几种常见的连续型随机变量

合集下载

连续型随机变量

连续型随机变量

连续型随机变量连续型随机变量是统计学中的一个重要概念,它指的是取值可以是一段连续的数值区间的随机变量。

与离散型随机变量不同,连续型随机变量可以取无限个可能的取值,这对于处理实际问题中的测量数据非常有用。

一个典型的连续型随机变量可以是某个人的身高,身高可以是从0厘米到无穷大的任意一个数值。

这个身高的分布可以用一个概率密度函数来描述,例如正态分布。

这意味着大多数人的身高会集中在某一个区间,而在极端的身高上有较少的人。

连续型随机变量的概率密度函数有一些特殊的性质。

首先,概率密度函数必须非负且总体积为1,因为随机变量必然会取一个值。

其次,概率密度函数在某一个取值上的积分可以表示该随机变量小于或等于该值的概率。

以在一个公共汽车站等待下一辆公共汽车的时间为例。

假设公共汽车的到达时间是一个连续型随机变量。

这个随机变量可以取任意的非负数值,而且可能的取值范围是无限的。

如果我们对这个随机变量进行建模,可以使用指数分布来描述公共汽车的到达时间。

指数分布的概率密度函数非常有用,因为它可以很好地反映出公共汽车到达的随机性。

概率密度函数在某个时间点上的值表示了在这个时间点下等待公共汽车的概率。

通过计算概率密度函数在一个区间上的积分,我们可以得到在这个区间内等待公共汽车的概率。

连续型随机变量在统计学中有很多应用。

它们可以用于模拟实际问题中的随机变量,如股票价格、交通流量和天气变化等。

通过对连续型随机变量进行建模和分析,我们可以更好地理解随机现象,并做出相应的预测和决策。

总之,连续型随机变量是一种重要的概念,它可以描述取值在一段连续区间上的随机变量。

概率密度函数是描述连续型随机变量的常用工具,它可以帮助我们分析随机现象并做出相应的推断和决策。

通过数学建模和统计分析,我们可以更好地理解和应用连续型随机变量。

连续型随机变量是统计学中的一个重要概念,它指的是取值可以是一段连续的数值区间的随机变量。

与离散型随机变量不同,连续型随机变量可以取无限个可能的取值,这对于处理实际问题中的测量数据非常有用。

连续型随机变量常见的几种分布

连续型随机变量常见的几种分布

)
29
◆ 对任意区间 ( x1 , x2 ], 则有: x1 X x2 ) P ( x1 X x2 ) P ( x2 x1 ( )

(

)
30
(6) 3 原则 由标准正态分布的查表计算可以求得,
当X~N(0,1)时,
6
解: 设以7:00为起点0,以分为单位 从上午7时起, 每15分钟来 依题意, X ~ U ( 0, 30 ) 一班车,即 1 7:00,7:15, 0 x 30 f ( x ) 30 7:30 其 它 等时刻有汽 0 车到达汽站 为使候车时间X 少于 5 分钟, 乘客必须在 7:10 到 7:15 之间,或在7:25 到 7:30 之间到达车站. 故所求概率为:
2( 2) 1 2 0.9772 1 0.9544
33
例4. 从旅馆到飞机场沿 A 路走(路程短,交通拥挤)
所需时间(分钟) X ~ N (27,52 ), 沿 B 路走(路程 长,阻塞少)所需时间(分钟)Y~N (30,22 ) 若现在只有 30分钟. 问:分别选择哪一条路为好? 解: 依题意,选择所需时间超过规定时间的概率较 小的路线为好. 当只有30分钟可用时: 30 27 ) A 路: P ( X 30) 1 P ( X 30) 1 ( 5 1 (0.6) 1 0.7257 0.2743
P{10 X 15} P{25 X 30} 15 1 30 1 1 dx dx 10 30 25 30 3
7
候车时间超过10分钟,则乘客必须在7:00到7:05或 7:15到7:20之间到达车间
P (0 x 5) P (15 x 20)

2.4_几种常见的连续型随机变量的分布

2.4_几种常见的连续型随机变量的分布

F ( x)
x
1 2

e
( x )2 2 2
dt
(2) 正态分布的密度函数 f(x) 的图形的性质
1 f ( x) e 2 ( x )2 2 2
, x
正态曲线
(1) f(x) 关于 是对称的.
1 在 点 f(x) 取得最大值 . 2
2.4 几种常见的连续型随机变 量的分布
(1) 均匀分布 (2) 指数分布
(3) 正态分布(重点)
1 、均匀分布
如果随机变量 X 的概率密度为
1 , a xb f ( x) b a 其它 0,
则称 X 在区间 [a, b]上服从均匀分布. 记为 X~U[a, b].
由于 P{c x d } f ( x)dx
b
x
abBiblioteka x例1 设随机变量 X ~ U(2, 5). 现在对 X 进行三次独立观测,
试求至少有两次观测值大于 3 的概率.
解: 记 A = { X > 3 },
则 P(A) = P( X> 3) = 2/3
设 Y 表示三次独立观测中 A 出现的次数, 则 Y~ B(3, 2/3),所求概率为
P (Y ≥ 2) = P(Y = 2) + P(Y = 3)
(2)该热水器能正常使用600 h以上的概率是多少?
解 (1)P{在100 h以内需要维修} P( X 100}

100 0

100
f ( x)dx
0.002e0.002 x dx 1 e0.2 0.1813
(2) P{能无故障使用600 h以上} P( X 600}

3.2 几种常用的连续型随机变量

3.2 几种常用的连续型随机变量

0.9772 1 0.8413 0.8185
非标准正态分布的标准化 设X~N(,2),则
F (x)
x 2 F (x) 1 x e d u 2
(t ) 2
2 2
1
x
例:
设随机变量 X ~ N 2, 9 ,试求: ⑴. P 1 X 5 ;⑵. P X 2 6 ;⑶. P X 0 .
解:
⑴. P X 5 F ( 5 ) F (1) 1
( 52 3
1 1 1 3
说明:
如 果 1, , 由 ( 1 ) 1 得
这正是参数为
这说明指数分布是
的指数分布.
e x f x 0
x 0 x 0
分布的一个特例.
例 : 某厂生产的电子元件其 ( 单位:万小时),随机 该元件寿命大于
寿命 X ~ ( 2 ,1) 的取出一个元件,求
(x)
(x) 1 2
x
2
e
2
, x 1 2

x
(t )dt

x

t
2
e
2
dt.


e
x
2
dx
.
标准正态分布的图形
性质 证明

( x ) 1 ( x ).
( x )
x
2


x
1 2π 1
Γ- 函 数的定义:


0
x
1
e
x
dx , 0

2.4连续型随机变量及其概率密度1

2.4连续型随机变量及其概率密度1

c
ba
例 在PGA巡回赛中,前100名最好的高尔夫运动员 的击球距离在260米和284米之间,假设这些运动员的 击球距离在该区间上服从均匀分布。
(1)写出击球距离的概率密度函数; 解:令X表示击球距离,根据题意可知X~U(260,284)
f
(x)


1 24
,
260 x 284
0,
0
x0
P{X 1} F(1) 1 (11)e1 1 2e1
二、几个重要的连续型随机变量及其密度函数
1.均匀分布 若连续型随机变量X具有概率密度
f
(
Байду номын сангаас
x)


b
1
a
,
0,
a x b, 其他,
则称X在(a,b)上服从均匀分布. 记为X ~ U(a,b).
概率密度函数图形

0
0dx
0.5 3x2dx x3 0.5 0.125
1
0
0
A3
3x2, 0 x 1,
例题 1 设 X 概率密度 f (x) 0
, 其它.
求(3)求 F(x) .
解(3)由定义知 F(x) x f (t)dt
x
x
当 x 0 时, F(x) f (x)dx 0dx 0 ;
0.06
0.04
0.02
连续型随机变量取值落在某一 区间的概率与区间的开闭无关
-10
-5
a
5
bx
x
F( x) f (t)dt
注意
若X是连续型随机变量,{ X=a }是不可
能事件,则有P{ X a} 0. 反之不一定

[数学]-3、连续型随机变量

[数学]-3、连续型随机变量


2)如图:把平面分成五个区域, 如图:把平面分成五个区域, Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ
i) 当(x,y)∈III
1 1 F(x, y) = ∫ dv∫ du = ( xy + y arcsiny + 1− y2 −1) 0 arcsinv 2 2
y x
ii) 当(x,y)∈Ⅱ
F ( x, y) = ∫ du ∫
三、连续型随机变量
一、一维连续型随机变量
F ( x) = P( X ≤ x) = ∫
x
−∞
f (t ) dt
分布函数性质 i) 0≤ F(x)≤ 1 且 F(x)是连续函数 ; 是连续函数; ii) 当 x1≤ x2 时 , F(x1)≤ F(x2); (单调性 ) 单调性) ⅲ) F( - ∞ )=0,F(+ ∞ )=1 F(- )=0,F(+∞ 密度函数性质 1) f(x)≥ 0 3) f (x) = [F(x)]′ 2) ∫
其中 G 是由概率括号中的不等式构成的区域。 二维连续型随机变量的概率的计算问题等 价于以概率括号中的不等式构成的区域 G 为 底,联合密度函数为高的曲顶柱体体积的计 算。
例 4 设(X,Y)的联合分布函数为
F ( x, y ) = ( a − be
−e x
)( c − de
−e y
), ( x, y ) ∈ R
二维正态分布的性质: 二维正态分布的性质: 2 2 设(X,Y)~N(μ1,μ2,σ1 ,σ2 , r),则 1) X~N(μ1,σ12), Y~N(μ2,σ22) 2) X 与 Y 独立的充要条件是 r=0 3) 在 Y=y 的条件下,X 的条件分布仍为 的条件下, 正态分布
1/ 2 1

§2.3连续型随机变量及其概率密度

§2.3连续型随机变量及其概率密度

随机变量 X 的概率密度可以取为
f (x) F(x) 10,
a2 x2 , a x a, 其它.
上页 下页 返回
例3 某电子元件的寿命(单位:小时)是以
f x 1000
x2
x 100 x 100
为密度函数的连续型随机变量.求 5 个同类型的元件
在使用的前 150 小时内恰有 2 个需要更换的概率.
解:设A={ 某元件在使用的前 150 小时内需要更换}

PA
PX
150
150
f (x)d x
150
100
100 x2
d
x
检验 5 个元件的使用寿命可以看作
100150 x 100
1 3
是在做一个5重Bernoulli试验.
设B={ 5 个元件中恰有 2 个的使用寿命不超过150小时 }

P
B
连续型随机变量 X 可由其密度函数唯一确定. 还可以得出连续型随机变量 X 的分布函数一定连续.
2. 性质 由定义知道,概率密度 f (x) 具有以下性质:
f (x)
10 f ( x) 0.
20
f
( x)dx
1.
1
x
0 上页 下页 返回
10 f ( x) 0.
另外,可以证明:
20
f
( x)dx
(3)由
c
3 8

X
的概率密度为
f x
3 8
4 x
2
x2
0 x2
由 F ( x)
x
f
(x)d
x

0
其它
0,
x 0 0,
x0

概率统计中的离散型随机变量与连续型随机变量

概率统计中的离散型随机变量与连续型随机变量

概率统计中的离散型随机变量与连续型随机变量概率统计是数学的一个分支,用于研究随机现象的规律性和不确定性。

在概率统计中,随机变量是一个非常重要的概念。

随机变量可以分为离散型随机变量和连续型随机变量两种类型。

本文将介绍这两种类型的随机变量以及它们的特点和应用。

一、离散型随机变量离散型随机变量是指在一定范围内取有限个或可列个值的随机变量。

它的特点是在定义域内的每个值都有一定的概率与之对应。

离散型随机变量的概率可以通过概率分布函数来描述。

概率分布函数是一个将随机变量的取值映射到概率的函数。

离散型随机变量常见的例子有抛硬币的结果、掷骰子的点数、抽奖的中奖号码等。

这些随机变量的取值都是有限个或可列个,每个取值的概率可以通过实验或统计数据得到。

离散型随机变量的期望值和方差是衡量其分布特征的重要指标。

期望值表示随机变量的平均取值,方差表示随机变量取值的离散程度。

通过计算期望值和方差,可以更好地理解和描述离散型随机变量的分布特征。

离散型随机变量在实际应用中有着广泛的应用。

例如,在市场调研中,我们可以将消费者的购买行为看作是一个离散型随机变量,通过统计分析不同购买决策的概率分布,可以了解不同消费者的购买偏好和市场需求。

二、连续型随机变量连续型随机变量是指在一定范围内可以取任意实数值的随机变量。

与离散型随机变量不同,连续型随机变量的取值是连续的,无法一一列举出来。

连续型随机变量的概率可以通过概率密度函数来描述。

概率密度函数是一个描述随机变量概率分布的函数,它可以表示在某个取值范围内随机变量出现的概率密度。

与离散型随机变量的概率分布函数不同,连续型随机变量的概率密度函数在定义域内的每个点上的函数值并不表示该点的概率,而是表示该点附近的概率密度。

连续型随机变量常见的例子有身高、体重、温度等物理量。

这些随机变量的取值可以是任意的实数,通过概率密度函数可以描述它们的概率分布情况。

与离散型随机变量类似,连续型随机变量也有期望值和方差这两个重要指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档