(英文)温度和压强对CH3CF3和CD3CF3的氟谱化学位移的影响

合集下载

仪器分析-影响化学位移的因素-2

仪器分析-影响化学位移的因素-2

主讲教师:胡高飞 7.4 影响化学位移的因素(2)三、氢键对δ的影响Hydrogen Bonding Deshields Protons分子形成氢键后,氢核周围的电子云密度降低,产生去屏蔽效应,化学位移移向低场, δ增大。

分子内氢键:O O O HC H 3•在水杨酸甲酯中,由于强的分子内氢键作用,NMR 吸收信号中 O-H 约为 14 ppm ,处于非常低场。

•注意形成了一个新的六元环分子间氢键:化学位移取决于形成了多少氢键 醇的化学位移可以在0.5 ppm (自由OH )至约5.0ppm (形成大量氢键)间变化氢键拉长了O-H 化学键并 降低了质子周围的价电子密度 - 去屏蔽效应导致NMR 谱中化学位移移向低场OH R O R H HO R(a)10kg/L ,(b) 5kg/L ,(c) 0.5kg/L ,乙醇溶剂CCl4,T =40℃OCO R H H C O O R •羧酸具有强的氢键 – 形成了二聚体 •对于羧酸 O-H 吸收在NMR 谱中化学位移位于10 ~ 12 ppm ,一般处于最低场四、H核交换对δ的影响化合物的质子分为可交换氢和不可交换氢与 N、O、S等原子连接的氢称为可交换氢,又称活泼氢与C、Si、P等原子连接的氢称为不可交换氢CH3COOH a+H b OH b CH3COOH b+H a OH bδ观察=N aδa+N bδbN-摩尔分数δa、δb-分别为H a与H b纯品的化学位移值四、H核交换对δ的影响活泼氢:R-OH δ=0.5-5.5Ar-OH δ=4.0-7.7RCOOH δ=10.0-13.0R-NH2δ=5.0-8.0Ar-NH2δ=3.5-6.0R-CO-NH2δ=5.0-8.5R-SH δ=1.0-2.0Ar-SH δ=2.8-3.6五、溶剂对δ的影响采用不同的溶剂,化学位移也会发生变化,强极性溶剂的作用更加明显。

溶质与溶剂间相互作用(如形成氢键)。

三氟甲磺酸的氟谱

三氟甲磺酸的氟谱

三氟甲磺酸的氟谱
三氟甲磺酸的氟谱是指通过核磁共振(NMR)测量得到的有关三氟甲磺酸分子中氟原子的谱图。

三氟甲磺酸(trifluoromethanesulfonic acid,简记为TFMSA)是一种有机化合物,化学式为CF3SO3H。

它是一种无色到淡黄色的液体,具有强酸性和强氧化性。

在三氟甲磺酸的氟谱中,氟原子的化学位移通常在-70至-80 ppm之间。

该值表示氟原子相对于参比化合物(如氯甲烷,CH3Cl)的化学位移。

这个范围的化学位移比较大,显示了三氟甲磺酸中氟原子周围的环境与其他化合物有很大的差异。

通过测量和分析氟谱,可以确定三氟甲磺酸中氟原子的化学环境,以及该化合物的结构和性质。

由于氟原子在许多有机合成和催化反应中起到重要的作用,对三氟甲磺酸的氟谱进行研究有助于理解其在这些反应中的作用机制和反应路径。

需要注意的是,对于更精确和详细的氟谱解析,可能需要使用更高分辨率的NMR仪器和其他补充实验技术。

氟谱化学位移范围

氟谱化学位移范围

氟谱化学位移范围
氟谱化学位移是指氟核磁共振(NMR)谱图中氟原子信号的位置。

氟谱化学位移通常以部分百万(ppm)为单位表示,即相对于参考标准的化学位移。

氟谱的化学位移范围在不同化合物中可能有所不同,但一般来说,氟谱的化学位移范围通常在-100 ppm 到+100 ppm之间。

以下是一些氟化合物的典型化学位移范围:
氟代烷烃:
三氟甲烷(CF₃Cl)的氟原子通常出现在-75 ppm左右。

全氟正庚烷(CF₃(CF₃)₃CF₃)中的氟原子信号可能在-80 ppm附近。

氟代芳香化合物:
对二氟苯(C₃H₃F₃)中的氟原子信号可能在-120 ppm左右。

异氟苯(C₃H₃F)中的氟原子通常出现在-115 ppm左右。

氟代醚:
三氟甲氧基苯(CF₃OCH₃)中的氟原子信号可能在-140 ppm左右。

请注意,这些值仅为参考,实际的氟谱化学位移取决于分子结构、溶剂、温度等因素。

在NMR谱图中,化学位移是通过相对于某个内部或外部标准物质的信号进行校正的。

对于氟谱,通常使用氟化合物氟乙酸(CF₃COOH)或氟甲烷(CHF₃)等作为内部标准。

总体而言,氟谱的化学位移范围广泛,因此在解读NMR谱图时,需要考虑化合物的具体结构以及实验条件的影响。

影响化学位移的因素

影响化学位移的因素

影响化学位移的因素
1.温度:温度是一个重要的因素,它影响了反应速率和化学位移。


度的升高可以增加反应速率,并促使化学位移发生。

2.压力:压力也可以影响化学反应的速率和化学位移。

增加压力可以
促使反应向高位移的方向进行,而减少压力则使反应朝低位移的方向进行。

3.浓度:反应物的浓度可能会影响反应速率和化学位移。

增加反应物
的浓度可以加快反应速率,并可能导致更高的化学位移。

4.催化剂:催化剂是一种可以增加反应速率而不参与反应的物质。


化剂可以通过改变反应的路径或减少反应物之间的能量差异来影响化学位移。

5.光照:光照可以引起许多化学反应,并且可以改变化学位移。

一些
反应在光照下会更快或更慢发生,并且可能会导致不同的化学位移。

6.物理性质:物理性质,例如溶剂的性质、溶液的颜色、密度等的改变,可以影响化学反应和化学位移。

7.原子结构:原子结构可以通过原子间的连接和键长来确定反应的进
行和化学位移的方向。

8.核外电子:化学位移可以受到核外电子的影响。

核外电子的数量和
运动方式可能会改变反应速率和化学位移。

此外,还有其他一些因素可以影响化学位移,例如反应物的尺寸、表
面积、电场和磁场等。

化学位移是一个复杂的过程,需要综合考虑多种因
素来理解。

无论哪个因素,都可以对化学位移产生重要的影响,并决定反
应的进行和观察到的化学变化。

氟谱F化学位移及偶合常数

氟谱F化学位移及偶合常数

氟谱F化学位移及偶合常数————————————————————————————————作者:————————————————————————————————日期:19F Chemical Shifts and Coupling ConstantsIf you have measured a 19F chemical shift and/or coupling constant that does not appear in the tables below, and you would like your measurement to be included here, contact the NMR Facility Staff .Table of Chemical Shift RangesType of CompoundChemical Shift Range (ppm)Relative to neat CFCl3 -F-C=O -70 to -20 -CF3- +40 to +80 -CF2- +80 to +140 -CF- +140 to +250 -ArF-+80 to +170Chemical Shift TableFor certain compounds, the listed chemical shift pertains to the F shown in bold. The primary references for these values are: 1) the 1991 Bruker Almanac, and2) Compilation of reported F19 NMR chemical shifts, 1951 to mid-1967 by Claude H. Dungan and John R. Van Wazer. Negative shifts are those that appear upfield of CFCl3 and positive shifts are those that appear downfield.CompoundChemical Shift (ppm) Relative to neat CFCl3 CFCl3 0.00 MeF-271.9 CF3H (in CFCl3) -78.6 CF3H (in EtO) -78.6 CF2H2 -143.6 EtF -213 FCH=CH2 -114 F2C=CH2 -81.3 F2C=CF2-135 CF3COOH (in CFCl3)-76.55CF3COOH (neat) -78.5CF3COOH (in CCl4 -76.3CF3COOC6H6 -73.85CF3COOCH2C6H6 -75.02CF3COOCH3 -74.21CF3COOEt (neat) -78.7CF3COO(CH2)n -74 to -75 C6F6 -164.9C6H5F -113.5p-FC6H4F -106.0 CFH2Ph -207C6H5CF3 -63.72C4F8 -135.15C5F10 -132.9CF3R -60 to -70 CHF2OR ~-82(CF3)2CO -84.6CH2CN -251F2 +422.92 CF3Cl -28.6ClF3 +116, -4 ClF5 +247,+412 CF2Cl2 -8CFCl2CFCl2 -67.8 CFBr3 +7.38CF2Br2 +7IF4F(equatorial) +58.9IF7 +170AsF3 -40.6AsF5 -66[AsF6]-1 -69.5BF3 -131.3 (CH3)2O.BF3 -158.3(C2H5)2O.BF3 -153[BeF4]-1 -163 MoF6 -278 ReF7 +345 SF6 +57.42 SO2F -78.5 S2O5F2 +47.2 SbF5 -108 [SbF6]-1 -109 SeF6 +55(C2H5)2SiF2 -143.0 SiF4 -163.3 [SiF6]-2 -127 TeF6 -57WF6 +166 XeF2 +258 XeF4 +438 XeF6 +550 NF3 147 SOF2 75.68 C6H5SO2F (dilute) 65.464 C6H5SO2F (20% conc) 65.514 SF6 (dilute) 57.617 SF6 (10% conc 57.42 SO2F2 33.17 CBr3F (dilute) 7.388 CBr3F (80% conc) 7.043 CCl2F2 -6.848 CClF3 -28.1 PF3 -34.0 (CF3)3N (dilute) -55.969 (CF3)3N (30% conc) -55.969 CF3CF2C F2I -60.470 CF4 -62.3 C6H5CF3 (dilute) -63.732C6H5CF3 (40% conc) -63.370PF5 -71.5l2F (dilute) -67.775l2F (20% conc) -67.834(C F3)3CF -74.625CF3CO2H (dilute) -76.530CF3CO2H (20% conc) -76.542CF3(CF2)5C F3 -81.60CF3(CF2)2C F3 -81.85[CF3CF2C F2]N -85.19POF3 -90.7CF3CF2C F2CF2CN -107.1CF3CF2CF2C F2CN -105.764Homonuclear CouplingsListed Coupling constant values pertain to F s shown in bold.Compound Coupling Constant (Hz) (C F3C F2)2NCF3 10.2(CF3C F2)2NC F3 15.18(C F3CF2)2NC F3 6.8[C F3C F2]3N 13.6C F3C F2N[CF3]2 <1CF3C F2N[C F3]2 16C F3CF2N[C F3]2 6(C F3C F2)2O 3.4(C F3]3C F 1.4C F3C F2H 2.8C F3C F H2 15.5CF3C F2CH F2 4.5C F3CF2CH F2 7.3CF3C F2CH2F15.2C F3CF2CH2F7.9CF2Cl.C F2.CH2F15.1C F2Cl.CF2.CH2F7.7C F2Cl.C F2.CH2F 3.9 CF2Br.C F2.CH2F15.5 C F2Br.CF2.CH2F7.7C F2Br.C F2.CH2F 3.9C F FBr.CH F Br 21CF F Br.CH F Br 24C FF Br.CHFBr 174C F FBr.CH F Cl 18CF F Br.CH F Cl 18C FF Br.CHFCl 177C F FBr.C F ClBr 13CF F Br.C F ClBr 14C FF Br.CFClBr 159 CF F(SiCl3).C F ClBr 16.8 C F F(SiCl3).C F ClBr 16.8 C FF(SiCl3).CFClBr 343 CF3.C FF.CFICl 270.4 C FF=CFCl 76C F F=C F Cl (cis) 56CF F=C F Cl (trans) 116C F Cl=C F Cl (cis) 37.5 C F Cl=C F Cl (trans) 129.57 C FF=CFCF3 57C F F=C F CF3 (cis) 39C F F=CFC F3 (trans) 116 CF F=C F CF3 (trans) 8CF F=CFC F3 (cis) 22 CFF=C F C F3 13 (cyclopropane) CH2.C FF.CHCH3 157 (cyclobutane) CH2.C l2 187 (cyclobutene) C FF.CH(C2H5).CCl2=CCl 192 (cyclobutane) C FF.CFF.CH2.CHCClH2 230 (cyclobutane) CFF.C FF.CH2.CHCClH2 240(cyclohexane) CFH.CFH.CFH.CFH.CFH.C FF284。

磷酸温度变化的影响

磷酸温度变化的影响

磷酸温度变化的影响英文Title: The Effects of Temperature Variation on Phosphoric AcidIntroduction:Phosphoric acid, a mineral acid with the chemical formulaH3PO4, plays a significant role in various industrial processes and applications. Temperature is a crucial factor that influences the properties and behavior of phosphoric acid. This article explores the effects of temperature variation on phosphoric acid, encompassing its physical and chemical characteristics, industrial applications, and environmental implications.Physical Properties:Temperature has a direct impact on the physical properties of phosphoric acid, including its viscosity, density, and solubility.As temperature increases, phosphoric acid's viscosity typically decreases, leading to improved fluidity and easier handling in industrial processes.The density of phosphoric acid decreases with increasing temperature, resulting in changes in its weight and volume, which must be accounted for in storage and transportation.Chemical Properties:Temperature variation affects the chemical equilibrium of phosphoric acid and its dissociation into ions. Phosphoric acid is a triprotic acid, meaning it can donate three hydrogen ions (H+) sequentially.Higher temperatures promote the dissociation of phosphoric acid into hydrogen ions and phosphate ions (H2PO4-, HPO4^2-, and PO4^3-), leading to increased acidity and conductivity.The rate of chemical reactions involving phosphoric acid, such as its reaction with metals or alkalis, is influenced by temperature. Higher temperatures generally accelerate reaction rates, while lower temperatures slow them down.Industrial Applications:In the food and beverage industry, phosphoric acid is commonly used as a food additive and acidulant in soft drinks, jams, and processed foods. Temperature variations during production and storage can affect the taste, stability, and shelf life of these products.Phosphoric acid is also utilized in fertilizer production, metal surface treatment, water treatment, and pharmaceutical manufacturing. Temperature control is essential to ensure product quality, process efficiency, and safety in these applications.In the production of phosphoric acid itself, temperature plays a critical role in various processes, including wet-process and thermal-process methods. Optimal temperature conditions are required to maximize yield, purity, and energy efficiency.Environmental Implications:Temperature variations in natural environments can influence the behavior and fate of phosphoric acid released into air, water, and soil.Elevated temperatures may enhance the volatility of phosphoric acid, leading to increased atmospheric emissions and potential air pollution.In aquatic ecosystems, temperature fluctuations can affect the solubility, mobility, and bioavailability of phosphoric acid and its derivatives, impacting aquatic organisms and water quality.Soil temperature influences the sorption, leaching, and transformation of phosphoric acid applied as fertilizer, affectingnutrient uptake by plants and potential environmental risks such as groundwater contamination.Conclusion:Temperature variation exerts significant effects on the properties, behavior, and applications of phosphoric acid across various industrial sectors and environmental contexts. Understanding these effects is crucial for optimizing processes, ensuring product quality, and mitigating potential environmental impacts associated with phosphoric acid usage. Effective temperature control and monitoring are essential for harnessing the benefits of phosphoric acid while minimizing its adverse effects on human health and the environment.。

温度对氟化物测定的影响

温度对氟化物测定的影响

温度对氟化物测定的影响作者:姚海珍来源:《中国新技术新产品》2010年第13期摘要:水中氟化物的测定方法主要有:离子色谱法、氟离子选择电极法、氟试剂比色法等,由于电极法选择性好,适用范围宽,水样浑浊、有颜色均可使用[1]而被广泛采用;离子选择电极法是电位分析方法的一种,它利用电极的电位对溶液中某种离子有选择性响应,来测定该离子的活度,从而确定这个离子的浓度;在这一过程中,温度是个很重要的因素,它对测定结果究竟有多大影响呢?本文从两个方面进行阐述。

关键词:电极法;氟化物;温度1 理论上在测定氟离子的过程中,当氟电极与含氟试液接触时,电池的电动势(E)随溶液中氟离子活度的变化而改变,遵守能斯特方程:E=E0-2.303RT/FlogαF-。

式中温度T不仅影响直线的斜率,也影响直线的截距。

E0包括参比电极电位、膜的内表面膜电位、液接电位等,这些电位值都与温度有关。

因此,我们可以看出,温度改变,电动势(E)必定有变化。

2 实验上2.1 仪器:氟离子选择电极;饱和甘汞电极或氯化银电极;离子活度计、毫伏计或pH计,精确到0.1mV;磁力搅拌器,聚乙烯或聚四氟乙烯包裹的搅拌子。

2.2 试剂:氟化物标准溶液;乙酸钠溶液;总离子强度调节缓冲溶液;盐酸溶液。

3 实验过程在不同的温度条件下,我们用F-的标准溶液做出了几条对比曲线,结果见表1。

由此可见,同一浓度的溶液在不同的温度下,电动势不同,且随着温度的升高,电动势增大。

那么,同一种样品在不同的温度下进行测定,它的结果会有多大差别呢?对中国环境监测总站氟化物为4.95+0.23mg/L的考核样品进行了测定,不同温度下的测定结果如表2。

不同温度下的几组数据,差别无显著意义,测定结果都在范围内(4.95+0.23mg/L),不受温度影响。

4 结果讨论由此可见,不同的温度条件下,同一浓度的样品其电动势虽然不同,但测定结果却是相同的。

因为计算样品浓度使用的标准曲线是在同一温度条件下测定的。

合成温度与时间对氟化石墨性能的影响研究

合成温度与时间对氟化石墨性能的影响研究

合成温度与时间对氟化石墨性能的影响研究夏金童 周声劢 征茂平 熊友谊 陈宗璋(湖南大学化学化工学院 长沙410082)摘 要 电解K F・2HF电解液制取氟气,并将其经二级净化设施纯化后,再与鳞片石墨粉(含炭>99%,粒度<40 m)在高温下直接进行反应,制得氟化石墨。

在本工艺条件下,保持温度500℃,经15小时合成反应所制备的氟化石墨经红外光谱测试分析,在波数1219cm-1处的吸收谱带强度最大,且其真密度、电阻率、含氟量和F/C值最高。

关键词 石墨氟化分类号 T Q165 氟化石墨层间键能(约2Kcal/mol)远较石墨层间键能(约9Kcal/mo l)为低[1],因此其具有石墨、二硫化钼远不及的润滑性,且不受使用环境的影响,特别是在高速、高压、高温条件下使用效果更佳。

用锂作阳极,氟化石墨作阴极,与非水系电解质组合成的电池,是一种高能量密度、高输出功率的新型电池[2],已引起化学电源研究者们的极大兴趣和重视。

由于氟化石墨具有一系列独特的物理化学性能,其潜在应用范围极为宽广。

氟化石墨的制备现主要采取石墨粉与单质氟气在高温下直接合成的工艺方法。

由于关键原料气体氟是卤族元素中电子亲合力和电离势最大的元素,能与绝大多数元素发生快速剧烈反应,因此开发研制氟化石墨难度较大并具有一定的危险性。

由于氟化石墨是高科技精细功能材料,加之其关键技术被日、美等先进工业国家所垄断,90年代初其价格每克约1美元,现仍十分昂贵,迄今为止,国内无生产厂家,也未见到这方面的研究报道。

为了缩小我国与先进工业国家在氟化石墨研究与开发领域中的巨大差距,开展氟化石墨的合成研究,是一项十分有意义的工作。

1 实验研究1.1 技术路线本研究制定的工艺技术路线见图1。

其中的氟气电解槽、氟气净化装置、反应炉等为自行设计制造和安装,整个气体通道均为不锈钢管。

1.2 氟气制备制备氟气的电解液用KF和H F配制,它们的摩尔数之比为1:2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EXPERIMENTAL AND RESULTS
We were primarily interested in the study of the second virial screening coefficient ol. The screening constant u is directly related to IJ~by the following equation (2): u - cro= u,/v, $ u,/v,; + * * *, PII
u--o=-
01
V?ll
and
U, =M--.
a6
aP
Here, M is the molecular weight, p the gas density in gm/cc, the screening constant for an isolated unperturbed molecule is uo, and 6 is the chemical shift. From this relationship, the temperature dependence for both (Tand ul are obtained. The density and temperature dependences of the 19F chemical shifts for CH,CF, and CD,CF, gases are shown in Fig. 1. Chemical shifts were measured in the pressure range 5-25 atm. Below 5 atm, the resonance signal was not strong enough to measure by conventional methods. Above 25 atm, the gas condensed. Since the sensitivity decreases by the Boltzmann factor and there is a chance of explosion at higher temperatures, measurement above 77°C was not taken. The 19F chemical shifts at zero pressure and room temperature are given in Table 1 and the second virial screening coefficients are reported in Table 2. Experimental chemical shift data give a,(CH,CF,) - u,(CD,CF,) = (-0.284 & 0.018) x 1O-6
JOURNAL
OF MAGNETIC
RESONANCE
8,152-l
58 (1972)
Temperature and Pressure Dependence of 19FChemical ~~if~~ i Pure CH,CF, and CD,CF, Gases*
S. M~HANTY
Columbia University, New York 10027
In a recent article (I), we have reported the temperature and pressure dependence of chemical shifts in pure CF4, SiF, and SF, gases and in gaseous mixtures The results were interpreted in terms of intermolecular contributions (I, 2). Any vibrational contribution to the observed temperature dependence was assumed to be small and neglected. A qualitative discussion justified this assumption for these systems. Ramsey (3) and Buckingham (4) have given theories for vibrational and rotational effects on the shielding constant. Hindermann and Cornwell (5) have attributed the measured difference in r9F shielding between DF and HF molecules in the gas phase to zeropoint vibrational averaging. Raynes et al. (6) have made vibrational and rotational averaging for the ‘H shift between HD and Hz molecules. Petrakis and Sederholm (7) first reported the temperature dependence of ‘H chemical shift in gases and ascribed this effect to excitation of vibrational modes of the molecules. In most of these works, the intermolecular contribution has been neglected completely. The experimentally observed temperature dependence of the chemical shift of any gaseous system is the sum of intermolecular and intramolecular (vibrational and rotational excitations) contributions. Buckingham (4) has discussed all these effects for rH shifts in HCl gas. For diatomic isotopic molecules like HF and DF, the “rotational” contributions to u and dajdT are the same (4). Only excitation of vibrational modes contributes to the change in the chemical shifts in such isotopic molecules so far as the intramolecular effect is concerned. The vibrational effect is expected to be large for vibrational modes of low frequency. Consequently, we have selected two isotopic molecules CH,CF3 and CD3CF3 with low vibrational (e.g., torsional) frequencies.
where V, is the molar volume. Since ‘H and 19F chemical shifts are found experimentally to be linear with density of the gas, higher-order corrections can be neglected. Thus, one has
AND

H. J.
BERNSTEIN
Division of Chemistry, National Research Council of Canada, Ottawa, Ontario KlA OR6, Canada Received December 3,197l Precise 19F NMR chemical shifts of CH3CF3 and CD&Z&in the gas phase have been obtained. These shifts are linear with density and nonlinear with temperature. The temperature dependence is described in terms of intermolecular and intramolecular (vibrational and rotational excitations) contributions to shielding. Relative magnitudes of these contributions are discussed. INTRODUCTION
IgF
* Issued as NRCC No. 12590.
Copyright Q 1972 by Academic Press, Inc. All rights of reproduction in any form reserved.
152
FLUORINE
CHEMICAL
SHIFTS
IN
GASES
at 30°C and (-0.285 i 0.018) x low6 at 77°C. These shielding differences are equal within the experimental errors and quite small compared to their absolute values (-263 x lo+). At constant pressure (10 atm), lgF chemical shifts relative to the gas at zero pressure are For CH,CF,, 0.360 x 10m6at 30°C
相关文档
最新文档