2016年全国高考文科数学试卷及答案-全国卷1

合集下载

2016年高考文科数学全国卷1-答案

2016年高考文科数学全国卷1-答案

作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.
7z77z
【提示】(Ⅰ)设E 是AB 的中点,证明60AOE ∠=︒;
(Ⅱ)设'O 是A B C D ,,,四点所在圆的圆心,作直线'OO ,证明'OO AB ⊥,'OO CD ⊥,由此可证明//AB CD .
【考点】四点共圆、直线与圆的位置关系及证明
23.【答案】(Ⅰ)圆,222sin 10a ρρθ-+-=
(Ⅱ)1
【解析】(Ⅰ)消去参数t 得到1C 的普通方程222(1)x y a +-=.
1C 是以(0,1)为圆心,a 为半径的圆.
将cos ,sin x y ρθρθ==代入1C 的普通方程中,得到1C 的极坐标方程为
222sin 10a ρρθ-+-=.
(Ⅱ)曲线12,C C 的公共点的极坐标满足方程组222sin 10,
4cos ,a ρρθρθ⎧-+-=⎨
=⎩
若0ρ≠,由方程组得2216cos 8sin cos 10a θθθ-+-=,由已知tan 2θ=,可得216cos 8sin cos 0θθθ-=,从而210a -=,解得1a =-(舍去),1a =.
1a =时,极点也为12,C C 的公共点,在3C 上.所以1a =.
【提示】(Ⅰ)把cos 1sin x a t
y a t =⎧⎨=+⎩
化为普通方程,再化为极坐标方程;
(Ⅱ)通过解方程组可以求得.
【考点】参数方程,极坐标方程与直角坐标方程的互化
11/ 11。

2016年高考全国一卷文科数学及答案

2016年高考全国一卷文科数学及答案

2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )13(B )12(C )23(D )56(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=(ABC )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3)(7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π (8)若a>b>0,0<c<1,则(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为 (A )32(B )22(C )33(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =. (14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=. (15)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为。

2016年高考真题——文科数学(全国Ⅰ卷)Word版含答案

2016年高考真题——文科数学(全国Ⅰ卷)Word版含答案

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,,则(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}(2)设的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A )(B )(C )(D )(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则b=(A )(B )(C )2 (D )3 (5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到的l 距离为其短轴长的41,则该椭圆的离心率为(A )31(B )21(C )32(D )43(6)若将函数y=2sin (2x+6π)的图像向右平移41个周期后,所得图像对应的函数为(A )y=2sin(2x+4) (B )y=2sin(2x+3) (C )y=2sin(2x –4) (D )y=2sin(2x –3))(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328,则它的表面积是。

2016年高考全国卷1卷数学文科试题详细解析

2016年高考全国卷1卷数学文科试题详细解析
4
(20) (本小题满分 12 分) 已知函数 f(x)=(x+1)lnx-a(x-1). (Ⅰ)当 a=4 时,求曲线 y=f(x)在(1,f(1))处的切线方程; (Ⅱ)若当 x∈(1,+∞)时,f(x)>0,求 a 的取值范围.
(21) (本小题满分 12 分)
2
2
已知 A 是椭圆 E: 4 + 3 =1 的左顶点,斜率为 k(k>0)的直线交 E 于 A,M 两点,点 N 在 E 上,MA⊥NA.
(A)170
(B)58
(C)38
(D)130
(9)
2
中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图,执行该程序框图,若输入的 x=2,n=2,依次输入的 a 为 2,2,5,则输出的 s= (A)7 (B)12 (C)17 (D)34
(10) 下列函数中,其定义域和值域分别与函数 y=10lg x 的定义域和值域相同的是
(14) 若 x,y 满足约束条件 + -3 ≥ 0,则 z=x-2y 的最小值为
.
-3 ≤ 0,
(15) △ABC 的内角 A,B,C 的对边分别为 a,b,c,若 cosA=45,cosC=153,a=1,则 b=
.
3
(16) 有三张卡片,分别写有 1 和 2,1 和 3,2 和 3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后
(A)12π
(B)332π
(C)8π
(D)4π
1
(5) 设 F 为抛物线 C:y2=4x 的焦点,曲线 y= (k>0)与 C 交于点 P,PF⊥x 轴,则 k=
(A)12
(B)1
(C)32
(D)2

首发2016年高考全国卷一文科数学真题及答案

首发2016年高考全国卷一文科数学真题及答案

首发2016年高考全国卷一文科数学真题及答案2016年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,3,5,7}A=,{|25}B x x=≤≤,则A B=I(A){1,3}(B){3,5}(C){5,7}(D){1,7}(2)设(12i)(i)a++的实部与虚部相等,其中a为实数,则a=(A)-3(B)-2(C)2(D)3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A)13(B)12(C)23(D)56(4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=2c=,2cos3A=,则b=(A )2(B )3(C )2(D )3(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(6)若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y =2sin (2x +π4) (B )y =2sin (2x +π3) (C )y =2sin (2x –π4) (D )y =2sin (2x –π3)(7)如图,学.科网某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π(8)若a>b>0,0<c<1,则(A )log a c函数y =2x 2–e |x|在[–2,2]的图像大致为(A )(B )(C )(D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为(A)3(B)22(C)3(D)13(12)若函数1()sin2sin3f x x-x a x=+在(),-∞+∞单调递增,则a的取值范围是(A)[]1,1-(B)11,3⎡⎤-⎢⎥⎣⎦(C)11,33⎡⎤-⎢⎥⎣⎦(D)11,3⎡⎤--⎢⎥⎣⎦第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a=(x,x+1),b=(1,2),且a ⊥b,则x=.(14)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=.(15)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为。

2016年全国高考文科数学试题及答案-全国卷

2016年全国高考文科数学试题及答案-全国卷

2016 年一般高等学校招生全国一致考试文科数学一、选择题:本大题共12 小题。

每题 5 分 .( 1)已知会合,则(A)(B)(C)(D)(2)设复数z 知足,则 =(A)(B)(C)(D)(3)函数的部分图像以下图,则(A)(B)(C)(D)(4)体积为 8 的正方体的极点都在同一球面上,则该球面的表面积为(A)(B)( C)( D)(5)设 F 为抛物线C:y2=4x 的焦点,曲线y=( k>0)与C交于点P,PF⊥ x 轴,则k=(A)(B)1( C)(D)2(6)圆x2+y2- 2x- 8y+13=0的圆心到直线ax+y- 1=0的距离为1,则a=(A)-(B)-(C)(D)2(7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20π(B)24π(C)28π(D)32π(8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯连续时间为40 秒,若一名行人到达该路口碰到红灯,则起码需要等候15 秒才出现绿灯的概率为(A)( B)( C)( D)(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.履行该程序框图,若x=2, n=2,输入的 a 为2, 2, 5,则输出的s=(A) 7(B)12(C)17(D) 34(10)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域同样的是(A)y=x( B)y=lg x( C)y=2x( D)(11)函数的最大值为(A) 4( B)5(C)6(D)7(12) 已知函数f (x) (∈ R)知足f(x)=f(2-x) ,若函数y=|x2x-3|与= (x) 图像的交-2x y f点为( x1, y1),( x2, y2),,( x m, y m),则(A)0(B)m(C) 2m(D) 4m二.填空题:共 4 小题,每题 5 分 .(13)已知向量 a=( m,4), b=(3,-2),且 a∥ b,则 m=___________.(14)若 x, y 知足拘束条件,则 z=x-2 y 的最小值为__________(15)△ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.(16)有三张卡片,分别写有 1 和 2,1 和 3, 2 和 3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上同样的数字不是 2”,乙看了丙的卡片后说:“我与丙的卡片上同样的数字不是 1”,丙说:“我的卡片上的数字之和不是 5”,则甲的卡片上的数字是________________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17) ( 本小题满分12 分 )等差数列 {} 中,( I )求 {} 的通项公式;(II)设=[] ,求数列 {} 的前 10 项和,此中 [ x] 表示不超出x的最大整数,如 []=0,[]=2(18) ( 本小题满分 12 分 )某险种的基本保费为a(单位:元),连续购置该险种的投保人称为续保人,续保人今年度的保费与其上年度出险次数的关系以下:随机检查了该险种的200 名续保人在一年内的出险状况,获得以下统计表:(I )记 A 为事件:“一续保人今年度的保费不高于基本保费”。

2016年全国高考文科数学试题及答案-全国卷1

2016年全国高考文科数学试题及答案-全国卷1

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项:1。

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3。

全部答案在答题卡上完成,答在本试题上无效.4。

考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,3,5,7}A=,{|25}B x x=≤≤,则A B =(A){1,3} (B){3,5} (C){5,7} (D){1,7}(2)设(12i)(i)a++的实部与虚部相等,其中a为实数,则a=(A)-3 (B)-2 (C)2 (D)3(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A)13(B)12(C)23(D)56(4)△ABC的内角A、B、C的对边分别为a、b、c.已知a=2c=,2cos3A=,则b=(B(C)2 (D)3(5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!,则该椭圆的离心率为(A)错误! (B )错误! (C )错误! (D )错误!(6)若将函数y =2sin (2x +错误!)的图像向右平移错误!个周期后,所得图像对应的函数为(A )y =2sin(2x +错误!) (B )y =2sin(2x +错误!) (C )y =2sin (2x –错误!) (D)y =2sin (2x –错误!)(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径。

若该几何体的体积是28π3,则它的表面积是(A)17π (B )18π (C )20π (D )28π (8)若a>b 〉0,0〈c 〈1,则(A )log a c <log b c (B )log c a <log c b (C )a c 〈b c (D )c a 〉c b (9)函数y =2x 2–e|x |在[–2,2]的图像大致为(A )(B )(C) (D )(10)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足结束(A )2y x = (B)3y x = (C )4y x = (D )5y x =(11)平面α过正文体ABCD —A 1B 1C 1D 1的顶点A,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为(A)2 (B )2(C )3 (D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是 (A )[]1,1- (B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两部分.第(13) ~ (21)题为必考题,每个试题考生都必须作答。

2016年全国高考文科数学试卷及答案-全国卷1

2016年全国高考文科数学试卷及答案-全国卷1

2016年全国高考新课标1卷文科数学试题第Ⅰ卷一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )A .{1,3}B .{3,5}C .{5,7}D .{1,7}2.设(1+2i )(a+i )的实部和虚部相等,其中a 为实数,则a=( )A .-3B .-2C .2D . 33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .564.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知25,2,cos 3a c A ===, 则b=( ) A . 2 B 3 C .2 D .35.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .346.若将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为 ( )A .y =2sin(2x +4π)B .y =2sin(2x +3π)C .y =2sin(2x –4π)D .y =2sin(2x –3π) 7.如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条相互垂直的半径.若该几何体的体积是283π, 则它的表面积是( )A .17πB .18πC .20πD .28π8.若a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )10.执行右面的程序框图,如果输入的x =0,y =1,n =1, 则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x 11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A , α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) y x y 2 O -2 1C x 2 O -2 1 B y x 2 O -2 1 A x 2 O -2 1D y 开始 x 2+y 2≥36?是结束输出x ,y否 n=n+1 输入x ,y ,n 1,2n x x y ny -=+=B E G P DC A A .32 B .22 C .33 D .1312.若函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1] B .[-1,13] C .[-13,13] D .[-1,-13] 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= . 15.设直线y=x +2a 和圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=3C 的面积为 .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.(本题满分12分)已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=31,a n b n +1+b n +1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.18.(本题满分12分)如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G .(Ⅰ)证明G 是AB 的中点; (Ⅱ)在答题卡第(18)题图中作出点E 在平面P AC内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.(本小题满分12分) 某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y和x的函数分析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题满分12分)在直角坐标系xoy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求OHON;(Ⅱ)除H以外,直线MH和C是否有其它公共点?说明理由.21.(本小题满分12分)已知函数f(x)=(x -2)e x+a(x -1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若有两个零点,求a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB和⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.23.(本小题满分10分)选修4—4:坐标系和参数方程在直线坐标系xoy中,曲线C1的参数方程为cos1sinx a ty a t=⎧⎨=+⎩(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1和C2的公共点都在C3上,求a.24.(本小题满分10分),选修4—5:不等式选讲已知函数f(x)=| x+1| -|2x-3|.(Ⅰ)在答题卡第24题图中画出y=f(x)的图像;(Ⅱ)求不等式| f(x)|>1的解集.2016年全国高考新课标1卷文科数学试题参考答案一、选择题,本大题共12小题,每小题5分,共60分.1B 2A 3C 4D 5B 6D 7A 8B 9D 10C 11A 12C【12题分析】二、填空题:本大题共4小题,每小题5分,共20分.13.23- 14.43- 15.4π 16.216000BE G PFD C A三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.解:(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=31,解得a 1=2 …2分 通项公式为 a n =2+3(n -1)=3n -1 …6分(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为31的等比数列.…9分 所以{b n }的前n 项和S n =111()313122313n n --=-⨯- …12分 18.(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB . 又DE ⊥平面PAB ,∴DE ⊥AB .∴AB ⊥平面PDE . …3分 又PG ⊂平面PDE ,∴AB ⊥PG .依题PA=PB ,∴G 是AB 的中点.…6分(Ⅱ)解:在平面PAB 内作EF ⊥PA (或EF // PB )垂足为F ,则F 是点E 在平面PAC 内的正投影. …7分理由如下:∵PC ⊥PA ,PC ⊥PB ,∴ PC ⊥平面PAB . ∴EF ⊥PC作EF ⊥PA ,∴EF ⊥平面PAC .即F 是点E 在平面PAC 内的正投影.…9分连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD =2DG .易知DE // PC ,PC=PB=PA = 6,∴DE =2,PE =22322233PG =⨯= 则在等腰直角ΔPEF 中,PF=EF=2,∴ΔPEF 的面积S=2.所以四面体PDEF 的体积1433V S DE =⨯=. …12分 19.解:(Ⅰ)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700. 所以y 和x 的函数分析式为3800,19(*)5005700,19x y x N x x ≤⎧=∈⎨->⎩…3分 (Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n 的最小值为19. …6分(Ⅲ)若每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的 平均数为1100(3800×70+4300×20+4800×10)=4000. …9分 若每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的 平均数为1100(4000×90+4500×10)=4050. …11分 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分20.解:(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分 所以H (22t p ,2t ). 所以N 是OH 的中点,所以OH ON=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 和C 只有一个交点H .所以除H 以外,直线MH 和C 没有其它公共点. …12分21.解:(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).①若a =2e -,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②若a >2e -,ln(-2a )<1,在(ln(-2a ),1)上,f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))和(1,+∞)上,f '(x )>0,f (x )单调递增.③若a <2e -,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减; 在(-∞,1)和(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,若取b <0且b <ln2a ,e b <2a . 从而f (b )>223(2)(1)()022a b a b a b b -+-=->,所以f (x )有两个零点. …10分 (3)当a <0时,在(-∞,1]上,f (x )<0恒成立;若a ≥2e -,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.若a <2e -,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.综上a的取值范围是(0,1). …12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档