2016年高考全国I卷理科数学试题逐题解析
2016年高考全国I卷理科数学试题逐题解析

2016年普通高等学校招生全国统一考试理科数学(I 卷)本试题卷共5页,24题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合}034{2<+-=x x x A ,}032{>-=x x B ,则AB =(A ))23,3(--(B ))23,3(-(C ))23,1((D ))3,23(【解析】:{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭.故选D .(2)设yi x i +=+1)1(,其中y x ,是实数,则=+yi x(A )1(B )2(C )3(D )2【解析】:由()11i x yi +=+可知:1x xi yi +=+,故1x x y =⎧⎨=⎩,解得:11x y =⎧⎨=⎩.所以,x yi +=故选B .(3)已知等差数列}{n a 前9项的和为27,810=a ,则=100a(A )100(B )99(C )98 (D )97【解析】:由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =,而108a =,因此公差 1051105a a d -==-∴100109098a a d =+=.故选C .(4)某公司的班车在30:7,00:8,30:8发车,小明在50:7至30:8之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是 (A )31 (B )21 (C )32 (D )43 【解析】:如图所示,画出时间轴:8:208:107:507:408:308:007:30小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率10101402P +==.故选B . (5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 (A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0(【解析】:222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m = ∴13n -<<,故选A .(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的 表面积是 (A )π17(B )π18(C )π20 (D )π28【解析】:原立体图如图所示:是一个球被切掉左上角的18后的三视图表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S ⨯⨯⨯⨯πππ,故选A . (7)函数xe x y -=22在]2,2[-的图像大致为(A(B(C )(D【解析】:()22288 2.80f e =->->,排除A ;()22288 2.71f e =-<-<,排除B ;0x >时,()22xf x x e =-,()4x f x x e '=-,当10,4x ⎛⎫∈ ⎪⎝⎭时,()01404f x e '<⨯-= 因此()f x 在10,4⎛⎫⎪⎝⎭单调递减,排除C ;故选D .(8)若1>>b a ,10<<c ,则(A )ccb a <(B )cc ba ab < (C )c b c a a b log log <(D )c c b a log log <【解析】: 由于01c <<,∴函数c y x =在R 上单调递增,因此1c c a b a b >>⇔>,A 错误;由于110c -<-<,∴函数1c y x -=在()1,+∞上单调递减,∴111c c c c a b a b ba ab -->>⇔<⇔<,B 错误;要比较log b a c 和log a b c ,只需比较ln ln a c b和ln ln b c a ,只需比较ln ln c b b 和ln ln ca a ,只需lnb b 和ln a a , 构造函数()()ln 1f x x x x =>,则()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b >>⇔>>⇔<,又由01c <<得ln 0c <, ∴ln ln log log ln ln a b c cb c a c a a b b<⇔<,C 正确; 要比较log a c 和log b c ,只需比较ln ln c a 和ln ln cb ,而函数ln y x =在()1,+∞上单调递增, 故111ln ln 0ln ln a b a b a b >>⇔>>⇔<,又由01c <<得ln 0c <,∴ln ln log log ln ln a b c c c c a b >⇔>,D 错误; 故选C .(9)执行右面的程序框图,如果输入的0=x ,1=y ,1=n ,则输出y x ,的值满足(A )x y 2=(B )x y 3=(C )x y 4=(D )x y 5=【解析】:第一次循环:220,1,136x y x y ==+=<;第二次循环:22117,2,3624x y x y ==+=<; 第三次循环:223,6,362x y x y ==+>; 输出32x =,6y =,满足4y x =;故选C . (10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2(B )4(C )6(D )8【解析】:以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0,22A x ,52p D ⎛- ⎝,点(0,22A x 在抛物线22y px =上,∴082px =……①;点52p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0,22A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =, 焦点到准线的距离为4p =.故选B .(11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB , F ny y n x x =-+=,21ny x ,,输入开始结束y x ,输出1+=n n ?3622≥+y x 是否α平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为(A )23 (B )22 (C )33 (D )31【解析】:如图所示:111∵11CB D α∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D =∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111BC BD CD ==(均为面对交线),因此113CD B π∠=,即11sin CD B ∠=. 故选A .(12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为(A )11(B )9(C )7(D )5【解析】:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫ ⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减。
2016年高考真题数学(理)(全国卷Ⅰ)(附解析)

【参考版答案】非官方版正式答案,仅供参考。
绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x=-+<,{|230}B x x=->,则A B =(A)3(3,)2--(B)3(3,)2-(C)3(1,)2(D)3(,3)2(2)设(1i)1ix y+=+,其中x,y是实数,则i=x y+(A)1(BCD)2(3)已知等差数列{}na前9项的和为27,10=8a,则100=a(A)100(B)99(C)98(D)97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)(B)(C)(D)(5)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(–1,3) (B)(–1,3) (C)(0,3) (D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A)17π(B)18π(C)20π(D)28π学.科网(7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(8)若101a b c >><<,,则 (A )c c a b <(B )c cab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=|DE|=C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为(A)2(B)2 (C)3(D)1312.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点学.科网,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =.(14)5(2x 的展开式中,x 3的系数是.(用数字填写答案)(15)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为。
2016年高考全国1卷理科数学试题及答案详解

启封前★绝密试题类型:A2016年普通高等学校招生全国统一考试理科数学(试题及答案详解)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y + (A )1(B )2(C )3(D )2(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100(B )99(C )98(D )97(4)某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )31(B )21(C )32(D )43(5)已知方程132222=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A )17π(B )18π(C )20π(D )28π(7)函数y=2x2–e|x|在[–2,2]的图像大致为(A )(B )(C )(D )(8)若101a b c >><<,,则 (A )c c a b <(B )c c ab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足 (A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB|=2,|DE|=25则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD-A1B1C1D1的顶点A ,a//平面CB1D1,a ⋂平面ABCD=m ,a ⋂平面ABA1B1=n ,则m 、n 所成角的正弦值为 (A)3 (B)2 (C)3(D)1312.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=__________. (14)5(2)x x +的展开式中,x3的系数是_________.(用数字填写答案)(15)设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an 的最大值为____________。
2016年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A:平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3,求出r,即可求出展开式中x3的系数.==25﹣【解答】解:(2x+)5的展开式中,通项公式为:T r+1r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【考点】87:等比数列的性质;8I:数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016年高考真题 理科数学 (全国I卷)(含答案解析)

2016年高考真题理科数学(全国I卷)理科数学单选题(本大题共12小题,每小题____分,共____分。
)1.设集合 ,,则A.B.C.D.2.设,其中,实数,则A. 1B.C.D. 23.已知等差数列前9项的和为27,,则A. 100B. 99C. 98D. 974.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A.B.C.D.5.已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是A.B.C.D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是A.B.C.D.7.函数在的图像大致为A.B.C.D.8.若,则A.B.C.D.9.执行右面的程序框图,如果输入的,则输出x,y的值满足A.B.C.D.10.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为A. 2B. 4C. 6D. 811.平面过正方体ABCD-A 1B1C1D1的顶点A,//平面CB1D1,平面ABCD=m,平面AB B1A1=n,则m、n所成角的正弦值为A.B.C.D.12.已知函数为的零点,为图像的对称轴,且在单调,则的最大值为A. 11B. 9C. 7D. 5填空题(本大题共4小题,每小题____分,共____分。
)13.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=____.14.的展开式中,x3的系数是____.(用数字填写答案)15.设等比数列满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为____.16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为____元.简答题(综合题)(本大题共6小题,每小题____分,共____分。
2016年高考理科数学试题全国卷1及解析word完美版

2016年普通高等学校招生全国统一考试理科数学一、选择题:本大题共 12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合 A={X |X 2T X +3<0}, B={x|2x £>0},则 A A B=()3D . (2,3) )D . 2】】更换的易损專件對D 、E 两点.已知 |AB|=4 . 2, |DE|=2 5,则 C 的焦点到准线的距离为() A . 2 B . 4 C. 6 D . 811、平面a 过正方体 ABCDS 1B 1C 1D 1的顶点 A , a//平面CB1D 1, a A 平面 ABCD=m, a A 平面 ABB 1A 1= n ,贝U m 、n 所 成角的正弦值为() .3 ,2A . ~B . 2n n n n 5 n12、 已知函数f(x)=sin( 3X+$)(3>0, |创 勺,x= p 为f(x)的零点,x=4为y=f(x)图像的对称轴,且f(x)在聒品)单调, 则3的最大值为() A . 11 B. 9 C. 7D. 5二、 填空题:本大题共 4小题,每小题5分13、 _____________________________________________________________________ 设向量 a=(m,1), b=(1,2),且 |a+b|2=|a| 2+| b|2,贝V m= ______________________________________________________ .3A . (3~2) 2、 设(1+i )x=1+yi ,33B . (£,2)C.(1,2)其中x , y 是实数,则|x+yi|=(B . ,'2C . ‘33、 已知等差数列{a n }前9项的和为27, a 10=8,贝U a 100=() A .100 B . 994、 某公司的班车在 7:00, 8:00,是随机的,1A . 3 C . 98 D . 97 8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻10分钟的概率是() 2 3 C. 3 D . 4 5、已知方程 则他等车时间不超过 1 B . 2 y 2—=1表示双曲线,且该双曲线两焦点间的距离为 4,则n 的取值范围是() B . (-1^3)C. (0,3) D . (0,迈)2m 2+n 3m 2-n A . (-1,3)6、 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径. 它的表面积是() A . 17 nB . 18 nC. 20 n7、 函数y=2x 2-e |x|在[-,2]的图像大致为(28 n 口 r若该几何体的体积是"y ,则1.L■Z-n J7a)B . ab c <ba c C. alog b c<blog a cx=0, y=1, n=1,则输出 D . x , y 的值满足()Iog a c<log b c D . 28 nA .8、 若 a>b>1, 0<c<1,则( A . a c <b c9、 执行下左1图的程序图,如果输入的B. C.D .40 2014、(2x+&)5的展开式中,x3的系数是____________ (用数字填写答案).15、设等比数列满足{a n}满足a1+a3=10, a2+a4=5,贝U a1a2・・・an的最大值为_______ .16、某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元, 生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B 的利润之和的最大值为______________________________ 元.三、解答题:解答应写出文字说明,证明过程或演算步骤.(必考题)17、(本题满分为12分)△ ABC的内角A, B, C的对边分别别为a, b, c,已知2cosC(acosB+bcosA)=c(1) 求c;⑵若c= 7, △ ABC的面积为求△ ABC的周长.18、(本题满分为12分)如上左2图,在已A, B, C, D, E, F为顶点的五面体中,面ABEF为正方形,AF=2FD, /AFD=90 ,°且二面角D-KF-E 与二面角C-BE-F 都是60 °(1) 证明;平面ABEF丄平面EFDC;(2) 求二面角E-BC-K的余弦值.19、(本小题满分12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如上左3图柱状图.以这100 台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1) 求X的分布列;(2) 若要求P(X < n) >,0确定n的最小值;(3) 以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20、(本小题满分12分)设圆x2+y2+2x-5=0的圆心为A,直线I过点B(1,0)且与x轴不重合,I交圆A于C, D两点, 过B作AC的平行线交AD于点E.(1) 证明|EA|+|EB| 为定值,并写出点E 的轨迹方程;(2) 设点E的轨迹为曲线C i,直线I交C i于M , N两点,过B且与I垂直的直线与圆A交于PQ两点,求四边形MPNQ 面积的取值范围.21、(本小题满分12分)已知函数f(x)=(x -)e x+a(x-)2有两个零点.(1)求a 的取值范围;⑵设X1, x2是的两个零点,证明:X什x2<2.22、(本小题满分10分)[选修4-:几何证明选讲]如图,△ OAB 是等腰三角形,/ AOB=120°.以0为圆心,^OA 为半径作圆.(1)证明:直线AB 与O 0相切x=acost23、(本小题满分10分)[选修4 -:坐标系与参数方程]在直线坐标系xoy 中,曲线C i 的参数方程为y=1+as i nt (t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 Q : p =4cos. 0 (1)说明C 1是哪种曲线,并将 G 的方程化为极坐标方程;⑵直线Q 的极坐标方程为 0 =a ,其中a o 满足tan=2,若曲线C 1与C 2的公共点都在 C 3上,求a .24、(本小题满分10分)[选修4-5:不等式选讲]已知函数f(x)=|x+1| -2x 詡. (1) 在答题卡第(24)题图中画出y= f(x)的图像; (2) 求不等式|f(x)|>1的解集.B, GD 四点共圆,证明:AB// CD.⑵点C, D 在O 0上,且A ,理科数学参考答案一、选择题:1、D2、B3、C4、B5、A6、A7、D 8、C二、填空题:13、—14、1015、6416、2160009、C 10、B 11、A 12、B三、解答题:17、解:⑴由已知及正弦定理得,2cosC(sinAcosB+sinBcosA)=sinC 即2cosCsin(A+B)=sinC 故2sinCcosC=sinC可得cosC弓,所以C=3.2 3(2)由已知,*absinC=323•又C=n,所以ab=6.由已知及余弦定理得,a2+b2 ^2abcosC=7,故a2+b2=13,从而(a+b)2=25.所以△ ABC的周长为5+ ■'7.18、解:⑴由已知可得AF丄DF, AF丄FE所以AF丄平面EFDC 又F 平面ABEF故平面ABEF丄平面EFDC⑵过D作DG丄EF,垂足为G,由⑴知DG丄平面ABEF.以G为坐标原点,向量GF的方向为x轴正方向,|GF|为单位长度,建立如图所示的空间直角坐标系G -cy z.由(1)知/DFE为二面角D-AF-E 的平面角,故/DFE=60 ,则|DF|=2 , |DG|=3 ,可得A(1,4,0), B(43,4,0), E(43,0,0),D(0,0,V3).由已知,AB// EF,所以AB// 平面EFDC 又平面ABCDH 平面EFDC=DA 故AB// CD, CD// EF. 由BE// AF,可得BE丄平面EFDC所以/ CEF为二面角CHBE-F的平面角,/ CEF=60 .从而可得C(H2,0^3).所以向量EC=(1,0,⑶,EB=(0,4,0), AC=(43,T, :3), AB=(T,0,0).设n=(x,y,z)是平面BCE的法向量,则n三二,即x+ - 3z=0,所以可取n EB=04y=0设m是平面ABCD的法向量,则m AB=0,同理可取m=(0,Q3,4).则故二面角E-BC-K的余弦值为-[9.9、解:(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8, 9, 10, 11的概率分别为0.2, 0.4, 0.2, 0.2,从而:P(X=16)=0.2 X 0.2=0.04 P(X=17)=2 X 0.2 X 0.4=0.16 P(X=18)=2 X 0.2 X 0.2+0.4 X Q.4=0.24 P(X=19)=2 X 0.2 X 0.2+2 X 0.4 X;.2=X=40)=2 X 0.2 X 0.4+0.2 X;0.2=0E2X=21)=2 X 0.2 X 0.2=0.08X 16 17 18 19 20 21 22P 0.04 0.16 0.24 0.24 0.2 0.08 0.04⑵由(1)知P(X < 18)=0.44 P(X w 19)=0.68 故n 的最小值为19.(3) 记Y表示2台机器在购买易损零件上所需的费用(单位:元). 当n=19 时,EY=19< 200X 0.68+(19 X 200+500) X 0.2+(19 X 200+2X 500) X 0.08+(19 X 200+3X 500) X.0.04=4040当n=20 时,EY=2(X 200X 0.88+(20 X 200+500) X 0.08+(20 X 200+2X 500) X 0.04=4080 可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19 .20、解:(1):|AD|=|AC| , EB// AC,故/ EBD=/ ACD=Z ADC, /• |EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD| 又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4 .2 2由题设得A(-1,0), B(1,0), |AB|=2,由椭圆定义可得点E的轨迹方程为:X4+y3=1(y工°)n=(3,0, —3).cos <n,m>=—⑵当l 与x 轴不垂直时,设l 的方程为y=k(x - 1)(k £M(x i ,y i ), N(X 2,y 2). 出尸丁1)® c c c c 8k 2 4k 2-2 由x 2 y 2 d … —+—=i4 3四边形 MPNQ 的面积 S=2|MN||PQ|=121+4k 1+3.可得当I 与x 轴不垂直时,四边形 MPNQ 面积的取值范围为[12,8 .3).当I 与x 轴垂直时,其方程为 x=1, |MN|=3 , |PQ|=8,四边形 MPNQ 的面积为12 . 综上,四边形MPNQ 面积的取值范围为[12,8 3).21、解:(1)f(x)=(x -1)e x +2a(x-1)=(x -)(e x +2a).① 设a=0,则f(x)=(x 2)e x , f(x)只有一个零点.② 设a>0,则当x € (-a )时,f(x)<0 ;当x € (1,+s )时,f(x)>0 .所以f(x)在(-^ )上单调递减,在(1,+〜上单调递 增. a a 3又 f(1)= -e , f(2)=a ,取 b 满足 b<0 且 b<lng ,则 f(b)>q(b ~2)+a(b -)2=a(b 2—b)>0,故 f(x)存在两个零点. ③ 设 a<0,由 f(x)=O 得 x=1 或 x=ln( -2a).若a >-,则ln( - 2a)§1故当x € (1,+〜时,f(x)>0,因此f(x)在(1,+〜上单调递增.又当 xwi 时,f(x)<0,所以f(x)不存在两个零点.若 a<-|,贝U ln( -2a)>1,故当 x € (1,ln( -2a))时,f(x)<0;当 x € (ln( -2a),+ 〜时,f(x)>0 .因此 f(x)在(1,ln( -2a))单调递 减,在(ln(£a),+a )单调递增.又当x wi 时,f(x)<0,所以f(x)不存在两个零点. 综上,a 的取值范围为(0,+^).(2)不妨设X 1<x 2,由(1)知x € ( - a )1 x 2 € (1,+a ), 2 -x ? € (-呵),f(x)在(- a )上单调递减,所以 x 什X 2<2等价于f(x 1)>f(2 %),即 f(2 伙2)<0.由于 f(2 -2)=-ee 2-2+a(x 2-)2,而 f(x 2)=(x 2 72)e x2+a(x 2 -1)2=0,所以 f(2 -2)=-2e 2-2-X 2 ^e^.设 g(x)= ^xe 2- -x-2)e x ,则 g'(x)=(x -)(e 2^.所以当 x>1 时,g'(x)<0,而 g(1)=0,故当 x>1 时,g(x)<0.从而 g(X 2)=f (2 -Q )<0,故 x 1+x 2<2.22、解:(1)设E 是AB 的中点,连结 OE , 因为 OA=OB, / AOB=120,所以 OE 丄 AB , / AOE=60 .1在Rt A AOE 中,OE^AO,即O 到直线AB 的距离等于圆 O 的半径,所以直线⑵因为OA=2OD,所以O 不是A , B , C , D 四点所在圆的圆心,设 O'是A , B , C, D 四点所在圆的圆心,作直线 OO'.由已知得O 在线段AB 的垂直平分线上,又 O'在线段AB 的垂直平分线上,所以 OO'丄AB .同理可证,OO'丄CD.所以AB // CD.x=acosto o o00 o23、解:⑴ y =1+asint (t 为参数),二 x 2+(y-1)2=a 2® • C 1 为以(0,1)为圆心,a 为半径的圆,方程为 x 2+y 2 42y+1 -a 2=0. ••• x 2+y 2 + p 2, y= p sin , • p 2- 2 p sin 9a 2=10-P 为 G 的极坐标方程.⑵C 2: p =4cos,(两边同乘 p 得 p =4 p cos, 0•- p =x 2+y 2, p cos 0 亍x • x 2+y 2=4x ,即(x~2)2+y 2=4②C 3:化为普通方程为 y=2x .由题意:G 和C 2的公共方程所在直线即为Q,8k 2 4k 2 -2 __ 12(k 2+1) 得(4k 2+3)x 2 -8k 2x+4k 2 -2=0. /• x 什血*2+3,X i x 2= 4R 2+3 • |MN|= 1+k 2|x1 -<2|= 4^^+^ • 过点B(1,0)且与I 垂直的直线 m : y= -k (x -1), A 到m 的距离为,所以|PQ|=2 % j AB 与O O 相切. 2-;+1.故EBx>5或 x<3, /• x < -. 1 13-1<x<2, |3x -2|>1,解得 x>1 或 x<3.••• -1<x<3或 1<x<2.3 3当 x 亏 |4 -x|>1,解得 x>5 或 x<3, •x<3或 x>5.1 综上,x<3或 1<x<3 或 x>5.1•|f(x)|>1,解集为(-«3)0(1,3)u (5,+m ).①-② 得:4x42y+1 -a 2=0,即为 C 3. /• 1 -a 2=0, /• a=1. 24、解:⑴如图: 3⑵f(x)= 3x -2( -1<x<2)又•- |f(x)|>134 —x 多 x < -,|x —|>13。
2016年高考全国Ⅰ卷理科数学试题(含答案解析)

绝密★启用前2016年普通高等学校招生全国统一考试理科数学适用地区:福建、广东、安徽、湖北、湖南、江西、山西、河南、河北 注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2430A x x x =-+<,{}230x x ->,则AB =(A )33,2⎛⎫-- ⎪⎝⎭(B )33,2⎛⎫- ⎪⎝⎭(C )31,2⎛⎫⎪⎝⎭(D )3,32⎛⎫ ⎪⎝⎭2.设 (1 + i)x = 1 + y i ,其中y x ,是实数,则|x + y i| = (A )1(B )2(C )3(D )23.已知等差数列{a n }前9项的和为27,a 10 = 8,则a 100 = (A )100(B )99(C )98(D )974.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车, 且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )13 (B )12 (C )23 (D )345.已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值 范围是(A )()1,3-(B )(-(C )()0,3(D )(6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条 相互垂直的半径.若该几何体的体积是283π,则它的表面积是 (A )17π(B )18π (C )20π(D )28π7.函数22xy x e =-在[]2,2-的图像大致为8.若101a b c >><<,,则 (A )c c a b <(B )c c ab ba < (C )a log b c < b log a c(D )log log a b c c <9.执行右面的程序框图,如果输入的011x y n ===,,,则输出x , y 的值满足 (A )2y x = (B )3y x = (C )4y x =(D )5y x =是 否ny y n x x =-+=,213622≥+y x输入n y x ,,输出y x ,开始 结束1+=n n10.以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=DE|=则C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )811.平面α过正方体ABCD −A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, α ∩平面ABCD = m , α ∩平面AB B 1A 1 = n ,则m 、n 所成角的正弦值为(A )2(B )2(C )3(D )1312. 已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π= 为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5第Ⅱ卷本卷包括必考题和选考题两部分。
2016年高考理科数学(全国新课标卷1)(含解析)

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y +=( )A .1 BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13 B .12 C .23D .345.已知方程222213xym nm n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(1,3)-B.(1-C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D 8. 若0a b >>,01c <<,则( )A .cca b <B .ccab ba > C .alog log b a c b c <D .log log a b c c<9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知||AB =||DE =C 的焦点到准线的距离为( )A .2B .4C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A B CD .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = . 14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求C ;(Ⅱ)若c =ABC △,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)在图中画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.ABCDEF2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】{}{}2A x x 4x 30x 1x 3=-+<=<<,{}3B x 2x 30x x 2⎧⎫=->=>⎨⎬⎩⎭,故3B x 2⎧=⎨⎩【提示】解不等式求出集合【考点】交集及其运算【解析】(1i)x 1yi +=+,x xi 1yi ∴+=+,即x 1x y =⎧⎨=,解得x 1y 1=⎧⎨=,即x y i 1i 2+=+=【解析】等差数列,又10a 8=,【提示】根据已知可得【考点】等差数列的性质】双,方【解析】f (x)y =时,y 8=-x4x e 0-=【解析】a b 1>>线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质11.【答案】A【解析】如图,α∥平面CB α平面ABCD α平面ABA,11CB D △60,则m 32.【提示】画出图形,判断出m 【考点】异面直线及其所成的角【解析】πx 4=-为1πT 2=,即12ππ(n N 2=∈ω为正奇数,f (x)在5π36⎛⎫⎪⎝⎭上单调,πππ361812-=时,11π4-+π2ϕ≤,9π4-+ϕ,π2ϕ≤,ω【答案】2-222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,n123n (q++++-…6264==.【提示】设A ,B 两种产品分别是标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用三、解答题17.【答案】(Ⅰ)在ABC △已知等式利用正弦定理化简得12ab2,(a ∴的周长为5+(Ⅰ)A BEF 为正方形,AFD 90∠=,A F DF ∴⊥,DF EF F =,AF ∴⊥平面EFDCAF ⊂平面∴平面A BEF (Ⅱ)由A BE EF ⊥BE ∴⊥平面可得DFE 60∠.A B EF ∥EFDC AB ∴∥平面平面EFDC 平面ABCD ,EB (0,2a,0)∴=,a BC ,⎛= ,AB (2a,0,0)=-设平面BEC 的法向量为m (x ,=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则m (3,0,=设平面ABC 的法向量为n (x ,y ,z =n BC=0n AB 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=的大小为θ,m n |m ||n |31316==++【提示】(Ⅰ)证明AF ⊥平面EFDC 平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,4040=1EX EX <解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购222222143m 41m1m||MN |12242423m 41m3m 4+++===+++时,S 取得最小值12,又10>,可得3S 24833<=【提示】(Ⅰ)求得圆A EB ED =,再由圆的定义和椭圆的定义,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my =+0)1x ,2x 1x 121(x 2)e (x 1)-=-2[(x 2)g (x)-+'=∴当x 1<时,e 1,OA OB =120,OK ∴30,1OK OAsin30OA 2=直线AB 与O 相切;D 四点所在圆的圆心,设四点所在圆的圆心,OA OB =的中垂线,∴AB 中点,连结30,1OK OAsin30OA 2=曲线如图:(Ⅱ)由f (x)1>,可得,当3当x ≥时,4x 1->,解得x 5>或x 3<,即有x 3≤<或x 5>.(1,3)(5,)⎫+∞⎪⎭(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年普通高等学校招生全国统一考试理科数学(I 卷)本试题卷共5页,24题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合}034{2<+-=x x x A ,}032{>-=x x B ,则AB =(A ))23,3(--(B ))23,3(-(C ))23,1((D ))3,23(【解析】:{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭.故选D .(2)设yi x i +=+1)1(,其中y x ,是实数,则=+yi x(A )1(B )2(C )3(D )2【解析】:由()11i x yi +=+可知:1x xi yi +=+,故1x x y =⎧⎨=⎩,解得:11x y =⎧⎨=⎩.所以,x yi +=故选B .(3)已知等差数列}{n a 前9项的和为27,810=a ,则=100a(A )100(B )99(C )98 (D )97【解析】:由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =,而108a =,因此公差 1051105a a d -==-∴100109098a a d =+=.故选C .(4)某公司的班车在30:7,00:8,30:8发车,小明在50:7至30:8之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是 (A )31 (B )21 (C )32 (D )43 【解析】:如图所示,画出时间轴:8:208:107:507:408:308:007:30小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率10101402P +==.故选B . (5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 (A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0(【解析】:222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m = ∴13n -<<,故选A .(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的 表面积是 (A )π17(B )π18(C )π20 (D )π28【解析】:原立体图如图所示:是一个球被切掉左上角的18后的三视图表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S ⨯⨯⨯⨯πππ,故选A . (7)函数xe x y -=22在]2,2[-的图像大致为(A(B(C )(D【解析】:()22288 2.80f e =->->,排除A ;()22288 2.71f e =-<-<,排除B ;0x >时,()22xf x x e =-,()4x f x x e '=-,当10,4x ⎛⎫∈ ⎪⎝⎭时,()01404f x e '<⨯-= 因此()f x 在10,4⎛⎫⎪⎝⎭单调递减,排除C ;故选D .(8)若1>>b a ,10<<c ,则(A )ccb a <(B )cc ba ab < (C )c b c a a b log log <(D )c c b a log log <【解析】: 由于01c <<,∴函数c y x =在R 上单调递增,因此1c c a b a b >>⇔>,A 错误;由于110c -<-<,∴函数1c y x -=在()1,+∞上单调递减,∴111c c c c a b a b ba ab -->>⇔<⇔<,B 错误;要比较log b a c 和log a b c ,只需比较ln ln a c b和ln ln b c a ,只需比较ln ln c b b 和ln ln ca a ,只需lnb b 和ln a a , 构造函数()()ln 1f x x x x =>,则()'ln 110f x x =+>>,()f x 在()1,+∞上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b >>⇔>>⇔<,又由01c <<得ln 0c <, ∴ln ln log log ln ln a b c cb c a c a a b b<⇔<,C 正确; 要比较log a c 和log b c ,只需比较ln ln c a 和ln ln cb ,而函数ln y x =在()1,+∞上单调递增, 故111ln ln 0ln ln a b a b a b >>⇔>>⇔<,又由01c <<得ln 0c <,∴ln ln log log ln ln a b c c c c a b >⇔>,D 错误; 故选C .(9)执行右面的程序框图,如果输入的0=x ,1=y ,1=n ,则输出y x ,的值满足(A )x y 2=(B )x y 3=(C )x y 4=(D )x y 5=【解析】:第一次循环:220,1,136x y x y ==+=<;第二次循环:22117,2,3624x y x y ==+=<; 第三次循环:223,6,362x y x y ==+>; 输出32x =,6y =,满足4y x =;故选C . (10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2(B )4(C )6(D )8【解析】:以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0,22A x ,52p D ⎛- ⎝,点(0,22A x 在抛物线22y px =上,∴082px =……①;点52p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0,22A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =, 焦点到准线的距离为4p =.故选B .(11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB , F ny y n x x =-+=,21ny x ,,输入开始结束y x ,输出1+=n n ?3622≥+y x 是否α平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为(A )23 (B )22 (C )33 (D )31【解析】:如图所示:111∵11CB D α∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D =∴111B D m ∥,故11B D m ∥,同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B ∠的大小. 而1111BC BD CD ==(均为面对交线),因此113CD B π∠=,即11sin CD B ∠=. 故选A .(12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为(A )11(B )9(C )7(D )5【解析】:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫ ⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减。
故选B .二、填空题:本大题共3小题,每小题5分。
(13)设向量a )1,(m =,b )2,1(=,且|a +b ||2=a ||2+b 2|,则=m .【解析】:由已知得:()1,3a b m +=+,∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.(14)5)2(x x +的展开式中,3x 的系数是 .(用数字填写答案)【解析】:设展开式的第1k +项为1k T +,{}0,1,2,3,4,5k ∈,∴()5552155C 2C 2k kkkk kk T x x x---+==.当532k -=时,4k =,即454543255C 210T x x --==,故答案为10. (15)设等比数列}{n a 满足1031=+a a ,542=+a a ,则12n a a a 的最大值为 .【解析】:由于{}n a 是等比数列,设11n n a a q -=,其中1a 是首项,q 是公比.∴2131132411101055a a a a q a a a q a q ⎧+=+=⎧⎪⇔⎨⎨+=+=⎪⎩⎩,解得:1812a q =⎧⎪⎨=⎪⎩.故412n n a -⎛⎫= ⎪⎝⎭,∴()()()32...4121...2n n a a a -+-++-⎛⎫⋅⋅⋅= ⎪⎝⎭ ()211749722241122n n n ⎡⎤⎛⎫---⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,当3n =或4时,21749224n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦取到最小值6-,此时2174922412n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫⎪⎝⎭取到最大值62.所以12...n a a a ⋅⋅⋅的最大值为64.(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【解析】:设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为**1.50.51500.3905360000x y x y x y x y x N y N⎧+⎪+⎪⎪+⎪⎪⎨⎪⎪⎪∈⎪∈⎪⎩≤≤≤≥≥目标函数2100900z x y =+; 作出可行域为图中的四边形,包括边界,顶点为(60,100)(0,200)(0,0)(90,0),在(60,100)处取得最大值,210060900100216000z =⨯+⨯=三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分) ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长. 【解析】:⑴ ()2cos cos cos C a B b A c+=,由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C⋅+=,∵πA B C ++=,()0πA B C ∈、、,,∴()sin sin 0A B C +=>∴2cos 1C =,1cos 2C =,∵()0πC ∈,,∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅,221722a b ab =+-⋅,()237a b ab +-= 1333sin 2S ab C =⋅,∴6ab =,∴()2187a b +-=,5a b += ∴ABC △周长为57a b c ++=(18)(本小题满分12分)如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60. (Ⅰ)证明:平面⊥ABEF 平面EFDC ;(Ⅱ)求二面角A BC E --的余弦值.【解析】:⑴ ∵ABEF 为正方形,∴AF EF ⊥,∵90AFD ∠=︒,∴AF DF ⊥,∵=DFEF F∴AF ⊥面EFDC ,AF ⊂面ABEF ,∴平面ABEF ⊥平面EFDC⑵ 由⑴知60DFE CEF ∠=∠=︒,∵AB EF ∥,AB ⊄平面EFDC ,EF ⊂平面EFDC ∴AB ∥平面ABCD ,AB ⊂平面ABCD ∵面ABCD 面EFDC CD = ∴AB CD ∥,∴CD EF ∥ ∴四边形EFDC 为等腰梯形以E 为原点,如图建立坐标系,设FD a =,()()000020E B a ,,,,()302202a C A a a ⎛⎫⎪ ⎪⎝⎭,,,,, ()020EB a =,,,322a BC a ⎛⎫=- ⎪ ⎪⎝⎭,,,()200AB a =-,,,设面BEC 法向量为()m x y z =,,,00m EB m BC ⎧⋅=⎪⎨⋅=⎪⎩,即1111203202a y a x ay z ⋅=⎧⎪⎨⋅-⋅=⎪⎩,111301x y z ===-,,()301m =-,,设面ABC 法向量为()222n x y z =,,,=00n BC n AB ⎧⋅⎪⎨⋅=⎪⎩.即2222320220a x ay ax ⎧-=⎪⎨⎪=⎩ 222034x y z ===,,()034n =,,设二面角E BC A --的大小为θ. 219cos 31316m n m n⋅===+⋅+⋅θ,∴二面角E BC A --的余弦值为219ABCDE F(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X 的分布列;(Ⅱ)若要求5.0)(≥≤n X P ,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在19=n 与20=n 之中选其一,应选用哪个? 【解析】:⑴ 每台机器更换的易损零件数为8,9,10,11记事件i A 为第一台机器3年内换掉7i +个零件()1,2,3,4i = 记事件i B 为第二台机器3年内换掉7i +个零件()1,2,3,4i =由题知()()()()()()1341340.2P A P A P A P B P B P B ======,()()220.4P A P B ==设2台机器共需更换的易损零件数的随机变量为X ,则X 的可能的取值为16,17,18,19,20,21,22()()()11160.20.20.04P X P A P B ===⨯=()()()()()1221170.20.40.40.20.16P X P A P B P A P B ==+=⨯+⨯=()()()()()()()132231180.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=⨯+⨯+⨯= ()()()()()()()()()14233241190.20.20.20.20.40.2P X P A P B P A P B P A P B P A P B ==+++=⨯+⨯+⨯0.20.40.24+⨯=()()()()()()()243342200.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=⨯+⨯+⨯= ()()()()()3443210.20.20.20.20.08P x P A P B P A P B ==+=⨯+⨯=()()()44220.20.20.04P x P A P B ===⨯=||MMN y y=-⑵要令()0.5P x n≤≥,0.040.160.240.5++<,0.040.160.240.240.5+++≥则n的最小值为19;⑶购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当19n=时,费用的期望为192005000.210000.0815000.044040⨯+⨯+⨯+⨯=当20n=时,费用的期望为202005000.0810000.044080⨯+⨯+⨯=所以应选用19n=(20)(本小题满分12分)设圆015222=-++xyx的圆心为A,直线l过点)0,1(B且与x轴不重合,l交圆A于DC,两点,过B作AC的平行线交AD于点E.(Ⅰ)证明EBEA+为定值,并写出点E的轨迹方程;(Ⅱ)设点E点,求四边形MPNQ【解析】:⑴圆A整理为(xBE AC∥,则C∠EBD D∴=∠∠,则⑵221:143x yC+=;设l联立1l C与椭圆:221143x myx y=+⎧⎪⎨+=⎪⎩(23m圆心A到PQ距离d=所以||PQ==,()2212111||||2234MPNQmS MN PQm+⎡∴=⋅=⋅==⎣+(21)(本小题满分12分)已知函数2)1()2()(-+-=xaexxf x有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x .【解析】:⑴ 由已知得:()()()()()'12112x x f x x e a x x e a =-+-=-+① 若0a =,那么()()0202x f x x e x =⇔-=⇔=,()f x 只有唯一的零点2x =,不合题意; ② 若0a >,那么20x x e a e +>>,所以当1x >时,()'0f x >,()f x 单调递增;当1x <时,()'0f x <,()f x 单调递减; 即:由于()20f a =>,()10f e =-<,则()()210f f <, 根据零点存在性定理,()f x 在()1,2上有且仅有一个零点. 而当1x <时,x e e <,210x -<-<,故()()()()()()()222212111x f x x e a x e x a x a x e x e =-+->-+-=-+--则()0f x =的两根11t +,21t =, 12t t <,因为0a >,故当1x t <或2x t >时,()()2110a x e x e -+--> 因此,当1x <且1x t <时,()0f x >又()10f e =-<,根据零点存在性定理,()f x 在(),1-∞有且只有一个零点. 此时,()f x 在R 上有且只有两个零点,满足题意.③ 若02ea -<<,则()ln 2ln 1a e -<=,当()ln 2x a <-时,()1ln 210x a -<--<,()ln 2220a x e a e a -+<+=,即()()()'120x f x x e a =-+>,()f x 单调递增; 当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=,即()()()'120x f x x e a =-+<,()f x 单调递减;当1x >时,10x ->,()ln 2220a x e a e a -+>+=,即()'0f x >,()f x 单调递增.即:()()()(){}22ln 22ln 22ln 21ln 2210f a a a a a a a -=---+--=--+<⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦故当1x ≤时,()f x 在()ln 2x a =-处取到最大值()ln 2f a -⎡⎤⎣⎦,那么()()ln 20f x f a -<⎡⎤⎣⎦≤恒成立,即()0f x =无解而当1x >时,()f x 单调递增,至多一个零点 此时()f x 在R 上至多一个零点,不合题意.④ 若2ea =-,那么()ln 21a -=当()1ln 2x a <=-时,10x -<,()ln 2220a x e a ea -+<+=,即()'0f x >,()f x 单调递增 当()1ln 2x a >=-时,10x ->,()ln 2220a x e a ea -+>+=,即()'0f x >,()f x 单调递增又()f x 在1x =处有意义,故()f x 在R 上单调递增,此时至多一个零点,不合题意.⑤ 若2ea <-,则()ln 21a ->当1x <时,10x -<,()ln 212220a x e a e a ea -+<+<+=,即()'0f x >,()f x 单调递增 当()1ln 2x a <<-时,10x ->,()ln 2220a x e a ea -+<+=,即()'0f x <,()f x 单调递减当()ln 2x a >-时,()1ln 210x a ->-->,()ln 2220a x e a ea -+>+=,即()'0f x >,()f x 单调递增 即:0e -<恒成立,即()0f x =无解当()ln 2x a >-时,()f x 单调递增,至多一个零点,此时()f x 在R 上至多一个零点,不合题意. 综上所述,当且仅当0a >时符合题意,即a 的取值范围为()0,+∞. ⑵ 由已知得:()()120f x f x ==,不难发现11x ≠,21x ≠,故可整理得:()()()()121222122211x x x e x e a x x ---==--,()()()221xx e g x x -=-,则()()12g x g x = ()()()2321'1x x g x e x -+=-,当1x <时,()'0g x <,()g x 单调递减;当1x >时,()'0g x >,()g x 单调递增.设0m >,构造代数式:()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设()2111m m h m e m -=++,0m >,则()()2222'01m m h m e m =>+,故()h m 单调递增,有()()00h m h >=.因此,对于任意的0m >,()()11g m g m +>-.由()()12g x g x =可知1x 、2x 不可能在()g x 的同一个单调区间上,不妨设12x x <,则必有121x x << 令110m x =->,则有()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦ 而121x ->,21x >,()g x 在()1,+∞上单调递增,因此:()()121222g x g x x x ->⇔-> 整理得:122x x +<.请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)选修4-1:几何证明选讲图,OAB ∆是等腰三角形,︒=∠120AOB .以O 为圆心,OA 21为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点D C ,在⊙O 上,且D C B A ,,,四点共圆,证明:CD AB //.【解析】:⑴ 设圆的半径为r ,作OK AB ⊥于K∵120OA OB AOB =∠=︒,,∴30sin302OAOK AB A OK OA r ⊥∠=︒=⋅︒==,, ∴AB 与O ⊙相切 ⑵ 方法一:假设CD 与AB 不平行,CD 与AB 交于F ,2FK FC FD =⋅①∵A B C D 、、、四点共圆,∴()()FC FD FA FB FK AK FK BK ⋅=⋅=-+ ∵AK BK =,∴()()22FC FD FK AK FK AK FK AK ⋅=-+=-② 由①②可知矛盾,∴AB CD ∥方法二:因为,,,A B C D 四点共圆,不妨设圆心为T ,因为,OA OB TA TB ==,所以,O T 为AB 的中垂线上,同理,OC OD TC TD ==,所以OT CD 为的中垂线,所以AB CD ∥.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C .(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;ABOCD(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】:⑴ cos 1sin x a t y a t=⎧⎨=+⎩ (t 均为参数),∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+= ②,3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C ∴210a -=,∴1a =(24)(本小题满分10分)选修4-5:不等式选讲 已知函数321)(--+=x x x f .(Ⅰ)在答题卡第(24)题图中画出)(x f y =的图像; (Ⅱ)求不等式1)(>x f 的解集.【解析】:⑴ 如图所示:⑵ ()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥ ,()1f x >, ①1x -≤,41x ->,解得5x >或3x <,1x -∴≤ ②312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x << ③32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >xyO11综上,13x <或13x <<或5x >()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,。