北师大版八年级上册 第五章二元一次方程组检测题(解析版)

合集下载

2022学年北师大版八年级数学上册第五章《二元一次方程组》试题卷附答案解析

2022学年北师大版八年级数学上册第五章《二元一次方程组》试题卷附答案解析

2022学年八年级数学上册第五章《二元一次方程组》试题卷(满120分)一.选择题(共8小题,满分32分)1.若方程(a﹣6)x|a|﹣5+5y=1是关于x,y的二元一次方程,则a的值为()A.±6B.﹣6C.±5D.52.二元一次方程组的解是()A.B.C.D.3.已知方程组,那么x与y的关系是()A.4x+2y=5B.2x﹣2y=5C.x+y=1D.5x+7y=54.在等式y=kx+b中,当x=2时,y=1;当x=﹣3时,y=11.那么这个等式为()A.y=2x﹣5B.y=2x+5C.y=﹣2x+5D.y=﹣2x﹣55.若是方程3x+y=1的一个解,则9a+3b+4的值为()A.1B.3C.7D.46.已知实数x,y满足方程组,则2x+y的值为()A.﹣1B.0C.4D.57.已知关于x,y的一元一次方程组的解为,则关于x,y的方程组()A.B.C.D.8.正比例函数y=2kx的图象如图所示,则关于函数y=(k﹣2)x+1﹣k的说法:①y随x的增大而增大;②图象与y轴的交点在x轴上方;③图象不经过第三象限;④要使方程组有解,则k≠﹣2;正确的是()A.①②B.①②③C.②③D.②③④二.填空题(共8小题,满分40分)9.已知二元一次方程3x﹣2y+1=0,用含x的代数式表示y,则y=.10.已知是二元一次方程ax﹣by=1的一组解,则6a﹣4b+2022=.11.已知关于x ,y 的方程(m +2)x +(m +1)y =3m +a ,不论m 是怎样的常数,总有一组解为(其中a ,b 是常数),则a 的值为.12.满足方程组的x ,y 的值同时满足x +y =2,则m 的值等于.13.若关于x 、y 的方程组(其中a 、b 、m 为常数)的解为,则方程组的解为.14.1瓶水倒满7个大杯和6个小杯后,还余30克的水;或倒满9个大杯和4个小杯后,还余10克的水,这瓶水可以倒满个大杯和个小杯后,没有剩余.15.为了表彰优秀学生,学校购买了一些钢笔和笔记本作为奖品.已知购买3支钢笔和2本笔记本共需91元,购买5支钢笔和3本笔记本共需149元,则购买1支钢笔和1本笔记本共需元.16.对于实数x ,y ,规定新运算:x *y =ax +by ﹣1,其中a ,b 是常数.若1*2=4,(﹣2)*3=10,则a *b =.三.解答题(共6小题,满分48分)17.解下列方程组.(1);(2).18.已知关于x ,y 的二元一次方程组.(1)若该方程组的解互为相反数,求m 的值,并求出方程组的解.(2)若该方程组的解满足,求出满足条件的m 的所有正整数值.19.阅读材料:善于思考的小军在解方程组时,采用了一种“整体代入”的解法如下:解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③;把方程①代入③,得:2×3+y =5,所以y =﹣1;把y =﹣1代入①得,x =4,所以方程组的解为;请你模仿小军的“整体代入”法解方程组.20.某农业科学研究院对A、B两种玉米进行实验种植,已知去年两种玉米分别种植10亩,B种玉米的平均亩产量比A种玉米的平均亩产量高100kg,且在两种玉米的市场销售价格均为2.4元/kg的情况下,全部售出这两种玉米后总收入为21600元.(1)求A,B两种玉米去年的平均亩产量;(2)在保持种植面积不变的情况下,预计今年A,B两种玉米的平均亩产量将比去年平均亩产量分别增加a%和2a%,且总产量将比去年总产量增加280千克,求a的值.21.2020年以来,新冠肺炎疫情肆虐全球,感染人数不断攀升,口罩瞬间成为需求最为迫切的防疫物资.为了缓解供需矛盾,在中央的号召下,许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A 型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?22.如图,直线l1的表达式为y=2x+4,直线l1分别与x轴,y轴交于点A、B,直线l2的表达式为y=ax+b,直线l2与直线l1交于点C,且与x轴交于点D(4,0),已知二元一次方程组的解为(1)求直线l2的表达式;(2)点P为x轴上一点,过点P作x轴的垂线l,分别交直线AB,CD于点E,F,若EF=2EP,求点P的坐标.参考答案一.选择题(共8小题,满分32分)1.解:∵(a﹣6)x﹣y|a|﹣5=1是关于x,y的二元一次方程,∴,解得a=﹣6.故选:B.2.解:,把①代入②,得:3x=1+2(2﹣x)解得x=1,把x=1代入①,得y=1,故原方程组的解为,故选:C.3.解:,①+②×2得:5x+5y=5,整理得:x+y=1.故选:C.4.解:把x=2,y=1与x=﹣3,y=11代入y=kx+b得:,①﹣②得:5k=﹣10,解得:k=﹣2,把k=﹣2代入①得:﹣4+b=1,解得:b=5,则这个等式为y=﹣2x+5.故选:C.5.解:把代入方程3x+y=1,得3a+b=1,所以9a+3b+4=3(3a+b)+4=3×1+4=7,故选:C.6.解:上述两个二元一次方程相加,可得,2x+y=4.故选:C.7.解:由题意可知,关于x,y的方程组的解为:,∴.故选:D.8.解:∵正比例函数y=2kx的图象过第二、四象限,∴2k<0,即k<0,∴k﹣2<0,1﹣k>0,∴函数y=(k﹣2)x+1﹣k随x的增大而减小,图象与y轴的交点在x轴上方,故①错误,②正确;函数y=(k﹣2)x+1﹣k的图象过第一、二、四象限,不过第三象限,故③正确;要使方程组有解,则2k≠k﹣2,即k≠﹣2,故④正确,故选:D.二.填空题(共8小题,满分40分)9.解:方程3x﹣2y+1=0,2y=3x+1,y=.故答案为:.10.解:把代入方程ax﹣by=1得,3a﹣2b=1,∴6a﹣4b+2022=2(3a﹣2b)+2022=2+2022=2024,故答案为:2024.11.解:∵关于x,y的方程(m+2)x+(m+1)y=3m+a,不论m是怎样的常数,总有一组解为(其中a,b是常数),∴令m=﹣1,则方程为x=﹣3+a,∴2=﹣3+a,∴a=5,故答案为:5.12.解:,①﹣②,得x+2y=2③,∵x+y=2④,③﹣④,得y=0,把y=0代入④得x=2,∴m=2x+3y=4.故答案为:4.13.解:方程组可化为,∵方程组的解为,∴,①+②得,x=3,将x=3代入①得,y=5,∴方程组的解为,故答案为:.14.解:设每个大杯可装水x克,每个小杯可装水y克,依题意得:7x+6y+30=9x+4y+10,∴x=y+10,∴增加1个大杯减少1个小杯时,剩余的水减少10克,∴这瓶水可以倒满10个大杯和3个小杯后,没有剩余.15.解:设钢笔的单价为x元/支,笔记本的单价为y元/本,依题意得:,解得:,∴x+y=25+8=33,∴购买1支钢笔和1本笔记本共需33元.故答案为:33.16.解:根据题意得,解得,∴a*b==(﹣1)*3=﹣1×(﹣1)+3×3﹣1=9,故答案为:9.三.解答题(共6小题,满分48分)17.解:(1),由①得:y=2x﹣6③,把③代入②得:x+2(2x﹣6)=﹣2,解得:x=2,把x=2代入③得:y=﹣2,所以方程组的解为:;(2),①×3,②×2,得:,③+④,得13x=26,解得:x=2,把x=2代入①,得y=4,所以方程组的解为:.18.解:(1),①+②,得3x+3y=﹣3m+6,除以3得:x+y=﹣m+2,∵该方程组的解互为相反数,∴x+y=0,即﹣m+2=0,解得:m=2,∵x+2y=4,x+y=0,∴(x+2y)﹣(x+y)=4﹣0,∴y=4,∴x=﹣4,即方程组的解是;(2)由(1)知:x+y=﹣m+2,∵,∴﹣m+2>﹣,解得:m<,∴满足条件的m的所有正整数值为1和2.19.解:由3x+2y﹣2=0得3x+2y=2①.把①代入,得.∴x=1.把x=1代入①,得3+2y=2.∴y=.∴方程组的解为.20.解:(1)设A,B两种玉米去年的平均亩产量分别为xkg和ykg.根据题意,得:,解方程组得:,答:A,B两种玉米去年的平均亩产量分别为400kg和500kg.(2)根据题意,得:10×400(1+a%)+10×500(1+2a%)=10×(400+500)+280,解得:a=2,即a的值为2.21.解:(1)设该厂每天能生产A型口罩x万只或B型口罩y万只.根据题意,得,解得,答:该厂每天能生产A型口罩0.8万只或B型口罩1万只.(2)设该厂应安排生产A型口罩m天,则生产B型口罩(7﹣m)天.根据题意,得,解得≤m≤6,设获得的总利润为w万元,根据题意得:w=0.5×0.8m+0.3×1×(7﹣m)=0.1m+2.1,∵m=0.1>0,∴w随m的增大而增大.∴当m=0.6时,w取最大值,最大值=0.1×6+2.1=2.7(万元).答:当安排生产A型口罩6天、B型口罩1天,获得2.7万元的最大总利润.22.解:(1)∵二元一次方程组的解为,∴直线l1与直线l2的交点C为(1,6),∵直线l2的过点C和D(4,0),∴,解得,∴直线l2的表达式为y=﹣2x+8;(2)设P(m,0),则E(m,2m+4),F(m,﹣2m+8),∵EF=2EP,(﹣2m+8)﹣(2m+4)=2(2m+4),解得m=﹣,∴P(﹣,0).。

北师大版八年级数学上册 第五章 二元一次方程组 单元检测试题(含答案)

北师大版八年级数学上册 第五章 二元一次方程组 单元检测试题(含答案)

第五章 二元一次方程组 单元检测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列方程中是二元一次方程的是( )A.12+2y =9B.7xy −6=0C.x 2+y =18D.x +2y =32. 已知x =2,y =−1是方程2ax −y =3的一个解,则a 的值为( )A.2B.12C.1D.−13. 二元一次方程组{x +2y =10y =2x的解是( ) A.{x =4y =3B.{x =3y =6C.{x =2y =4D.{x =4y =24. 鸡兔同笼.上有35头,下有94足,问鸡兔各几只?设鸡为x 只,兔为y 只,则所列方程组正确的是( )A.{x +y =35x +2y =94B.{x +y =354x +2y =94C.{x +y =352x +4y =94D.{x +y =352x +2y =945. 在式子:2x −y =3中,把它改写成用含x 的代数式表示y ,正确的是( )A.y =2x +3B.y =2x −3C.x =3−y 2D.x =3+y 26. 下列方程组中,是二元一次方程组的是( )A. B. C. D.7. 某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元8. 方程组{7x−3y=02x−y=−1的解对于方程3x+5y=44来说()A.是这方程的唯一解B.不是这方程的一个解C.是这方程的一个解D.以上结论都不对9. 若方程组{4x+3y=5kx−(k−1)y=8的解中x的值比y的值的相反数大1,则k为()A.3 B.−3 C.2 D.−210. 如果二元一次方程组{x+y=a,x−y=4a的解是二元一次方程3x−5y−28=2的一个解,那么a的值是()A.3B.2C.7D.6二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 二元一次方程组{x+y=82x+3y=21的解是________.12. 若二元一次方程组{x+y=3,3x−5y=5的解为{x=a,y=b,则a−b=________.13. 甲种物品每个4千克,乙种物品每个7千克,现有甲种物品x个,乙种物品y个,共76千克,列出关于x,y的二元一次方程是________.14. 二元一次方程组{x +y =2x −y =−2 的解是________.15. 在一年一度的“药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x 斤,乙种药材y 斤,为了求解x 和y 的值,你认为小明应该列出的方程组是:________.16. 如图,一个正方形由四个相同的小长方形组成,如果每个小长方形的周长为25,那么正方形的面积为________.17. 34个同学到某地春游,用100元钱去买快餐,每人一份.该地的快餐有两种,3元一份和2.5元一份.如果你是生活委员,3元一份的最多能买________份.18. 已知二元一次方程组{2x −y =33x +y =2的解为{x =1y =−1,则一次函数y =2x −3与y =−3x +2的交点坐标为________.19. 某学校要新购置一批课桌椅,现有甲、乙两种规格的课桌椅可供选择.已知购买甲种课桌椅3套比购买乙种2套共多60元;购买甲种5套和乙种3套,共需1620元.求甲、乙两种规格的课桌椅每套价格分别是多少元?若设甲、乙两种规格的课桌椅每套价格分别是x 和y 元,根据题意,可列方程组为________.20. 某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙、丙三种袋装产品,其中,甲产品每袋含1千克A 原料、1千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料;丙产品每袋含有1千克A 原料、3千克B 原料.若甲产品每袋售价48元,则利润率为20%.某节庆日,该电商进行促销活动,将甲、乙、丙各一袋合装成礼品盒,每购买一个礼品盒可免费赠送一袋乙产品,这样即可实现利润率为10%,则礼盒售价为________.三、解答题(本题共计6 小题,共计60分,)21. 解方程组(1){x+y=42x−y=−1(2)用图象法解方程组:{3x+y=117x−3y=15.22. 某超市在“国庆”促销活动中,由顾客摇奖决定每件商品的折扣.一位顾客购买了两件商品,分别摇得八折和九折,共付款266元.如果不打折,这两件商品共应付款315元.求两件商品的标价分别是多少?23. 某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.24. 两批货物,第一批360吨,用5辆大卡车和12辆小货车正好装完;第二批500吨,用7辆大卡车和16辆小货车正好装完.每辆大卡车和每辆小货车各装货物多少吨?25. 某工厂每天生产甲种零件120个,或乙种零件100个,或丙种零件200个.甲、乙、丙三种零件分别取3个、2个、1个才能配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?26. 下列方程:①2x+5y=7;②x=2y+1;③x2+y=1;④2(x+y)−(x−y)=8;⑤x2−x−1=0;⑥x−y3=x+y2−1;(1)请找出上面方程中,属于二元一次方程的是:________(只需填写序号);(2)请选择一个二元一次方程,求出它的正整数解;(3)任意选择两个二元一次方程组成二元一次方程组,并求出这个方程组的解.参考答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】D【解答】解:A 、是一元一次方程,故本选项错误;B 、是二元二次方程,故本选项错误;C 、是二元二次方程,故本选项错误;D 、是二元一次方程,故本选项正确.故选D .2.【答案】B【解答】解:把{x =2y =−1代入方程2ax −y =3,得 4a +1=3,解得a =12.故选B .3.【答案】C【解答】将y =2x 代入x +2y =10中,得x +4x =10,即5x =10,∴ x =2.∴ y =2x =4.∴ 二元一次方程组{x +2y =10y =2x的解为{x =2y =4 . 4.【答案】C【解答】解:∴ 鸡有2只脚,兔有4只脚,∴ 可列方程组为:{x+y=352x+4y=94,故选C.5.【答案】B【解答】解:方程2x−y=3,解得:y=2x−3,故选B6.【答案】A【解答】A、符合二元一次方程组的定义,符合题意;B、有三个未知数,不符合二元一次方程组的定义,不符合题意;C、属于分式,不符合题意;D、第二个方程中的xy属于二次的,不符合题意;故选:A.7.【答案】B【解答】设该商品的进价为x元,标价为y元,由题意得{500x=20%0.8y−x=500,解得:x=2500,y=3750.则3750×0.9−2500=875(元).8.【答案】C【解答】解:{7x−3y=0①2x−y=−1②,①-②×3得:x=3,把x=3代入①得:21−3y=0,∴ y=7,∴ 方程组的解是{x =3y =7, 代入方程3x +5y =44得:左边=44,右边=44,∴ 是方程的解,∴ 二元一次方程有无数解,∴ 是方程的一个解.故选C .9.【答案】A【解答】解:由题意,解得x =5k+197k−4,y =5k−327k−4,∴ x 的值比y 的值的相反数大1,∴ x +y =1,即5k+197k−4+5k−327k−4=1解得k =3,故选A .10.【答案】B【解答】解:{x +y =a①,x −y =4a②①+②得:2x =5a ,即x =2.5a ,①-②得:2y =−3a ,即y =−1.5a ,代入方程3x −5y −28=2中得:7.5a +7.5a =30,解得:a =2,故选B .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11. 【答案】{x =3y =5【解答】{x +y =82x +3y =21,①×3,得:3x +3y =24 ③,③-②,得:x =3,将x =3代入①,得:3+y =8,解得y =5,所以方程组的解为{x =3y =5, 12.【答案】2【解答】解:将解代入方程组,得{a +b =3,①3a −5b =5,②①+②,得4a −4b =8,∴ a −b =2.故答案为:2.13.【答案】4x +7y =76【解答】解:甲种物品x 个重4x 千克,乙种物品y 个重7y 千克, 根据总重量为76千克可列方程4x +7y =76.故答案为4x +7y =76.14.【答案】{x =0y =2【解答】{x +y =2x −y =−2, ①+②得:2x =0,解得:x =0,①-②得:2y =4,解得:y =2,则方程组的解为{x =0y =2. 15.【答案】{x =y +220x +60y =280【解答】设买了甲种药材x 斤,乙种药材y 斤,根据题意可得:{x =y +220x +60y =280. 16.【答案】100【解答】解:设长方形的长为x ,宽为y ,由题意得,{2(x +y)=254y =x, 解得:{x =10y =2.5, 故正方形的边长为10,面积为100.故答案为:100.17.【答案】30【解答】解:设3元一份的最多能买x 份,2.5元一份的为y 份.则依题意可得方程式组:{x +y =343x +2.5y =100, 解得x =30,y =4.故答案为:3元一份的最多能买30份.18.【答案】(1, −1)【解答】解:∴ 二元一次方程组{2x −y =33x +y =2的解为{x =1y =−1, ∴ 直线yy =2x −3与y =−3x +2的交点坐标为(1, −1), 故答案为(1, −1).19.【答案】{3x =2y +605x +3y =1620【解答】设甲、乙两种规格的课桌椅每套价格分别是x 和y 元,根据题意可得:{3x =2y +605x +3y =1620, 20.【答案】264元【解答】设A 原料的成本为x 元/千克,B 原料的成本为y 元/千克,根据题意得:(1+20%)(x +y)=48,解得:x +y =40,∴ 礼盒的售价为(1+10%)×6(x +y)=1.1×6×40=264元.三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 )21.【答案】解:(1){x +y =4①2x −y =−1②, 由①+②得:3x =3,解得:x =1,把x =1代入①得:y =3∴ {x +y =42x −y =−1的解为:{x =1y =3; (2){3x +y =11①7x −3y =15②由①得:y =11−3x ,由②得:y =73x −5,在同一平面直角坐标系中画出函数y =11−3x 与y =73x −5的图象,由图可知,它们的交点坐标为(3, 2),∴ 原方程组的解为:{x =3y =2. 【解答】解:(1){x +y =4①2x −y =−1②, 由①+②得:3x =3,解得:x =1,把x =1代入①得:y =3∴ {x +y =42x −y =−1的解为:{x =1y =3; (2){3x +y =11①7x −3y =15②由①得:y =11−3x , 由②得:y =73x −5, 在同一平面直角坐标系中画出函数y =11−3x 与y =73x −5的图象,由图可知,它们的交点坐标为(3, 2),∴ 原方程组的解为:{x =3y =2.22.【答案】一件的标价为175元,另一件为140元.【解答】解:设一件的标价为x 元,则另一件为y 元,根据题意可得:{x +y =3150.8x +0.9y =266, 解得:{x =175y =140.23.【答案】解:设购买A 型电脑x 台,B 型y 台,C 型z 台,(1)若购买A 型、B 型时,由题意,得{x +y =305000x +4000y =100000, 解得:{x =−20y =50,不符合题意,舍去; (2)若购买A 型、C 型,由题意,得{x +z =305000x +3000z =100000, 解得:{x =5z =25; (3)当购买C 型、B 型时,由题意,得{y +z =304000y +3000z =100000, 解得:{y =10z =20. 故共有两种购买方案:①购买A 型5台,C 型25台;②购买B 型10台,C 型20台.【解答】解:设购买A 型电脑x 台,B 型y 台,C 型z 台,(1)若购买A 型、B 型时,由题意,得{x +y =305000x +4000y =100000, 解得:{x =−20y =50,不符合题意,舍去; (2)若购买A 型、C 型,由题意,得{x +z =305000x +3000z =100000,解得:{x =5z =25; (3)当购买C 型、B 型时,由题意,得{y +z =304000y +3000z =100000, 解得:{y =10z =20. 故共有两种购买方案:①购买A 型5台,C 型25台;②购买B 型10台,C 型20台. 24.【答案】每辆大卡车装60吨,每辆小货车装5吨.【解答】解:设每辆大卡车装货x 吨,每辆小货车装货y 吨,则{5x +12y =3607x +16y =500, 解得:{x =60y =5.25.【答案】甲、乙、丙三种零件各应生产15天、12天、3天.【解答】解:设甲生产了x 天,乙生产了y 天,丙生产了z 天,由题意得:{x +y +z =30120x =200z ×3100y =200z ×2∴ x =5z ,y =4z ,代入第一个方程得:5z +4z +z =30,解得z =3,∴ x =5z =15,y =4z =12,∴ {x =15y =12z =3.26.【答案】①④⑥;(2)2x +5y =7的整数解为:{x =1y =1. (3)选①④组成方程组得:{2x +5y =72(x +y)−(x −y)=8解得:{x =−19y =9. 【解答】解:(1)方程中,属于二元一次方程的是①④⑥.(2)2x +5y =7的整数解为:{x =1y =1. (3)选①④组成方程组得:{2x +5y =72(x +y)−(x −y)=8解得:{x =−19y =9.。

八年级数学上册第五章二元一次方程组检测题新版北师大版(含答案)

八年级数学上册第五章二元一次方程组检测题新版北师大版(含答案)

八年级数学上册:第五章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.已知下列各式:①1x +y =2;②2x-3y =5;③12x +xy =2;④x+y =z -1;⑤x +12=2x -13.其中二元一次方程的个数是( A ) A .1 B .2 C .3 D .42.方程5x +2y =-9与下列方程构成方程组的解为⎩⎪⎨⎪⎧x =-2,y =12的是( D )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-83.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定4.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是( A )A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-4 5.若(x +y -5)2+|2x -3y -10|=0,则代数式xy 的值是( C ) A .6 B .-6 C .0 D .56.已知一个等腰三角形的两边长x ,y 满足方程组⎩⎪⎨⎪⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( A )A .5B .4C .3D .5或47.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( C )A.⎩⎪⎨⎪⎧3x -4y =6,3x -2y =0B.⎩⎪⎨⎪⎧3x -4y =6,3x +2y =0C.⎩⎪⎨⎪⎧3x -4y =-6,3x -2y =0D.⎩⎪⎨⎪⎧-3x +4y =6,3x +2y =0 8.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半,若该班男生人数为x ,女生人数为y ,则所列方程组正确的是( D )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 9.小明在解关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +⊗y =3,3x -⊗y =1时,得到了正确结果⎩⎪⎨⎪⎧x =⊕,y =1.后来发现“⊗”和“⊕”处被墨水污损了,请你帮他找出“⊗”和“⊕”处的值分别是( B )A .⊗=1,⊕=1B .⊗=2,⊕=1C .⊗=1,⊕=2D .⊗=2,⊕=210.(2016·黔东南州)小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表:A .64元B .65元C .66元D .67元 二、填空题(每小题3分,共24分)11.写出一个解为⎩⎪⎨⎪⎧x =1,y =2的二元一次方程组__⎩⎪⎨⎪⎧x +y =3,x -y =-1(答案不唯一)__.12.若x3m -2-2yn -1=3是二元一次方程,则m =__1__,n =__2__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.已知⎩⎪⎨⎪⎧x =-2,y =0和⎩⎪⎨⎪⎧x =1,y =3是方程x 2-ay 2-bx =0的两组解,那么a =__13__,b =__-2__.15.如果⎩⎪⎨⎪⎧x +2y =2 015,y +2z =2 016,z +2x =2 017,那么x +y +z =__2_016__.16.某工厂在规定天数内生产一批抽水机支援抗旱,如果每天生产25台,那么差50台不能完成任务;如果每天生产28台,那么可以超额40台完成任务,则这批抽水机有__800__台,规定__30__天完成任务.17.如图,在同一平面直角坐标系内分别作出一次函数y =12x +1和y =2x -2的图象,则下面的说法:①函数y =2x -2的图象与y 轴的交点是(-2,0);②方程组⎩⎪⎨⎪⎧2y -x =2,2x -y =2的解是⎩⎪⎨⎪⎧x =2,y =2;③函数y =12x +1和y =2x -2的图象交点的坐标为(-2,2);④两直线与y 轴所围成的三角形的面积为3.其中正确的有__②④__.(填序号),(第17题图)) ,(第18题图))18.(2016·重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程s(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第__120__秒.三、解答题(共66分)19.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎪⎨⎪⎧x =2,y =-1. 解:⎩⎪⎨⎪⎧x =9,y =6. 解:⎩⎪⎨⎪⎧x =1,y =1. 解:⎩⎪⎨⎪⎧x =1,y =-2,z =-1.20.(8分)直线l 与直线y =2x +1的交点的横坐标为2,与直线y =-x +2的交点的纵坐标为1,求直线l 对应的函数表达式.解:设直线l 与直线y =2x +1的交点坐标为A (x 1,y 1),与直线y =-x +2的交点为B (x 2,y 2),因为x 1=2,代入y =2x +1,得y 1=5,即A 点坐标为(2,5).因为y 2=1,代入y =-x +2,得x 2=1,即B 点坐标为(1,1).设直线l 的表达式为y =kx +b ,把A ,B 两点坐标代入,得⎩⎪⎨⎪⎧2k +b =5,k +b =1,解得⎩⎪⎨⎪⎧k =4,b =-3.故直线l 对应的函数表达式为y =4x -3.21.(8分)观察下列方程组,解答问题:①⎩⎪⎨⎪⎧x -y =2,2x +y =1;②⎩⎪⎨⎪⎧x -2y =6,3x +2y =2;③⎩⎪⎨⎪⎧x -3y =12,4x +3y =3;… (1)在以上3个方程组的解中,你发现x 与y 有什么数量关系?(不必说明理由) 解:在以上3个方程组的解中,发现x +y =0.(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.解:第④个方程组为⎩⎪⎨⎪⎧x -4y =20①,5x +4y =4②,①+②,得6x =24,即x =4,把x =4代入①,得y =-4,则x +y =4-4=0.22.(9分)学校组织学生乘汽车去自然保护区野营,前13路段为平路,其余路段为坡路,已知汽车在平路上行驶的速度为60 km /h ,在坡路上行驶的速度为30 km /h .汽车从学校到自然保护区一共行驶了6.5 h ,求汽车在平路和坡路上各行驶多少时间?解:设汽车在平路上用了x 小时,在坡路上用了y 小时,由题意得⎩⎪⎨⎪⎧x +y =6.5,60x =13×(60x +30y ),解得⎩⎪⎨⎪⎧x =1.3,y =5.2.答:汽车在平路上用了1.3小时,在坡路上用了5.2小时.23.(9分)某班将举行知识竞赛活动,班长安排小明购买奖品,图①,图②是小明买回奖品时与班长的对话情境:根据上面的信息解决问题:(1)计算两种笔记本各买多少本.解:设买5元、8元的笔记本分别是x 本,y 本,依题意,得⎩⎪⎨⎪⎧x +y =40,5x +8y =300-68+13,解得⎩⎪⎨⎪⎧x =25,y =15,即买5元、8元的笔记本分别是25本,15本.(2)小明为什么不可能找回68元? 解:若小明找回68元,则⎩⎪⎨⎪⎧x +y =40,5x +8y =300-68,此方程组无整数解,故小明找回的钱不可能是68元.24.(12分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎪⎨⎪⎧b =300,30k 2+b =600,解得⎩⎪⎨⎪⎧k 2=10,b =300.所以y 2=10x+300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.(12分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发开往乙地.如图,线段OA 表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)求线段CD 对应的函数表达式; 解:y =110x -195.(2)货车从甲地出发后多长时间被轿车追上?此时离甲地的距离是多少千米?解:先求出线段OA 对应的函数表达式为y =60x ,由题意联立方程得⎩⎪⎨⎪⎧y =60x ,y =110x -195,解得⎩⎪⎨⎪⎧x =3.9,y =234,则货车从甲地出发3.9小时被轿车追上,此时离甲地234千米.(3)轿车到达乙地后,货车距乙地多少千米?解:60×(5-4.5)=30(千米).。

北师大版八年级上册 第五章二元一次方程组检测题及答案

北师大版八年级上册 第五章二元一次方程组检测题及答案

山东省青岛市信阳中学2018-2019学年度第一学期北师大版八年级上册第五章二元一次方程检测题及答案考试总分: 114 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.若是关于,的二元一次方程,则,的值是()A.,B.,C.,D.,2.四川大地震后,灾区急需帐篷,某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共顶,其中甲种帐篷每顶安置人,乙种帐篷每顶安置人,共安置人,设该企业捐助甲种帐篷顶、乙种帐篷顶,那么下面列出的方程组中正确的是()A. B.C. D.3.某种产品是由种原料千克、种原料千克混合而成,其中种原料每千克元,种原料每千克元,后来调价,种原料价格上涨,种原料价格减少,经核算产品价格可保持不变,则的值是()A. B. C. D.4.二元一次方程组的解是二元一次方程的解,则的值为()A. B. C. D.5.一个两位数的数字之和为,若把十位数字与个位数字对调,所得的两位数比原来大,则原来两位数为()A. B. C. D.6.《孙子算经》中有这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:“用绳子去量一根木材的长,绳子还余尺;将绳子对折再量木材的长,绳子比木材的长短尺,问木材的长为多少尺?”若设木材的长为尺,绳子长为尺,则根据题意列出的方程组是()A. B.C. D.7.用代入法解方程组时,将方程①代入②中,所得的方程正确的是()A. B.C. D.8.方程的正整数解有()A.一个B.二个C.三个D.四个9.某二元方程的解是(为实数),若把看作平面直角坐标系中点的横坐标,看作平面直角坐标系中点的纵坐标,下面说法正确的是()A.点一定不在第一象限B.点一定不在第二象限C.随的增大而增大D.点一定不在第三象限10.某中学生足球联赛轮(即每队平均赛场),胜一场分,平一场得分,负一场得分.在这次足球联赛中,某队踢平的场数是所负场数的倍,共得分,则该队胜的场数是()A.场B.场C.场D.场二、填空题(共 8 小题,每小题 3 分,共 24 分)11.已知二元一次方程:;;.从这三个方程中任选两个方程组成一个方程组,并求出这个方程组的解.所选方程组为________.12.已知三个方程构成的方程组,,,恰有一组非零解,,,则________.13.直线与的图象如图所示,则方程组的解是________.14.把面值为元的纸币换为角或角的硬币,则换法共有________种.15.若方程组的解适合,则的值为________.16.县城路公交车每隔一定时间发车一次,一天小明在街上匀速行走,发现背后每隔分钟开过来一辆公交车,而迎面每隔分钟有一辆公交车驶来,则公交车每隔________分钟发车一次.17.已知与互为相反数,且,则________,________.18.已知是关于,的二元一次方程,则________.三、解答题(共 6 小题,每小题 10 分,共 60 分)19.关于,的方程组若的值比的值小,求的值;若方程与方程组的解相同,求的值.20.求的所有正整数解.21.根据下列语句,设适当的未知数,列出二元一次方程:甲数比乙数的倍少;甲数的倍与乙数的倍的和是;甲数的与乙数的的差是;甲数与乙数的和的倍比乙数与甲数差的多.22.已知方程组,由于甲看错了方程中的得到方程组的解为,乙看错了方程中的得到方程组的解为.若按正确的、计算,求原方程组的解.23.面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势.我国某著名汽车制造厂开发了一款新式电动汽车,计划一年生产安装辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:名熟练工和名新工人每月可安装辆电动汽车;名熟练工和名新工人每月可安装辆电动汽车.每名熟练工和新工人每月分别可以安装多少辆电动汽车?如果工厂招聘名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?在的条件下,工厂给安装电动汽车的每名熟练工每月发元的工资,给每名新工人每月发元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额(元)尽可能的少?24.解方程组:.答案1.C2.C3.C4.B5.D6.C7.B8.C9.A10.A11.12.13.14.15.16.17.18.19.解:由已知得:,∴ ,∴ ,已知方程与方程组的解相同,所以得:三元一次方程组,解得:.20.解:由题意,得,根据题意可知,且是整数.所以,,.对应的,.故的所有正整数解是,.21.解:设乙数为,甲数为,则;设甲数为,乙数为,则;设甲数为,乙数为,则;设甲数为,乙数为,则.22.解:把代入得:,解得:,把代入得:,解得:,即方程组为:,得:,解得:,把代入得:,解得:,即原方程组的解为:.23.每名熟练工和新工人每月分别可以安装、辆电动汽车.设工厂有名熟练工.根据题意,得,,,又,都是正整数,,所以,,,.即工厂有种新工人的招聘方案.① ,,即新工人人,熟练工人;② ,,即新工人人,熟练工人;③ ,,即新工人人,熟练工人;④ ,,即新工人人,熟练工人.结合知:要使新工人的数量多于熟练工,则,;或,;或,.根据题意,得.要使工厂每月支出的工资总额(元)尽可能地少,则应最大.显然当,时,工厂每月支出的工资总额(元)尽可能地少.24.解:,将①代入②得:,解得:,将代入①得:,则方程组的解为.。

(常考题)北师大版初中数学八年级数学上册第五单元《二元一次方程组》检测(包含答案解析)

(常考题)北师大版初中数学八年级数学上册第五单元《二元一次方程组》检测(包含答案解析)

一、选择题1.如图所示,在平面直角坐标系中,直线124y x =+分别与x 轴,y 轴交于A ,B 两点,以线段OB 为一条边向右侧作矩形OCDB ,且点D 在直线2y x b =-+上,若矩形OCDB 的面积为20,直线124y x =+与直线2y x b =-+交于点P .则P 的坐标为( )A .522,33⎛⎫ ⎪⎝⎭B .1731,33⎛⎫ ⎪⎝⎭C .()2,8D .()4,12 2.如图,1l 经过点()015,.和2(2,3),l 经过原点和点(2,3),以两条直线12,l l 的交点坐标为解的方程组是( )A .346320x y x y -=-⎧⎨-=⎩B .346320x y x y -+=⎧⎨+=⎩C .346320x y x y -=⎧⎨-=⎩D .346320x y x y -=⎧⎨+=⎩3.由于今年重庆受到洪水袭击,造成南滨路水电站损害;重庆市政府决定对南滨路水电站水库进行加固.现有4辆板车和5辆卡车一次能运27吨水电站加固材料,10辆板车和3辆卡车一次能运20吨水电站加固材料,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .45271020x y x y -=⎧⎨+=⎩C .452710320x y x y -=⎧⎨-=⎩D .452710320x y x y +=⎧⎨+=⎩4.已知24510a b a b +=⎧⎨-=⎩,则+a b 等于( )A .8B .7C .6D .55.若2()(2)3x a x x x b +-=-+,则实数b 等于( )A .2-B .2C .12-D .126.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .452710320x y x y -=⎧⎨+=⎩C .452710320x y x y +=⎧⎨+=⎩D .427510203x y x y -=⎧⎨-=⎩7.下列说法正确的是( )A .二元一次方程2317x y +=的正整数解有2组B .若52x y =⎧⎨=⎩是232x y k -=的一组解,则k 的值是12 C .方程组23321y x x y =-⎧⎨+=⎩的解是11x y =⎧⎨=-⎩ D .若3m n x +与22112m x y --是同类项,则2m =,1n = 8.已知()11n a a n d +-=(n 为自然数),且25a =,514a =,则15a 的值为( ). A .23 B .29 C .44 D .539.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ). A .26y = B .816y = C .26y -= D .816y -=10.已知关于,x y 的方程组2106x y nx my +=⎧⎨+=⎩和10312mx y n x y -=⎧⎨-=⎩有公共解,则m n -的值为( )A .1B .1-C .2D .2-11.下列各方程中,是二元一次方程的是( )A .253x y x y -=+B .x+y=1C .2115x y =+ D .3x+1=2xy 12.若关于x y ,的二元一次方程组232320x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34C .43D .43-二、填空题13.已知方程组 2629x y x y +=⎧⎨+=⎩,则x-y=_________.14.如图,已知平面直角坐标系,A 、B 两点的坐标分别为A(2,−3),B(4,−1).(1)若P(p,0)是x 轴上的一个动点,则△PAB 的最小周长为___________(2)若C(a,0),D(a+3,0)是x 轴上的两个动点,则当a=___________时,四边形ABDC 的周长最短;15.若x a y b =⎧⎨=⎩是方程组2155x y x y -=⎧⎨-+=⎩的解,则a+4b =_____. 16.已知()2254270x y x y +++--=,则42x y -=________.17.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩,的解是13x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩的解是_____. 18.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3,km 平路每小时走4,km 下坡每小时走5,km 那么从甲地到乙地需48,min 从乙地到甲地需要36,min 则甲地到乙地的全程是__________________.km19.已知x 和y 满足方程组3634x y x y +=⎧⎨+=⎩,则x-y 的值为_____. 20.如图,已知点A 坐标为(6,0),直线()0y x b b =+>与y 轴交于点B ,与x 轴交于点C ,连接AB ,43AB =,则OC 的长为______.三、解答题21.解方程组:(1)362315y xx y=-⎧⎨+=⎩①②(2)25242x yx y-=⎧⎨+=⎩①②22.如图,已知点A(6,0)、点B(0,﹣2).(1)求直线AB所对应的函数表达式;(2)在x轴上找一点P,满足PA=PB,求P点的坐标.23.计算题(1)计算:1 276483-+;(2)化简:1268⨯;(3)解方程组:425x yx y-=⎧⎨+=⎩;(4)解方程组25214323x yx y-=-⎧⎨+=⎩.24.解方程组:253420x yx y-=⎧⎨+=⎩25.已知点(2,5)-+A a b a,(21,)--+B b a b.若A、B关于y轴对称,求2020(4)+a b的值.26.设一次函数11y k x b=+(1k≠)的图像为直线1l,一次函数22y k x b=+(20k≠)的图像为直线2l,若12k k=,且12b b≠,我们就称直线1l与直线2l互相平行.解答下面的问题:(1)求过点()1,4P且与已知直线21y x=--平行的直线l的函数表达式;(2)设(1)中的直线l 分别与x 轴、y 轴交于A 、B 两点,直线21y x =--分别与x 轴、y 轴交于C 、D 两点,求四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】由直线y 1=2x +4求得OB =4,根据解析式面积求得D (5,4),代入y 2=-x +b 求得解析式,然后联立解析式,解方程组即可求得.【详解】∵直线y 1=2x +4分别与x 轴,y 轴交于A ,B 两点,∴B (0,4),∴OB =4,∵矩形OCDB 的面积为20,∴OB •OC =20,∴OC =5,∴D (5,4),∵D 在直线y 2=﹣x +b 上,∴4=﹣5+b ,∴b =9,∴直线y 2=﹣x +9,解924y x y x =-+⎧⎨=+⎩,得53223x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴P (53,223), 故选:A .【点睛】 本题考查了两条直线平行或相交问题,主要考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征.2.A解析:A【分析】用待定系数法求出直线1l 、2l 的解析式,联立方程即可.【详解】解:设直线1l 的解析式为y kx b =+,∵1l 经过点(0,1.5)、(2,3),∴ 1.532b k b =⎧⎨=+⎩, 解得:341.5k b ⎧=⎪⎨⎪=⎩,∴直线1l 的解析式为3 1.54y x =+, ∵直线2l 经过原点,∴设直线2l 的解析式为y ax =,又∵直线2l 经过点(2,3),∴32a =, 解得:32a =, ∴直线2l 的解析式为32y x =, ∴以两条直线的交点坐标为解的方程组是:3 1.5432y x y x ⎧=+⎪⎪⎨⎪=⎪⎩, 即346320x y x y -=-⎧⎨-=⎩, 故选:A .【点睛】本题考查一次函数与二元一次方程组的关系,方程组的解即是两个一次函数图象的交点,利用待定系数法求出两个一次函数的解析式是解答本题的关键.3.D解析:D【分析】以每次运送加固材料为等量关系,列方程组即可.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4527x y +=;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10320x y +=.可列方程组为452710320x y x y +=⎧⎨+=⎩. 故选D .【点睛】本题考查了二元一次方程组的应用,解题关键是找准题目数量关系,找到等量关系列方程组.4.D解析:D【分析】解二元一次方程组再进行计算即可;【详解】24510a b a b +=⎧⎨-=⎩, 10a b -=两边同时乘以2得:2220a b -=,245a b +=减去2220a b -=得:615b =-, 解得:52b =-, 代入10a b -=得:152a =, ∴155522a b +=-=; 故答案选D .【点睛】本题主要考查了二元一次方程组的求解,结合代数式求值是解题的关键.5.B解析:B【分析】等式左边去括号后两边经过比对可以得解 .【详解】解:原等式可变为:()22223x a x a x x b +--=-+,∴可得:232a b a -=-⎧⎨=-⎩, 解之得:a=-1,b=2,故选B .【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.6.C解析:C【分析】根据等量关系式“①4辆板车运货量+5辆卡车运货量=27吨;②10辆板车运货量+3辆卡车运货量=20吨”根据相等关系就可设未知数列出方程.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4x+5y=27;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10x+3y=20.可列方程组为452710320x y x y +⎧⎨+⎩==. 故选:C .【点睛】由关键性词语“4辆板车和5辆卡车一次能运27吨货”,“10辆板车和3车卡车一次能运货20吨”,找到等量关系是解决本题的关键.7.C解析:C【分析】求出方程的特殊解即可判断A ;代入得到关于k 的方程,求出即可;代入求出x ,把x 的值代入求出y 即可;根据同类项的定义求出即可.【详解】A 、1732y x -=,当y=1时,x=7,当y=3时,x=4,当y=5时,x=1,正整数解有3个,故本选项错误;B 、把x=5,y=2代入方程得:10-6=2k ,∴k=2,故本选项错误;C 、利用代入法解方程组得得:x=1,y=-1,故本选项正确;D 、根据同类项的定义得到m+n=2,2m-1=0,解得:12m =,32n =,故本选项错误. 故选:C .【点睛】本题主要考查了同类项的概念,二元一次方程以及解二元一次方程组等知识点的理解和掌握,能熟练地运用性质进行计算是解此题的关键. 8.C解析:C【分析】分别令n=2与n=5表示出a 2,a 5,代入已知等式求出a 1与d 的值,即可确定出a 15的值.【详解】令n=2,得到a 2=a 1+d=5①;令n=5,得到a 5=a 1+4d=14②,②-①得:3d=9,即d=3,把d=3代入①得:a1=2,则a15=a1+14d=2+42=44.故选:C.【点睛】本题考查了代数式的求值以及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.D解析:D【分析】方程组两方程相减消去x即可得到结果.【详解】解:2311? 255?x yx y-=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16,故选D.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.A解析:A【分析】联立不含m与n的两个方程组成方程组,求出x与y的值,进而求出m与n的值,代入m-n,计算即可.【详解】解:联立得:210312x yx y+=⎧⎨-=⎩①②,①×3+②得:7x=42,解得:x=6,把x=6代入②得:y=-2,把62xy=⎧⎨=-⎩代入得:6266210n mm n-=⎧⎨+=⎩,解得:m=3,n=2,则m-n=3-2=1.故选A.【点睛】本题考查了二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.利用两个方程组有公共解得出x,y的值是解题关键.11.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A 、分母中含有未知数,是分式方程,故本选项错误;B 、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C 、D 、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误. 故选B .12.B解析:B【分析】首先解关于x 的方程组,求得x ,y 的值,然后代入方程2x +3y =6,即可得到一个关于k 的方程,从而求解.【详解】解232320x y k x y k +=⎧⎨-=⎩得72x k y k =⎧⎨=-⎩, 由题意知2×7k +3×(−2k )=6,解得k =34. 故选:B【点睛】此题考查了解二元一次方程组,二元一次方程组的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系. 二、填空题13.【分析】用和作差即可解答【详解】解:∵∴②-①得x-y=3故答案为3【点睛】本题考查了方程组的应用掌握整体思想是解答本题的关键 解析:【分析】用29x y +=和26x y +=作差即可解答.【详解】解:∵2629x y x y +=⎧⎨+=⎩①②∴②-①得x-y=3.故答案为3.【点睛】本题考查了方程组的应用,掌握整体思想是解答本题的关键.14.【分析】(1)根据题意设出并找到B (4-1)关于x 轴的对称点是B 其坐标为(41)算出AB′+AB 进而可得答案;(2)过A 点作AE ⊥x 轴于点E 且延长AE 取AE=AE 做点F (1-1)连接AF 利用两点间的 解析:2522+ 54 【分析】(1)根据题意,设出并找到B (4,-1)关于x 轴的对称点是B',其坐标为(4,1),算出AB′+AB 进而可得答案;(2)过A 点作AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .做点F (1,-1),连接A'F .利用两点间的线段最短,可知四边形ABDC 的周长最短等于A'F+CD+AB ,从而确定C 点的坐标值.【详解】解:(1)设点B (4,-1)关于x 轴的对称点是B',可得坐标为(4,1),连接AB′, 则此时△PAB 的周长最小,∵AB′=()()222431=25-+--,AB=()()222431=22-+-+,∴△PAB 的周长为2522+,故答案为:2522+;(2)过A 点作AE ⊥x 轴于点E ,且延长AE ,取A'E=AE .作点F (1,-1),连接A'F .那么A'(2,3).设直线A'F 的解析式为y=kx+b ,则132k b k b -=+⎧⎨=+⎩,解得:45k b =⎧⎨=-⎩, ∴直线A'F 的解析式为y=4x-5,∵C 点的坐标为(a ,0),且在直线A'F 上,∴a=54, 故答案为:54.【点睛】本题考查最短路径问题,同时考查了根据两点坐标求直线解析式,运用解析式求直线与坐标轴的交点等知识.15.6【分析】方程组两方程相加求出x+4y的值将x与y的值代入即可求出值【详解】解:①+②得:x+4y=6把代入方程得:a+4b=6故答案为6【点睛】此题考查了二元一次方程组的解熟练掌握运算法则是解本题解析:6【分析】方程组两方程相加求出x+4y的值,将x与y的值代入即可求出值.【详解】解:2155x yx y-=⎧⎨-+=⎩①②,①+②得:x+4y=6,把x ay b=⎧⎨=⎩代入方程得:a+4b=6,故答案为6【点睛】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.16.4【分析】由非负数平方和为0每数必为0的规律可以算出x和y的值然后代入4x-2y即可得到答案【详解】解:由题意得:解之得:所以故答案为4【点睛】本题考查非负数平方与二元一次方程组的综合应用熟练掌握非解析:4【分析】由非负数平方和为0,每数必为0的规律可以算出x和y的值,然后代入4x-2y即可得到答案.【详解】解:由题意得:2540270x yx y++=⎧⎨--=⎩,解之得:32xy=⎧⎨=-⎩4=== .故答案为4.【点睛】 本题考查非负数平方与二元一次方程组的综合应用,熟练掌握非负数平方和为0,每数必为0的规律是解题关键.17.【分析】根据已知得出关于ab 的方程组进而得出答案【详解】解:∵关于xy 的二元一次方程组的解是∴方程组中解得:故答案为:【点睛】本题主要考查二元一次方程组的解法关键是根据整体思想及方程组的解法进行求解解析:21a b =⎧⎨=-⎩ 【分析】根据已知得出关于a ,b 的方程组进而得出答案.【详解】解:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩,的解是13x y =⎧⎨=⎩, ∴方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩中13a b a b +=⎧⎨-=⎩, 解得:21a b =⎧⎨=-⎩. 故答案为:21a b =⎧⎨=-⎩. 【点睛】本题主要考查二元一次方程组的解法,关键是根据整体思想及方程组的解法进行求解. 18.7【分析】设从甲地到乙地坡路长平路长根据从甲地到乙地需从乙地到甲地需即可得出关于的二元一次方程组解之即可得出的值再将其代入中即可求出结论【详解】设从甲地到乙地坡路长平路长依题意得:解得:∴(km)故解析:7【分析】设从甲地到乙地坡路长xkm ,平路长ykm ,根据“从甲地到乙地需48,min ,从乙地到甲地需36,min ”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入()x y +中即可求出结论.【详解】设从甲地到乙地坡路长xkm ,平路长ykm ,依题意,得:483460365460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6532x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴3 1.2 1.5 2.7265x y +=+=+=(km). 故答案为:2.7.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.1【详解】-②可得2x-2y=2即可得x-y=1故答案为1解析:1【详解】3634x y x y +=⎧⎨+=⎩①②, -②可得,2x-2y=2,即可得x-y=1.故答案为120.【分析】根据勾股定理求得OB 即可求得b 的值得到直线解析式令y=0求得x 的值即可求得OC 的值【详解】解:∵点A 坐标为(60)∴OA=6∵AB=4∴OB=∴b=OB=2∴直线的解析式为y=x+2令y=0解析:【分析】根据勾股定理求得OB ,即可求得b 的值,得到直线解析式,令y=0,求得x 的值,即可求得OC 的值.【详解】解:∵点A 坐标为(6,0),∴OA=6,∵∴=∴∴直线的解析式为令y=0,则∴C (0),∴故答案为【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题21.(1)33x y =⎧⎨=⎩; (2)11535x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)362315y x x y =-⎧⎨+=⎩①②, 把①代入②,得23(36)15x x +-=,解得3x =,把3x =代入①,得963y =-=,故方程组的解为33x y =⎧⎨=⎩; (2)25242x y x y -=⎧⎨+=⎩①②, ②-①,得53y =-,解得35y =-, 把35y =-代入①,得3255x +=,解得115x =, 故方程组的解为11535x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.22.(1)y=13x﹣2;(2)点P的坐标为(83,0).【分析】(1)根据点的坐标,利用待定系数法可求出直线AB的表达式;(2)设点P的坐标为(m,0),结合点A,B的坐标可得出PA,PB的长,结合PA=PB可得出关于m的方程,解之即可得出m的值,进而可得出点P的坐标.【详解】解:(1)设直线AB所对应的函数表达式为y=kx+b,将A(6,0)、B(0,﹣2)代入,得:602k bb+=⎧⎨=-⎩,解得:132kb⎧=⎪⎨⎪=-⎩,∴一次函数的表达式为y=13x﹣2;(2)设点P的坐标为(m,0).∵点A的坐标为(6,0),点B的坐标为(0,﹣2),∴PA=|m﹣6|,PB∵PA=PB,∴(m﹣6)2=m2+22,∴m=83,∴点P的坐标为(83,0).【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及两点间的距离,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数表达式;(2)利用两点间的距离结合PA=PB,找出关于m的方程.23.(1);(2)3;(3)31xy=⎧⎨=-⎩;(4)25xy=⎧⎨=⎩.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算;(3)利用加减消元法解方程组;(4)利用加减消元法解方程组.【详解】解:(1)原式=﹣=(2=3;(3)425x yx y-=⎧⎨+=⎩①②,①+②得3x=9,解得x=3,把x=3代入①得3﹣y=4,解得y=﹣1,所以方程组的解为31 xy=⎧⎨=-⎩;(4)2521 4323x yx y-=-⎧⎨+=⎩①②,①×2﹣②得﹣10y﹣3y=﹣42﹣23,解得y=5,把y=5代入①得2x﹣25=﹣21,解得x=2,所以方程组的解为25 xy=⎧⎨=⎩.【点睛】本题考查了二次根式的化简与合并,二元一次方程组的求解,熟练掌握化简的基本技能,代入消元和加减消元的基本技巧是解题的关键.24.612 xy=⎧⎪⎨=⎪⎩【分析】利用加减消元法解答即可.【详解】解:25 3420 x yx y-=⎧⎨+=⎩①②①×2,得2x-4y=10 ③②+③得:5x=30解得,x=6把x=6代入①得:6-2y=5,解得y=1 2所以原方程组的解是612xy=⎧⎪⎨=⎪⎩.【点睛】本题考查了的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较为简便.25.1【分析】先根据A 、B 关于y 轴对称,求出a 和b 的值,然后代入2020(4)+a b 计算即可. 【详解】解:∵A 、B 关于y 轴对称,∴22105a b b a a b-+-=⎧⎨+=-+⎩, 解得13a b =-⎧⎨=⎩, ∴2020(4)+a b =2020(43)1-+=.【点睛】本题考查了关于y 轴对称的点的坐标特征,解二元一次方程组,求代数式的值,熟练掌握关于y 轴对称的点,纵坐标相同,横坐标互为相反数是解答本题的关键.26.(1)26y x =-+;(2)494. 【分析】(1)根据直线l 与直线21y x =--平行,设直线l 的解析式为2y x b =-+,再将点()1,4P 代入即可求解;(2)根据直线26y x =-+与直线21y x =--的解析式,求出点A 、B 、C 、D 的坐标,再利用ABC DCA ABCD S S S =+四边形△△即可求解.【详解】解:(1)∵直线l 与直线21y x =--平行∴设直线l 的解析式为2y x b =-+∵过点()1,4P∴421b =-⨯+解得:6b =∴直线l 的解析式为:26y x =-+(2)如图,令210y x =--=,得12x =-, 令0x =,得1y =-∴C 点的坐标为1,02⎛⎫- ⎪⎝⎭, D 点的坐标为()0,1-,令260y x =-+=,得3x =,令0x =,得6y =,∴点A 的坐标()3,0,点B 的坐标为()0,6∴AC=OA+OC=3+12=72∴ABC DCA ABCD S S S =+四边形△△1717612222=⨯⨯+⨯⨯ 494=. 【点睛】本题主要考查了用待定系数法求一次函数、一次函数的性质以及一次函数与坐标轴所构成的几何图形的面积,解题的关键是熟练掌握一次函数的性质,会将不规则图形分割呈规则几何图形.。

(北师大版)哈尔滨市八年级数学上册第五单元《二元一次方程组》检测题(含答案解析)

(北师大版)哈尔滨市八年级数学上册第五单元《二元一次方程组》检测题(含答案解析)

一、选择题1.如图所示,在平面直角坐标系中,直线124y x =+分别与x 轴,y 轴交于A ,B 两点,以线段OB 为一条边向右侧作矩形OCDB ,且点D 在直线2y x b =-+上,若矩形OCDB 的面积为20,直线124y x =+与直线2y x b =-+交于点P .则P 的坐标为( )A .522,33⎛⎫⎪⎝⎭B .1731,33⎛⎫⎪⎝⎭C .()2,8D .()4,122.如图,一次函数y kx b =+与2y x =+的图象相交于点(,4)P m ,则方程组2y x y kx b=+⎧⎪=+⎨⎪⎩的解是( )A .(2,4)B .(2,4)-C .(4,2)D .(4,2)-3.已知方程组2500x y x y m +-=⎧⎨++=⎩和方程组280x y x y m ++=⎧⎨++=⎩有相同的解,则m 的值是( )A .1B .1-C .2D .2-4.若2()(2)3x a x x x b +-=-+,则实数b 等于( ) A .2-B .2C .12-D .125.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .16.为了研究吸烟对肺癌是否有影响,某研究机构随机调查了8000人,结果显示:在吸烟者中患肺癌的比例是3%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人.在这8000人中,设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y.所列方程组正确的是()A.333%0.5%8000x yx y-=⎧⎨⨯+⨯=⎩B.80003%0.5%22x yx y+=⎧⎨⨯-⨯=⎩C.338000 3%0.5%x yx y-=⎧⎪⎨+=⎪⎩D.8000333%0.5%x yx y+=⎧⎪⎨-=⎪⎩7.已知21xy=-⎧⎨=⎩是方程25mx y+=的解,则m的值是()A.32-B.32C.2-D.28.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是()A.2018 B.2019 C.2020 D.20219.已知()11na a n d+-=(n为自然数),且25a=,514a=,则15a的值为(). A.23 B.29 C.44 D.5310.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为()A.2114322x yx y+=⎧⎨+=⎩B.2114327x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩11.若关于x,y的二元一次方程组432x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2310x y+=的解,则x y -的值为( ) A .2B .10C .2-D .412.已知:关于x 、y 的方程组2423x y a x y a +=-+⎧⎨+=-⎩,则x-y 的值为( )A .-1B .a-1C .0D .1二、填空题13.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为_______.14.已知012x y =⎧⎪⎨=-⎪⎩是方程组522x b y x a y -=⎧⎨+=⎩的解,则a b +的值为_______ . 15.若x a y b =⎧⎨=⎩是方程组2155x y x y -=⎧⎨-+=⎩的解,则a+4b =_____. 16.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶. 17.已知()2254270x y x y +++--=42x y -=________.18.一个两位数的十位数字与个位数字的和是13,把这个两位数减去27,结果恰好成为数字对调后组成的两位数,则这个两位数为__________.19.请你编制一个解为05x y =⎧⎨=⎩的二元一次方程组:_____.20.已知434m n m x y -与5n x y 是同类项,则m n +的值是_______.三、解答题21.已知一次函数1y ax b , 2y bx a (0ab ≠,且ab )(1)若1y 过点(1,2)与点(23)b a --,, 求1y 的函数解析式. (2)1y 与2y 的图像交于点(),A m n , 用含a ,b 的式子表示n . (3)设3y = 12y y -, 421y y y =-, 当34y y >时,求x 的取值范围.22.平面直角坐标系中,已知直线1l 经过原点与点(),2P m m ,直线2l :23y mx m =+-(0)m ≠; (1)求证:点(23)--,在直线2l 上; (2)当2m =时,请判断直线1l 与2l 是否相交?23.某地今年杨梅丰收,准备将已经采摘下来的11400公斤杨梅运往杭州,现有甲,乙,丙三种车型供选择,每辆车运载能力和运费如下所示(假设每辆车匀满载)车型甲乙丙汽车运载量(公斤/辆) 600 800 900 汽车运费(元/辆)500 600 7008700元,则需甲,乙两种车型各几辆;(2)为了节省运费,现打算甲、乙、丙三种车型都参与运送,已知他们的总数量为15辆,请你求出所有可行方案,并求出哪种方案运费最节省,最节省费用是多少. 24.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x 人,女生y 人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?25.若关于x 、y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩①②的解也是二元一次方程4536x y +=的解,求k 的值.26.已知:如图,正比例函数2y x =和一次函数4y ax =+的图象相交于点(),3A m ,且一次函数4y ax =+的图象与x 轴交于点B .(1)求m ,a 的值; (2)求点B 的坐标; (3)求AOB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由直线y 1=2x +4求得OB =4,根据解析式面积求得D (5,4),代入y 2=-x +b 求得解析式,然后联立解析式,解方程组即可求得. 【详解】∵直线y 1=2x +4分别与x 轴,y 轴交于A ,B 两点, ∴B (0,4), ∴OB =4,∵矩形OCDB 的面积为20, ∴OB •OC =20, ∴OC =5, ∴D (5,4),∵D 在直线y 2=﹣x +b 上, ∴4=﹣5+b , ∴b =9, ∴直线y 2=﹣x +9,解924y x y x =-+⎧⎨=+⎩,得53223x y ⎧=⎪⎪⎨⎪=⎪⎩,∴P (53,223), 故选:A . 【点睛】本题考查了两条直线平行或相交问题,主要考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征.2.A解析:A 【分析】将点P (m 、4)代入2y x =+,求出m 的值,结合图像交点P 的坐标即为二元一次方程组的解. 【详解】一次函数y kx b =+与2y x =+的交点为P (m 、4)24m ∴+= 解得2m =∴点P 的坐标为(2、4)2y x y kx b =+⎧∴⎨=+⎩的解为:24x y =⎧⎨=⎩故选:A . 【点睛】本题考查了一次函数与二元一次方程组的关系,解题关键是求出点P 坐标,结合图形求解.3.A解析:A 【分析】既然两方程组有相同的解,那么将有一组x 、y 值同时适合题中四个方程,把题中已知的两个方程组成一个方程组,解出x 、y 后,代入x+y+m=0中直接求解即可. 【详解】解:解方程组250280x y x y +-=⎧⎨++=⎩,得76x y =-⎧⎨=⎩,代入x+y+m=0得,m=1, 故选A . 【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.B解析:B 【分析】等式左边去括号后两边经过比对可以得解 . 【详解】解:原等式可变为:()22223x a x a x x b +--=-+, ∴可得:232a b a -=-⎧⎨=-⎩,解之得:a=-1,b=2, 故选B . 【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.5.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.6.C解析:C 【分析】根据吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人且该研究机构共调查了8000人,即可得出关于x ,y 的二元一次方程,此题得解. 【详解】 解:依题意得:3380003%0.5%x y xy -=⎧⎪⎨+=⎪⎩. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.A解析:A 【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得. 【详解】由题意得:2215m -+⨯=,解得32m=-,故选:A.【点睛】本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键.8.C解析:C【分析】设竖式纸盒x个,横式纸盒y个,正方形纸板a张,长方形纸板b张,由题意列出方程组可求解.【详解】解:设竖式纸盒x个,横式纸盒y个,正方形纸板a张,长方形纸板b张,根据题意得:432x y b x y a+⎧⎨+⎩==,∴5x+5y=5(x+y)=a+b∴a+b是5的倍数故选:C.【点睛】本题考查了二元一次方程组,根据题意列出正确的方程组是本题的关键.9.C解析:C【分析】分别令n=2与n=5表示出a2,a5,代入已知等式求出a1与d的值,即可确定出a15的值.【详解】令n=2,得到a2=a1+d=5①;令n=5,得到a5=a1+4d=14②,②-①得:3d=9,即d=3,把d=3代入①得:a1=2,则a15=a1+14d=2+42=44.故选:C.【点睛】本题考查了代数式的求值以及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.B解析:B【分析】类比图1所示的算筹的表示方法解答即可.【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为2114327x y x y +=⎧⎨+=⎩; 故选:B . 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D 【分析】把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值. 【详解】432x y k x y k +=⎧⎨-=⎩①②, ①-②得:5ky =, 把5k y =代入②得:115k x =, 把115k x =,5ky =代入2310x y +=,得:11231055k k ⨯+⨯= 解得:2k =, ∴225x =,25y =, ∴222455x y -=-=. 【点睛】本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.12.D解析:D 【解析】分析:由x 、y 系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y a x y a +=-+⎧⎨+=-⎩①②,①−②,得x−y=−a+4−3+a=1. 故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a 的代数式表示x 、y ,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.二、填空题13.63【分析】设左下角的小正方形边长为左上角最大的正方形的边长为根据长方形的长和宽列出方程组求解即可【详解】解:设左下角的小正方形边长为左上角最大的正方形的边长为解得长方形的长是:长方形的宽是:面积是解析:63 【分析】设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,根据长方形的长和宽列出方程组求解即可. 【详解】解:设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,()()31311x y x x y y -=⎧⎨++=+-⎩,解得25x y =⎧⎨=⎩, 长方形的长是:22239+++=, 长方形的宽是:257+=, 面积是:7963⨯=. 故答案是:63. 【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解.14.【分析】将代入方程组求出a 和b 的值即可求解【详解】将代入方程组得:解得:∴故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都成立的未知数的值 解析:0【分析】将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,求出a 和b 的值,即可求解. 【详解】将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,得: 121222b a ⎧-=-⎪⎪⎨⎛⎫⎪=⨯- ⎪⎪⎝⎭⎩,解得:1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴11022a b +=-+=. 故答案为:0.【点睛】 本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.6【分析】方程组两方程相加求出x+4y 的值将x 与y 的值代入即可求出值【详解】解:①+②得:x+4y =6把代入方程得:a+4b =6故答案为6【点睛】此题考查了二元一次方程组的解熟练掌握运算法则是解本题解析:6【分析】方程组两方程相加求出x+4y 的值,将x 与y 的值代入即可求出值.【详解】解:2155x y x y -=⎧⎨-+=⎩①②, ①+②得:x+4y =6,把x a y b=⎧⎨=⎩代入方程得:a+4b =6, 故答案为6【点睛】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.16.10【分析】根据好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33可列方程组解之即可【详解】解:设有好酒x 瓶薄酒y 瓶根据题意可列方程组为解得:∴好酒是有10瓶故答案为:10【点睛】本题主解析:10【分析】根据“好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33”可列方程组,解之即可.【详解】解:设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为193333x y y x +=⎧⎪⎨+=⎪⎩,解得:109x y =⎧⎨=⎩, ∴好酒是有10瓶,故答案为:10.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是掌握理解题意,找到题目蕴含的相等关系.17.4【分析】由非负数平方和为0每数必为0的规律可以算出x 和y 的值然后代入4x-2y 即可得到答案【详解】解:由题意得:解之得:所以故答案为4【点睛】本题考查非负数平方与二元一次方程组的综合应用熟练掌握非解析:4【分析】由非负数平方和为0,每数必为0的规律可以算出x 和y 的值,然后代入4x-2y 即可得到答案.【详解】解:由题意得:2540270x y x y ++=⎧⎨--=⎩,解之得: 32x y =⎧⎨=-⎩4=== .故答案为4.【点睛】本题考查非负数平方与二元一次方程组的综合应用,熟练掌握非负数平方和为0,每数必为0的规律是解题关键. 18.85【分析】设这个两位数的个位数字为x 十位数字为y 则两位数可表示为10y+x 对调后的两位数为10x+y 根据题中的两个数字之和为13及对调后的等量关系可列出方程组求解即可【详解】设这个两位数的个位数字解析:85【分析】设这个两位数的个位数字为x ,十位数字为y ,则两位数可表示为10y+x ,对调后的两位数为10x+y ,根据题中的两个数字之和为13及对调后的等量关系可列出方程组,求解即可.【详解】设这个两位数的个位数字为x ,十位数字为y ,根据题意得:13102710x y x y y x +=⎧⎨+-=+⎩, 解得:85x y =⎧⎨=⎩, 则这个两位数为8×10+5=85.故答案为:85.【点睛】本题考查了二元一次方程组的应用,解题关键是掌握两位数的表示方法,读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.19.【分析】此题答案不唯一只要写出的二元一次方程组的解符合条件即可【详解】;(答案不唯一)故答案为:【点睛】本题考查二元一次方程组的解;熟练掌握二元一次方程组与解之间的关系是解题的关键解析:55x y x y +=⎧⎨-=-⎩【分析】此题答案不唯一,只要写出的二元一次方程组的解符合条件即可.【详解】55x y x y +⎧⎨--⎩==;(答案不唯一) 故答案为:55x y x y +⎧⎨--⎩== 【点睛】本题考查二元一次方程组的解;熟练掌握二元一次方程组与解之间的关系是解题的关键. 20.5【分析】由同类项的定义可得关于mn 的方程组解方程组即可求出mn 的值然后把mn 的值代入所求式子计算即可【详解】解:由题意得:解得:∴故答案为:5【点睛】本题考查了同类项的定义和二元一次方程组的解法属 解析:5【分析】由同类项的定义可得关于m 、n 的方程组,解方程组即可求出m 、n 的值,然后把m 、n 的值代入所求式子计算即可.【详解】解:由题意得:431m n n m =⎧⎨-=⎩,解得:14m n =⎧⎨=⎩, ∴145m n +=+=.故答案为:5.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于常考题型,熟练掌握基本知识是解题的关键.三、解答题21.(1) 13y x =-+;(2) n a b =+;(3)0a b ->,1x >或0a b -<,1x <【分析】(1)将1,2();)2,3b a --(代入1y ,得到二元一次方程组,求解方程组即可得a 、b 的值;(2)联立1y 与2y ,即ax b bx a +=+,求得m 的值,然后把点代入1y 或2y ,即可得出结论;(3)根据题意,分别表示出34,y y ,当340y y ->时,分情况讨论得出结论.【详解】解:(1) 将1,2();)2,3b a --(代入1y : 232a b b a a b =+⎧⎨--=+⎩解得:13a b =-⎧⎨=⎩∴ 13y x =-+(2)12y y =,即ax b bx a +=+∴ 1a b x a b-==- ∴ 1m =将()1,A n 代入1y :得到n a b =+(3)3y =12y y -=()()ax b bx a +-+=ax bx b a -+-4y =21y y -=()()bx a ax b +-+=bx ax a b -+-∴34y y - = ()()ax bx b a bx ax a b -+---+-=()()220a b x b a -+->当0a b ->时:解得1x >;当0a b -<时:解得1x <.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图像上点的坐标特征,一次函数交点坐标特征,熟练掌握待定系数法是解本题的关键.22.(1)见详解;(2)1l 与2l 不相交;【分析】(1)将点的横坐标代入直线2l ,求得y 的值;如果y 的值恰好等于点的纵坐标,则点在直线2l 上;否则点不在直线2l 上;(2)通过1l 过原点和P 点,可求解直线1l 的解析式;把2m =代入2l 中,求解2l 的解析式;两直线是否相交,通过判断对应的方程组是否有解.【详解】(1)将点(2,3)--的横坐标2x =-代入直线2l :23y mx m =+-(0)m ≠;可得:3y =-;3y =-恰等于点(2,3)--的纵坐标;∴点(2,3)--在直线2l 上;(2)由题知:设直线1l 的解析式为:y kx b =+(0)k ≠;又1l 过原点(0,0)和(),2P m m 点,将点代入:y kx b =+(0)k ≠,可得:2k =,0b =;∴ 直线1l 的解析式为:2y x =;把2m =代入2l 中,∴ 直线2l 的解析式为:21y x =+;∴把两直线组成方程组:221y x y x =⎧⎨=+⎩⇒221x x =+⇒01=,显然不成立;所以方程组无解,∴ 直线1l 与2l 不相交;∴ 直线1l 与2l 不相交.【点睛】本题主要考查点与直线及直线与直线之间的关系;重点在于熟练应用直线是否相交,通过对应方程组是否有解进行判断,有解则相交,无解则不相交.23.(1)甲3辆,乙12辆;(2)见解析【分析】(1)设需要甲x 辆,乙y 辆,根据运送11400公斤和需运费8700元,可列出方程组求解.(2)因为甲的费用最少,所以尽量多用甲,然后是乙,最后是丙,列出方程,且解是整数,可列方程求解.【详解】解:(1)设需要甲x 辆,乙y 辆,600800114005006008700x y x y +=⎧⎨+=⎩, 解得:312x y =⎧⎨=⎩, 答:甲3辆,乙12辆;(2)设需要甲x 辆,乙y 辆,则丙(15-x -y )辆,根据题意得.600x +800y +900(15-x -y )=11400,y =21-3x ,x 可以为7,6,5,4,3,2,1,y 依次为0(舍去),3,6,9,12,15(舍去),18(舍去),21(舍去),因此方案有:甲,乙,丙的辆数分别为①6,3,6;②5,6,4;③4,9,2;④3,12,0(不合题意,舍去).则运费分别为①6×500+3×600+6×700=9000(元),②5×500+6×600+4×700=8900(元),③4×500+9×600+2×700=8800(元),故第三种方案运费最省,为8800元.【点睛】此题考查二元一次方程组与二元一次方程的实际运用,找出题目蕴含的数量关系,建立方程或方程组解决问题.24.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y 人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502x y x y +=⎧⎨=-⎩, 解得:2426x y =⎧⎨=⎩, 答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套, 设男生应向女生支援a 人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.25.2【分析】先用含k 的式子表示x 、y ,根据方程组的解也是二元一次方程4536x y +=的解,即可求得k 的值.【详解】解:①+②得:214x k =,解得: x =7k ,将x =7k 代入①得:75k y k +=,解得: y =-2k ,∴方程组的解为72x k y k=⎧⎨=-⎩, 将72x k y k=⎧⎨=-⎩代入4x +5y =36得: ()475236k k ⨯+⨯-=,解得k=2 ,答:k 的值是2.【点睛】本题考查了二元一次方程组的解、二元一次方程的解以及解二元一次方程组,解决本题的关键是用含k 的式子表示x 、y .26.(1)32m =,23a =-;(2)()6,0B ;(3)9 【分析】(1)先把A 点坐标代入正比例函数解析式求出m ,从而确定A 点坐标,然后利用待定系数法确定a 的值; (2)由一次函数243y x =-+,令0y =求得B 的坐标; (3)根据三角形面积公式求得即可.【详解】 解:(1)依题意把(),3A m 代入2y x =,得:32m =, 解之得:32m =, ∴点A 坐标为3,32⎛⎫ ⎪⎝⎭, 把3,32A ⎛⎫ ⎪⎝⎭代入4y ax =+,得: 3342a =+, 解之得:23a =-; (2)由(1)知该一次函数解析式为243y x =-+, 令0y =得:2043x =-+, 解之得:6x =,∴点B 的坐标为()6,0;(3)∵3,32A ⎛⎫ ⎪⎝⎭,()6,0B , ∴6OB =,OB 边上的高为3, ∴163=92AOB S=⨯⨯. 【点睛】 此题综合考查了待定系数法求函数解析式、直线与坐标轴的交点的求法、三角形面积的计算;根据题意求出有关点的坐标是解决问题的关键.。

初二上册数学第五章二元一次方程组测试题(带答案北师大版)

初二上册数学第五章二元一次方程组测试题(带答案北师大版)

初二上册数学第五章二元一次方程组测试题(带答案北师大版)初二上册数学第五章二元一次方程组测试题(带答案北师大版)本检测题满分:100分,时间:90分钟一、选择题(共10小题,每小题3分,共30分) 1.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案() A.5种 B.4种 C.3种 D.2种 2.下列方程组中,是二元一次方程组的是() 3.二元一次方程5 -11 =21 () A.有且只有一解 B.有无数解 C.无解 D.有且只有两解 4.若│ -2│+(3 +2)2=0,则的值是() A.-1 B.-2 C.-3 D. 5. 某商店有两种进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店() A.赔8元 B.赚32元 C.不赔不赚 D.赚8元 6.方程组的解中与的值相等,则等于()A.2 B.1 C.3 D.4 7.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有()种. A.4 B.11 C.6 D.9 8. 为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机调查了10 000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10 000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是() A. B. C. D. 9.如图,点O在直线AB上,OC为射线,比的3倍少,设,的度数分别为 , ,那么下列求出这两个角的度数的方程正确的是() A.B. C. D. 10.某校八年级(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元) 1 2 3 4 人数 6 7 表格中捐款2元和3元的人数不小心被墨水污染已看不清楚. 若设捐款2元的有名同学,捐款3元的有名同学,根据题意,可得方程组()A. B. C. D. 二、填空题(每小题3分,共24分) 11. 已知方程2 +3 -4=0,用含的代数式表示,则 =_______;用含的代数式表示,则 =________. 12.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载,则有_______ 种租车方案. 13.若-2 =5是二元一次方程,则 =_____, =______. 14.已知是方程- =1的解,那么 =_______. 15.二元一次方程组的解是. 16.已知的解,则 =_______, =______. 17.有甲、乙、丙三种商品,如果购买甲3件、乙2件、丙1件共需315元钱,购买甲1件、乙2件、丙3件共需285元钱,那么购买甲、乙、丙三种商品各一件共需元钱. 18.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 . 三、解答题(共46分) 19. (6分)已知方程 +3 =5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为 20.(6分)当 =-3时,二元一次方程3 +5 =-3和3 -2 = +2(关于,的方程)有相同的解,求的值. 21.(6分)苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游.已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人? 22.(7分)某公司计划2012年在甲、乙两个电视台播放总时长为300 min的广告,已知甲、乙两电视台的广告收费标准分别为500元/min和200元/min.该公司的广告总费用为 9万元,预计甲、乙两个电视台播放该公司的广告能给该公司分别带来0.3万元/min和0.2万元/min的收益,问该公司在甲、乙两个电视台播放广告的时长应分别为多少分钟?预计甲、乙两电视台2012年为此公司所播放的广告将给该公司带来多少万元的总收益? 23.(7分)根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一只鸡无笼可放;•若每个笼里放5只,则有一个笼无鸡可放,问有多少只鸡,多少个笼? 24.(7分)方程组的解是否满足2 - =8?满足2 - =8的一对,的值是不是方程组的解? 25.(7分)解方程组:第五章二元一次方程组检测题参考答案一、选择题 1.C 解析:设住3人间x间,住2人间y间,3x+2y=17,因为2y是偶数,17是奇数,所以3x只能是奇数,即x必须是奇数,当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,综合以上得知,第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的,故有3种不同的安排. 2.A 解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项的次数为1,③每个方程都是整式方程. 3.B 解析:不加限制条件时,一个二元一次方程有无数组解. 4.C 解析:利用非负数的性质求解. 5. D 解析:设一种耳机的进价为x 元,另一种耳机的进价为y元,则x+60�Gx=64,解得x=40, y-20�Gy=64,解得y=80.所以(64+64)-(40+80)=8(元),所以这家商店赚 8元.6. B 解析:因为的解中x与y的值相等,所以x=1,y=1,把x=1, y =1代入方程4x-3y=k中,得k=1.7. C 解析:设需要搭建可容纳6人的帐篷x顶,可容纳4人的帐篷y顶,根据题意得6x+4y=60,把方程6x+4y=60变为x=10- y.因为x,y都是非负整数,所以得y=0,3,6,9,12,15时,x=10,8,6,4,2,0.因此有6种方案.8. B 解析:本题主要考查了列二元一次方程组的实际应用,因为吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,所以被调查的吸烟者人数为,被调查的不吸烟者人数为 .利用本题中的两个等量关系:①吸烟者患肺癌的人数-不吸烟者患肺癌的人数=22;②被调查的吸烟者人数+被调查的不吸烟者人数=10 000,列二元一次方程组可得9. B 解析:根据图形寻求几何关系,列出方程组. 10. A 二、填空题 11. 12.2 解析:设租用每辆8个座位的车x辆,每辆4个座位的车y辆,根据题意,得8x+4y=20,整理得,2x+y=5. ∵ x、y都是正整数,∴ x=1时,y=3, x=2时,y=1, x=3时,y=-1(不符合题意,舍去),所以共有2种租车方案. 13. 2 解析:令3 -3=1,-1=1,所以 = , =2. 14.-1 解析:把代入方程 =1中,得-2-3 =1,所以 =-1. 15.解析:由①+②,得4x=12,解得x=3,把x=3代入①,得3+2y=1,解得y=-1,所以原方程组的解是点拨:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单. 16.1 4 解析:将中进行求解. 17.150 解析:由题意可得甲、乙、丙商品各4件共需600元,则各一件共需150元. 18.解析:根据给出的图象上的点的坐标:(0,-1)、(1,1)、(0,2),分别求出图中两条直线的表达式为y=2x-1,y=-x+2,因此所解的二元一次方程组是三、解答题 19. 解:经验算是方程 +3y=5的解,再写一个方程,如-y=3. 20.解:因为当 =-3时,3 +5 =-3,所以3 +5×(-3)=-3,所以 =4. 因为当 =-3时,二元一次方程3 +5 =•-•3•和有相同的解,所以把代入方程3y-2ax=a+2中,得3×(-3)-2 ×4= +2,所以 = . 21.分析:根据“两个旅游团共有55人”和“甲旅游团的人数比乙旅游团的人数的2倍少5人”两个等量关系列方程组解答. 解:设甲旅游团x人,乙旅游团y人. 根据题意,得解得答:甲、乙两个旅游团分别有35人、20人. 22.解:设公司在甲电视台和乙电视台做广告的时间分别为x min和y min,由题意,得解得即该公司在甲电视台做100 min广告,在乙电视台做200 min广告.此时公司收益为100×0.3+200×0.2=70(万元).答:该公司在甲电视台做100 min广告,在乙电视台做200 min广告,甲、乙两电视台2012年为此公司所播放的广告将给该公司带来70万元的总收益. 23.解:(1)设0.8元的邮票买了枚,2元的邮票买了枚,根据题意,得(2)设有只鸡,个笼,根据题意,得 24.解:满足,不一定.点拨:因为的解既是方程 + =25的解,也满足2 - =8,• 所以方程组的解一定满足其中的任意一个方程,但方程2 - =8的解有无数组,如 =10, =12,不满足方程组 25.解:③+①,得3x+5y=11,④ ③×2+②,得3x+3y=9,⑤ ④ ⑤,得2y=2,y=1,将y=1代入⑤,得3x=6,x=2,将x=2,y=1代入①,得z=6 2×2 3×1= 1,∴原方程组的解为。

北师大版八年级上册 第5章 二元一次方程组 单元练习(答案解析)

北师大版八年级上册 第5章 二元一次方程组  单元练习(答案解析)

第5章二元一次方程组一.选择题1.若方程3x2m+1﹣2y n﹣1=7是二元一次方程,则m、n的值分别为()A.m=1,n=1B.m=1,n=2C.m=0,n=1D.m=0,n=2 2.方程|x﹣y|+(2﹣y)2=0且x+2y﹣m=0,则m的值为()A.5B.6C.7D.83.二元一次方程2x+y=5的正整数解有()组.A.1B.2C.3D.44.已知是二元一次方程组的解,则m+3n的值是()A.4B.6C.7D.85.若二元一次方程组无解,则一次函数y=3x﹣5与y=3x+1的位置关系为()A.平行B.垂直C.相交D.重合6.两个一次函数的图象如图所示,下列方程组的解满足交点P的坐标的是()A.B.C.D.7.现用160张铁皮做盒子,每张铁皮做6个盒身或做20个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,使盒底与盒身正好配套.则可列方程组为()A.B.C.D.8.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需52min,从乙地到甲地需40min.设从甲地到乙地上坡与平路分别为xkm,ykm,依题意所列方程组正确的是()A.B.C.D.9.五月底,全体九年级师生共422人参加社会实线活动,当时预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.B.C.D.10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km二.填空题11.若是方程2x﹣3y+4=0的解,则6a﹣9b+5=.12.若关于x,y的二元一次方程的解也是二元一次方程x+y=4的解,则k的值为.13.已知方程组与有相同的解,则m=,n=.14.一个两位数,个位数字是x,十位数字是y,将个位和十位数字对调后,所得到新的两位数,与原两位相加的和是110,可以列方程为.15.小华在文具超市挑选了6支中性笔和5本笔记本.结账时,小华付款50元,营业店员找零4元,小华说:“阿姨您好,6支中性笔和5本笔记本一共42元,应该找零8元.”店员说:“啊…哦,我明白了,小朋友你真棒,我刚才把中性笔和笔记本的单价弄反了,对不起,再找给你4元”.根据两人的对话计算:若购买一支中性笔和一本笔记本一共需要付款元.16.如图,直线y=x+1与直线y=mx﹣n相交于点M(1,b),则关于x,y的方程组的解为.三.解答题17.解方程组:(1)(2).18.已知方程组是二元一次方程组,求m的值.19.已知关于x、y的方程组和的解相同,求a、b值.20.列方程组解应用题:甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后3小时相遇;如果乙比甲先走2小时,那么在甲出发后2.5小时相遇.甲、乙两人每小时各走多少千米?21.如图,直线y=2x+6与直线l:y=kx+b交于点P(﹣1,m)(1)求m的值;(2)方程组的解是;(3)直线y=﹣bx﹣k是否也经过点P?请说明理由.22.水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?参考答案一.选择题1.D.2.B.3.B.4.D.5.A.6.D.7.A.8.A.9.A.10.解B.二.填空题11.﹣7.12.2.13..14.10x+y+10y+x=110.15.8.16..三.解答题17.解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.18.解:依题意,得|m﹣2|﹣2=1,且m﹣3≠0、m+1≠0,解得m=5.故m的值是5.19.解:方程4x+ay=16和3x+ay=13相减,得x=3,把x=3代入方程2x﹣3y=﹣6,得y=4.把x=3,y=4代入方程组,得解这个方程组,得a=1,b=2.20.解:设甲,乙速度分别为x,y千米/时,,,甲的速度是3.6千米每小时,乙的速度是6千米每小时.21.解:(1)将点P(﹣1,m)代入直线方程y=2x+6得:﹣2+6=m,所以m的值是4;(2)方程组的解为,故答案为:,(3)直线y=﹣bx﹣k也经过点P.理由如下:∵点P(﹣1,4),在直线y=﹣bx﹣k上,∴b﹣k=4,∵y=kx+b交于点P,∴﹣k+b=4,∴b﹣k=﹣k+b,这说明直线y=﹣bx﹣k也经过点P.22.解析:(1)设需甲车型x辆,乙车型y辆,得:,解得.答:需甲车型8辆,乙车型10辆;(2)设需甲车型x辆,乙车型y辆,丙车型z辆,得:,消去z得5x+2y=40,x=8﹣y,因x,y是正整数,且不大于14,得y=5,10,由z是正整数,解得,,当x=6,y=5,z=5时,总运费为:6×400+5×500+5×600=7900元;当x=4,y=10,z=2时,总运费为:4×400+10×500+2×600=7800元<7900元;∴运送方案:甲车型4辆,乙车型10辆,丙车型2辆.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级上册第五章二元一次方程组检测题一、选择题(共10 小题,每小题 3 分,共30 分)1.若是关于,的二元一次方程,则,的值是()A. ,B. ,C. ,D. ,【答案】C【解析】【分析】根据二元一次方程的定义进行求解即可得.【详解】由题意得:a+2=1,b-1=1,解得:a=-1,b=2,故选C.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解题的关键.2.四川大地震后,灾区急需帐篷,某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共顶,其中甲种帐篷每顶安置人,乙种帐篷每顶安置人,共安置人,设该企业捐助甲种帐篷顶、乙种帐篷顶,那么下面列出的方程组中正确的是()A. B. C. D.【答案】C【解析】【分析】甲种帐篷顶、乙种帐篷顶,根据“甲、乙两种型号的帐篷共顶,甲种帐篷安置总人数+乙种帐篷安置总人数=人”列出方程组即可.【详解】该企业捐助甲种帐篷顶、乙种帐篷顶,由题意得,故选C.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.3.某种产品是由种原料千克、种原料千克混合而成,其中种原料每千克元,种原料每千克元,后来调价,种原料价格上涨,种原料价格减少,经核算产品价格可保持不变,则的值是()A. B. C. D.【答案】C【解析】【分析】混合后产品价格可保持不变做为等量关系,所以可得方程50x+40y=50(1+10%)x+40(1-15%)y,可算出比值.【详解】某种产品是由A种原料x千克、B种原料y千克混合而成且混合前后产品价格可保持不变,故50x+40y=50(1+10%)x+40(1-15%)y,所以,故选C.【点睛】本题考查了二元一次方程的应用,解题的关键是理解题意,把握混合前后产品价格保持不变做为等量关系,列方程求解.4.二元一次方程组的解是二元一次方程的解,则的值为()A. B. C. D.【答案】B【解析】【分析】先把k当做常数,解方程组,用含有k的式子表示x、y的值,然后再把方程组的解代入方程2x+3y=8即可得.【详解】解方程组,得,把代入2x+3y=8得,14k-6k=8,解得:k=1,故选B.【点睛】本题考查了二元一次方程组的解及二元一次方程的解,关键理解清楚题意,熟练掌握和运用二元一次方程组的解法.5.一个两位数的数字之和为,若把十位数字与个位数字对调,所得的两位数比原来大,则原来两位数为()A. B. C. D.【答案】D【解析】【分析】设这个两位数十位为x,个位为y,根据个位数字与十位数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,列方程组求解.【详解】设这个两位数十位为x,个位为y,由题意得,,解得:,则这个两位数为:29,故选D.【点睛】本题考查了二元一次方程组的应用,读懂题意,设出未知数,找出合适的等量关系,列方程组求解是解答本题的关键.6.《孙子算经》中有这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:“用绳子去量一根木材的长,绳子还余尺;将绳子对折再量木材的长,绳子比木材的长短尺,问木材的长为多少尺?”若设木材的长为尺,绳子长为尺,则根据题意列出的方程组是()A. B. C. D.【答案】C【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此可列方程组求解.【详解】木材的长为x尺,绳子长为y尺,由题意得,故选C.【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系是解题的关键.7.用代入法解方程组时,将方程①代入②中,所得的方程正确的是()A. B. C. D.【答案】B【解析】【分析】把①代入②得,3x+2(2x-3)=8,整理后即可得答案.【详解】把①代入②得,3x+2(2x-3)=8,整理得,3x+4x-6=8,故选B.【点睛】本题考查了代入法解二元一次方程组,熟练掌握代入法是解题的关键.8.方程的正整数解有()A. 一个B. 二个C. 三个D. 四个【答案】C【解析】【分析】要求方程x+4y=15的正整数解,就要先将方程做适当变形,根据解为正整数确定其中一个未知数的取值,再进一步求得另一个未知数的值.【详解】由已知方程,知y=,因为x、y都是正整数,所以当x=3时,y=3,当x=7时,y=2,所以这个方程的正整数解有2组,故选B.【点睛】本题是求不定方程的正整数解,熟练掌握方程解的定义是解题的关键.常用的方法是先将方程做适当变形,然后列举出适合条件的所有整数值,再求出另一个未知数的值.9.某二元方程的解是(为实数),若把看作平面直角坐标系中点的横坐标,看作平面直角坐标系中点的纵坐标,下面说法正确的是()A. 点一定不在第一象限B. 点一定不在第二象限C. 随的增大而增大D. 点一定不在第三象限【解析】【分析】根据两个式子消去m,即可得到y与x之间的函数关系式,根据关系式即可判断.【详解】由x=m-1得:m=x+1代入y=-2m+1,得:y=-2x-1,是一次函数,且经过第二,三,四象限.不经过第一象限,故选A.【点睛】本题考查了一次函数与二元一次方程(组),正确进行消元,把方程组的问题转化为函数式是解题关键.10.某中学生足球联赛轮(即每队平均赛场),胜一场分,平一场得分,负一场得分.在这次足球联赛中,某队踢平的场数是所负场数的倍,共得分,则该队胜的场数是()A. 场B. 场C. 场D. 场【答案】A【解析】【分析】设负的场数为x,胜的场数为y,则平的场数为2x,等量关系为:胜的场数的得分+平的场数的得分=17,胜场数+平场数+负场数=8,把相关数值代入求解即可.【详解】设负的场数为x,胜的场数为y,由题意得,,解得,则胜了5场,故选A.【点睛】本题考查了二元一次方程组的应用,解题的关键是正确理解题意,找出题目中的等量关系.二、填空题(共8 小题,每小题 3 分,共24 分)11.已知二元一次方程:;;.从这三个方程中任选两个方程组成一个方程组,并求出这个方程组的解.所选方程组为________.【答案】【解析】选择(1)与(2)组成方程组,利用加减消元法求出解即可.【详解】所选方程组为:,①+②得4x=12,解得:x=3,把x=3代入①得2y=-2,解得:y=-1,则方程组的解为,故答案为:.【点睛】本题考查了解二元一次方程组以及二元一次方程组的定义,熟练掌握代入消元法与加减消元法是解题的关键.12.已知三个方程构成的方程组,,,恰有一组非零解,,,则________.【答案】152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x,y,z的值,再根据x=a,y=b,z=c求出a2+b2+c2的值.【详解】,,组成方程组得,由①得:x=④,把④代入③整理得:-10y+6z=0,∴z=,把z=代入②得:-5y-5y=0,解得:y1=0 (舍去),y2=6,∴z=×6=10,x==4,又∵x=a,y=b,z=c,∴a2+b2+c2=x2+y2+z2=42+62+102=16+36+100=152,故答案为:152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.13.直线与的图象如图所示,则方程组的解是________............................【答案】【解析】【分析】根据一次函数与二元一次方程组的关系,交点坐标即为方程组的解.【详解】由图可知,交点坐标为(-2,1),所以,方程组的解是,故答案为:.【点睛】本题考查了一次函数与二元一次方程(组),涉及了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.把面值为元的纸币换为角或角的硬币,则换法共有_____种.【答案】【解析】本题考查的是二元一次方程的自然数解设1角的有x个,5角的有y个,先根据题意列出二元一次方程,再根据x,y都是自然数,即可求得x,y 的值.设1角的有x个,5角的有y个,根据题意,得,即,∵x,y是自然数,,,,即换法共有3种。

15.若方程组的解适合x+y=2,则k的值为___________.【答案】3【解析】①+②得5x+5y=5k-5,∴x+y=k-1,∴k-1=2,∴k=3.16.县城路公交车每隔一定时间发车一次,一天小明在街上匀速行走,发现背后每隔分钟开过来一辆公交车,而迎面每隔分钟有一辆公交车驶来,则公交车每隔________分钟发车一次.【答案】12【解析】【分析】可设公交车每隔x分钟发车一次,同时设公共汽车和小明的速度为未知数,等量关系为:15×(公共汽车的速度-小明的速度)=x×公共汽车的速度;10×(公共汽车的速度+小明的速度)=x×公共汽车的速度,消去x 后得到公共汽车速度和小明速度的关系式,代入任意一个等式可得x的值.【详解】设公共汽车的速度为a,小明的速度为b,每隔x分钟发车一次,依题意有,解得a=5b,代入方程10(a+b)=ax得x=12,故公交车每隔12分钟发车一次,故答案为:12.【点睛】本题考查了三元一次方程组的应用;消元是解决本题的难点;得到相遇问题和追及问题的等量关系是解决本题的关键.17.已知x与y互为相反数,且3x-y=4,则x=______,y=______.【答案】(1). 1 (2). -1【解析】解:∵x与y互为相反数,∴x=-y,∴3(-y)-y=4,∴y=-1.∴x=1.故答案为:1,-1.18.已知是关于,的二元一次方程,则________.【答案】1【解析】【分析】根据二元一次方程的定义,可以得到x的次数等于1,且系数不等于0,由此可以得到m的值.【详解】根据二元一次方程的定义,得|m|=1且m+1≠0,解得m=1,故答案为:1.【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.三、解答题(共6 小题,每小题10 分,共60 分)19.关于,的方程组若的值比的值小,求的值;若方程与方程组的解相同,求的值.【答案】【解析】【分析】(1)由x的值比y的值小5,可得x-y=-5,即得9m=-5,从而求出m;(2)由方程3x+2y=17与方程组的解相同,可得三元一次方程组,解此方程组即可求出m.【详解】由已知得:,∴,∴;已知方程与方程组的解相同,所以得:三元一次方程组,解得:.【点睛】本题考查了解二元一次方程组,同解方程组,解三元一次方程组,熟练掌握方程组的解法是解题的关键.20.求的所有正整数解.【答案】,.【解析】【分析】移项得x=,根据题意可知0<y<,x、y是正整数,可得答案.【详解】由题意,得,根据题意可知,且是整数,所以,,对应的,,故的所有正整数解是,.【点睛】本题考查了解二元一次方程,先将方程做适当变形,确定其中一个未知数的取值范围,然后列举出适合条件的所有整数值,再求出另一个未知数的值.21.根据下列语句,设适当的未知数,列出二元一次方程:甲数比乙数的倍少;甲数的倍与乙数的倍的和是;甲数的与乙数的的差是;甲数与乙数的和的倍比乙数与甲数差的多.【答案】;;;.【解析】【分析】(1)关系式为:甲数=乙数的3倍-7,设出两个未知数,把相关数值代入即可求得所列代数式;(2)关系式为:甲数的2倍+乙数的5倍=4,设出两个未知数,把相关数值代入即可求得所列代数式;(3)关系式为:甲数的15%-乙数的23%=11,设出两个未知数,把相关数值代入即可求得所列代数式;(4)关系式为:甲数与乙数的和的2倍-乙数与甲数差的=0.25,设出两个未知数,把相关数值代入即可求得所列代数式.【详解】设乙数为,甲数为,则;设甲数为,乙数为,则;设甲数为,乙数为,则;设甲数为,乙数为,则.【点睛】本题考查了由实际问题抽象出二元一次方程,解决本题的关键是找到所列代数式的等量关系,注意抓住题目中的一些关键性词语如“和,差,倍”等,找出等量关系.22.已知方程组,由于甲看错了方程中的得到方程组的解为,乙看错了方程中的得到方程组的解为.若按正确的、计算,求原方程组的解.【答案】【解析】【分析】把甲的解代入(2)求出b的值,把乙的解代入(1)求出a的值,把a与b的值代入方程组,求出解即可.【详解】把代入得:,解得:,把代入得:,解得:,即方程组为:,得:,解得:,把代入得:,解得:,即原方程组的解为:.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.面对资源紧缺与环境保护问题,发展电动汽车成为汽车工业发展的主流趋势.我国某著名汽车制造厂开发了一款新式电动汽车,计划一年生产安装辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:名熟练工和名新工人每月可安装辆电动汽车;名熟练工和名新工人每月可安装辆电动汽车.每名熟练工和新工人每月分别可以安装多少辆电动汽车?如果工厂招聘名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?在的条件下,工厂给安装电动汽车的每名熟练工每月发元的工资,给每名新工人每月发元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额(元)尽可能的少?【答案】(1)每名熟练工和新工人每月分别可以安装、辆电动汽车.工厂有种新工人的招聘方案.①新工人人,熟练工人;②新工人人,熟练工人;③新工人人,熟练工人;④新工人人,熟练工人.当,时(即新工人人,熟练工人),工厂每月支出的工资总额(元)尽可能地少.【解析】【分析】(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车,根据“1名熟练工和2名新工人每月可安装8辆电动汽车”和“2名熟练工和3名新工人每月可安装14辆电动汽车”列方程组求解;(2)设工厂有a名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据a,n都是正整数和0<n<10,进行分析n的值的情况;(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少,结合(2)进行分析即可得.【详解】(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车,根据题意,得,解得,答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车;设工厂有名熟练工,根据题意,得,,,又,都是正整数,,所以,,,.即工厂有种新工人的招聘方案.①,,即新工人人,熟练工人;②,,即新工人人,熟练工人;③,,即新工人人,熟练工人;④,,即新工人人,熟练工人;结合知:要使新工人的数量多于熟练工,则,;或,;或,,根据题意,得,要使工厂每月支出的工资总额(元)尽可能地少,则应最大,显然当,时,(即新工人人,熟练工人),工厂每月支出的工资总额(元)尽可能地少.【点睛】本题考查了二元一次方程组的应用、一次方程组的应用,理解题意,正确找准等量关系以及各量间的数量关系是解题的关键.24.解方程组:.【答案】.【解析】【分析】利用代入消元法进行求解即可得.【详解】,将①代入②得:,解得:,将代入①得:,则方程组的解为.【点睛】本题考查了解二元一次方程组,熟练掌握代入消元法是解本题的关键.。

相关文档
最新文档