =;当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x¢=,所以111|x x y x =¢=,所以切线方程为()()1111ln y x x x x --=-,又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-;故答案为:1e y x =;1ey x =-15.已知点(2,3),(0,)A B a -,若直线AB 关于y a =的对称直线与圆22(3)(2)1x y +++=存在公共点,则实数a 的取值范围为________.【答案】13,32éùêúëû【解析】【分析】首先求出点A 关于y a =对称点A ¢的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【详解】解:()2,3A -关于y a =对称的点的坐标为()2,23A a ¢--,()0,B a 在直线y a =上,所以A B ¢所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =£,即()()2225532a a -£-+,解得1332a ££,即13,32a éùÎêúëû;故答案为:13,32éùêúëû16.已知椭圆22163x y +=,直线l 与椭圆在第一象限交于A ,B 两点,与x 轴,y 轴分别交于M ,N 两点,且||||,||MA NB MN ==l 的方程为___________.【答案】0x +-=【解析】【分析】令AB 的中点为E ,设()11,A x y ,()22,B x y ,利用点差法得到12OE AB k k ×=-,设直线:AB y kx m =+,0k <,0m >,求出M 、N 的坐标,再根据MN 求出k 、m ,即可得解;【详解】解:令AB 的中点为E ,因为MA NB =,所以ME NE =,设()11,A x y ,()22,B x y ,则2211163x y +=,2222631x y +=,所以2222121206633x x y y -+-=,即()()()()12121212063x x x x y y y y -++-+=所以()()()()1212121212y y y y x x x x +-=--+,即12OE AB k k ×=-,设直线:AB y kx m =+,0k <,0m >,令0x =得y m =,令0y =得m x k =-,即,0m M k æö-ç÷èø,()0,N m ,所以,22m m E k æö-ç÷èø,即1222mk m k´=--,解得2k =-或2k =(舍去),又MN =,即MN ==,解得2m =或2m =-(舍去),所以直线:22AB y x =-+,即0x +-=;故答案为:0x -=四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+££中元素个数.【答案】(1)证明见解析;(2)9.【解析】【分析】(1)设数列{}n a 的公差为d ,根据题意列出方程组即可证出;(2)根据题意化简可得22k m -=,即可解出.【小问1详解】设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-ìí+-=-+î,即可解得,112db a ==,所以原命题得证.【小问2详解】由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+Û´=+-+,即122k m -=,亦即[]221,500k m -=Î,解得210k ££,所以满足等式的解2,3,4,,10k =L ,故集合{}1|,1500k m k b a a m =+££中的元素个数为10219-+=.18.记ABC V 的三个内角分别为A ,B ,C ,其对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S,已知1231,sin 23S S S B -+==.(1)求ABC V 的面积;(2)若sin sin 3A C =,求b .【答案】(1)8(2)12【解析】【分析】(1)先表示出123,,S S S,再由1232S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB A C=,即可求解.【小问1详解】由题意得22221231,,22444S a a S b S c =××===,则2221234442S S S a c -+=-+=,即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos 3B ==,1cos 4ac B ==,则1sin 28ABC S ac B ==V ;【小问2详解】由正弦定理得:sin sin sin b a cB A C==,则22sin sin sin sin sin 3b ac ac B A C A C =×==,则3sin 2b B =,31sin 22b B ==.19.在某地区进行流行病调查,随机调查了100名某种疾病患者的年龄,得到如下的样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值作代表);(2)估计该地区一人患这种疾病年龄在区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%,从该地区任选一人,若此人年龄位于区间[40,50),求此人患该种疾病的概率.(样本数据中的患者年龄位于各区间的频率作为患者年龄位于该区间的概率,精确到0.0001)【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A ={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式()1()P A P A =-即可解出;(3)根据条件概率公式即可求出.【小问1详解】平均年龄(50.001150.002250.012350.017450.023x =´+´+´+´+´550.020650.012750.006850.002)1044.65+´+´+´+´´=(岁).【小问2详解】设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++´=-=.【小问3详解】设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病},则由条件概率公式可得()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ´´´====».20.如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ^,E 是PB 的中点.(1)求证://OE 平面PAC ;(2)若30ABO CBO Ð=Ð=°,3PO =,5PA =,求二面角C AE B --的正弦值.【答案】(1)证明见解析(2)1113【解析】【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA OB =,再根据直角三角形的性质得到AO DO =,即可得到O 为BD 的中点从而得到//OE PD ,即可得证;(2)过点A 作//Az OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得;【小问1详解】证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ^平面ABC ,,AO BO Ì平面ABC ,所以PO AO ^、PO BO ^,又PA PB =,所以POA POB @△△,即OA OB =,所以OAB OBA Ð=Ð,又AB AC ^,即90BAC Ð=°,所以90OAB OAD Ð+Ð=°,90OBA ODA Ð+Ð=°,所以ODA OADÐ=Ð所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE Ë平面PAC ,PD Ì平面PAC ,所以//OE 平面PAC【小问2详解】解:过点A 作//Az OP ,如图建立平面直角坐标系,因为3PO =,5AP =,所以4OA ==,又30OBA OBC Ð=Ð=°,所以28BD OA ==,则4=AD,AB =,所以12AC =,所以()2,0O,()B,()2,3P ,()0,12,0C,所以32E æöç÷èø,则32AE æö=ç÷èøuu u r,()AB =u u ur ,()0,12,0AC =uu u r ,设平面AEB 的法向量为(),,n x y z =r,则3020n AE y z nAB ì×=++=ïíï×==îu u uv v u u u v v ,令2z =,则3y =-,0x =,所以()0,3,2n =-r;设平面AEC 的法向量为(),,m a b c =u r,则302120m AE b c m AC b ì×=++=ïíï×==îuu u v v uu u v v,令a =6c =-,0b =,所以)6m =-u r;所以cos ,13n m n m n m×===-r u rr u r r u r 设二面角C AE B --为q ,由图可知二面角C AE B --为钝二面角,所以cos 13q =-,所以11sin 13q ==故二面角C AE B --的正弦值为1113;21.设双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P且斜率为QM ,请从下面①②③中选取两个作为条件,证明另外一个条件成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k , M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M 在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.【小问1详解】右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b =,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;【小问2详解】由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-Û=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y éùéù--++--+=ëûëû,()()3403403434220y y x x x y y y x x -éùéù-++-+=ëûëû-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM的斜率为, 直线QM∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==---,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y éù+-=ëû,解得P的横坐标:100x y æö=++÷÷ø,同理:200x y æö=+÷÷ø,∴120,x x x æö-=∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =Û=,综上所述:条件①M 在AB 上,等价于()2002ky kx =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =\+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky kx =-,∴①成立.22.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *ÎNln(1)n ++>+L .【答案】(1)()f x 的减区间为(),0-¥,增区间为()0,+¥.(2)12a £(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1axxh x x =-+,求出()h x ¢¢,先讨论12a >时题设中的不等式不成立,再就102a <£结合放缩法讨论()h x ¢符号,最后就0a £结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t tt<-对任意的1t >恒成立,从而可得()ln 1ln n n +-<任意的*n N Î恒成立,结合裂项相消法可证题设中的不等式.【小问1详解】当1a =时,()()1e x f x x =-,则()e xf x x ¢=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-¥,增区间为()0,+¥.【小问2详解】设()e e 1axxh x x =-+,则()00h =,又()()1e e axxh x ax ¢=+-,设()()1e e axxg x ax =+-,则()()22e e axxg x a a x ¢=+-,若12a >,则()0210g a ¢=->,因为()g x ¢为连续不间断函数,故存在()00,x Î+¥,使得()00,x x "Î,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <£,则()()()ln 11e e ee ax ax ax xx h x ax ++¢=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-¢=-=<++,故()S x 在()0,+¥上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-£,故()0h x ¢£总成立,即()h x 在()0,+¥上为减函数,所以()()01h x h <=-.当0a £时,有()e e e1100axxaxh x ax ¢=-+<-+=,所以()h x 在()0,+¥上为减函数,所以()()01h x h <=-.综上,12a £.【小问3详解】取12a =,则0x ">,总有12e e 10xx x -+<成立,令12ex t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N Î,有2ln<整理得到:()ln 1ln n n +-<,()ln 2ln1ln 3ln 2ln 1ln n n+>-+-+++-L L ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.。
高考数学试卷真题及答案
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = 2x - 3的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:C2. 若复数z满足|z - 1| = 2,则复数z的取值范围是:A. z = 1 ± 2iB. z = 1 ± √2iC. z = 1 ± 2D. z = 1 ± √3i答案:B3. 已知等差数列{an}的前n项和为Sn,若S5 = 20,a1 = 2,则公差d为:A. 2B. 4C. 6D. 8答案:A4. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则sinA的值为:A. 3/5B. 4/5D. 5/3答案:A5. 函数y = log2(x - 1)的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:B6. 已知等比数列{an}的前n项和为Sn,若S5 = 32,a1 = 2,则公比q为:A. 2B. 4C. 8D. 16答案:B7. 在直角坐标系中,点P(2, 3)关于直线y = x的对称点为:A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)答案:A8. 若函数f(x) = x^2 - 4x + 4在区间[1, 3]上单调递增,则a的值为:A. 1C. 3D. 4答案:B9. 已知函数f(x) = x^3 - 3x + 2,则f(x)的图像是:A. 抛物线B. 双曲线C. 直线D. 椭圆答案:A10. 在等差数列{an}中,若a1 = 1,d = 2,则第10项an为:A. 19B. 20C. 21D. 22答案:C二、填空题(本大题共5小题,每小题5分,共25分。
)11. 函数f(x) = x^2 - 2x + 1的顶点坐标为__________。
答案: (1, 0)12. 若复数z满足|z - 1| = 2,则z的取值范围是__________。
2024年上海高考真题数学(含解析)
2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
【典型题】高考数学试题(及答案)
【解析】
【分析】
利用逐一验证的方法进行求解.
【详解】
若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A.
三、解答题
21.如图,四面体ABCD中,O、E分别是BD、BC的中点, , .
(1)求证: 平面BCD;
(2)求异面直线AB与CD所成角的余弦值;
(3)求点E到平面ACD的距离.
22.如图,四棱锥 的底面 是平行四边形,连接 ,其中 , .
(1)求证: ;
(2)若 , , ,求二面角 的正弦值.
23.随着移动互联网的发展,与餐饮美食相关的手机 软件层出不穷,现从某市使用 和 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:
A. B. C. D.
7.如图,AB是圆的直径,PA垂直于圆所在的平面,C是圆上一点(不同于A、B)且PA=AC,则二面角P-BC-A的大小为( )
A. B. C. D.
8. 的展开式中 的系数为
A.10B.20C.40D.80
9.已知向量 , ,若 ,则 ( )
A. B. C. D.
10.如图是一个正方体的平面展开图,则在正方体中直线AB与CD的位置关系为
5
乙组
8
16
20
16
用方式一与方式二进行培训,分别估计员工受训的平均时间 精确到 ,并据此判断哪种培训方式效率更高?
在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 轴的非负半轴为极轴建立的极坐标系中,直线 l 的极坐标方程为
2 cos( ) 1 .
2
4
(1)求曲线 C 的普通方程和直线 l 的直角坐标方程;
(2)过点 M 1,0 且与直线 l 平行的直线 l1 交 C 于 A , B 两点,求点 M 到 A , B 的距
离之积.
25.已知函数 f x ax 1lnx , a R .
D. cos tan sin
4.已知命题 p:若 x>y,则-x<-y;命题 q:若 x>y,则 x2>y2.在命题①p∧q;②p∨q;
③p∧( q);④( p)∨q 中,真命题是( )
A.①③
B.①④
C.②③
D.②④
5.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第 1 次到第 14 次的考试成
D.
1 2
,
3 4
7.设 i 为虚数单位,复数 z 满足 2i 1 i ,则复数 z 的共轭复数等于( ) z
A.1-i
B.-1-i
C.1+i
D.-1+i
8.在正方体 ABCD A1B1C1D1 中, E 为棱 CC1 的中点,则异面直线 AE 与 CD 所成角的
正切值为
A. 2 2
Hale Waihona Puke B. 3 2y2 2 px( p 0) 经过点 M ,则双曲线 C1 的离心率为_______. 三、解答题
21.已知平面直角坐标系 xoy .以 O 为极点, x 轴的非负半轴为极轴建立极坐标系, P 点的
极坐标为
2
3,
6
,曲线
C
的极坐标方程为
2
2
3 sin 1
(1)写出点 P 的直角坐标及曲线 C 的普通方程;
线段
BC
和
CD
上,且
BE
2 3
BC,
DF
1 6
DC , 则
AE
AF
的值为
.
17.设复数 z 1 i(i 虚数单位), z 的共轭复数为 z ,则 1 z z ________.
18.设函数 f (x) ln x 1 ax2 bx ,若 x 1 是 f (x) 的极大值点,则 a 取值范围为 2
【典型题】高考数学试卷(含答案)
一、选择题
1.从分别写有数字 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,
则抽得的第一张卡片上的数字不大于第二张卡片的概率是( )
A. 1 10
2.给出下列说法:
B. 3 10
C. 3 5
D. 2 5
①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;
.
2
14.函数
f
x
x2 2, x 0
的零点个数是________.
2x 6 lnx, x 0
15.若过点 M 2,0 且斜率为 3 的直线与抛物线 C : y2 axa 0 的准线 l 相交于点
B ,与 C 的一个交点为 A ,若 BM MA ,则 a ____. 16.在等腰梯形 ABCD 中,已知 AB DC , AB 2, BC 1, ABC 60 , 点 E 和点 F 分别在
(2)若 Q
为
C
上的动点,求
PQ
中点
M
到直线 l
:
x
y
3 2t 2 t
(t
为参数)距离的最小值.
22.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行
调查,通过抽样,获得某年 100 为居民每人的月均用水量(单位:吨),将数据按照
分成 9 组,制成了如图所示的频率分布直方图.
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
12.已知 a R ,则“ a 0 ”是“ f (x) x2 ax 是偶函数”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
二、填空题
13.若三点 A(2,3), B(3, 2),C(1 , m) 共线,则 m的值为
(Ⅱ)过椭圆 C 的右焦点 F 作直线 l 交椭圆 C 于 A、B 两点,交 y 轴于 M 点,若
MA 1 AF , MB 2 BF ,求 1 2 的值.
24.(选修 4-4:坐标系与参数方程)
在平面直角坐标系
xOy
,已知曲线
C
:
x
3 cos a ( a 为参数),在以 O 原点为极点,
y sin a
绩依次记为 A1, A2 , A14 ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流
程图,那么算法流程图输出的结果是( )
A.7 C.9
B.8 D.10
6.在下列区间中,函数 f x ex 4x 3的零点所在的区间为( )
A.
1 4
,
0
B.
0,
1 4
C.
1 4
,
1 2
_______________.
19.
16 81
3
4
+log3
5 4
log3
4 5
________.
20.已知双曲线 C1 :
x2 a2
y2 b2
1(a
0,b
0) 的左、右焦点分别为 F1 、 F2 ,第一象限内的
点 M (x0 , y0 ) 在双曲线 C1 的渐近线上,且 MF1 MF2 ,若以 F2 为焦点的抛物线 C2 :
( Ⅰ ) 讨论函数 f x 的单调区间;
( Ⅱ ) 若函数 f x 在 x 1处取得极值,对 x 0, , f x bx 2 恒成立,求实数
C. 5 2
9.已知 i 为虚数单位,复数 z 满足 (1 i)z i ,则 z ( )
D. 7 2
A. 1 4
B. 1 2
C. 2 2
D. 2
10.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )
A.108cm3
B.100cm3
C.92cm3
D.84cm3
11.在 ABC 中, A 为锐角, lg b lg(1) lg sin A lg 2 ,则 ABC 为( ) c
②有一个面是多边形,其余各面都是三角形的几何体是棱锥;
③棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确说法的个数是( )
A.0
B.1
C.2
D.3
3.如果 ,那么下列不等式成立的是( )
4
2
A. sin cos tan
B. tan sin cos
C. cos sin tan
(1)求直方图的 的值;
(2)设该市有 30 万居民,估计全市居民中月均用水量不低于 3 吨的人数,说明理由;
(3)估计居民月用水量的中位数.
23.已知椭圆 C 的中心在坐标原点,焦点在 x 轴上,它的一个顶点恰好是抛物线 y 1 x2 4
的焦点,离心率为 2 5 . 5
(Ⅰ)求椭圆 C 的标准方程;