(完整word版)滚动轴承故障诊断分析

合集下载

(完整word版)(整理)滚动轴承故障诊断分析章节

(完整word版)(整理)滚动轴承故障诊断分析章节

滚动轴承故障诊断滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。

许多旋转机械的故障都与滚动轴承的状态有关。

据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。

可见,轴承的好坏对机器工作状态影响极大。

通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。

而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。

最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。

这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听音棒以提高灵敏度。

后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。

这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。

随着对滚动轴承运动学、动力学的深化研究,对轴承振动信号中频率成分和轴承零件的几何尺寸及缺陷类型的关系有了比较清楚的了解,FFT级数的发展也使得利用频率域分析和检测轴承故障成为一种有效的途径。

也是目前滚动轴承监测诊断的基础。

从发展的历程看,滚动轴承故障检测诊断技术大致经历了以下阶段:1961年,W.F.Stokey完成了轴承圈自由共振频率公式的推导,并发表;1964年,O.G.Gustafsson研究了滚动轴承振动和缺陷、尺寸不均匀及磨损之间的关系,这与目前诊断滚动轴承故障的方法是基本一致的;1969年,H.L.Balderston根据滚动轴承的运动分析得出了滚动轴承的滚动体在内外滚道上的通过频率和滚动体及保持架的旋转频率的计算公式。

至此,有关滚动轴承监测诊断的理论体系已经基本完成;1976年,日本新日铁株式会社研制了MCV-021A机器检测仪,其方法是通过检测低频、中频和高频段轴承的信号特征来判断轴承的工作状态;1976~1983年之间,日本精工公司也积极在滚动轴承检测仪器方面做工作,相继推出了NB系列轴承检测仪,利用1~15kHz范围内的轴承振动信号的有效值(rms)和峰峰值(p-p)来诊断轴承的故障;1980年代至今,以改良频率分析的方法来精密诊断滚动轴承的故障、确定故障位置,一直是精密诊断采取的必备方法,其中包括细化谱分析、倒频谱分析、共振解调技术、包络分析技术等。

轴承故障诊断与分析

轴承故障诊断与分析
LOGO
轴承故障诊断与分析
LOGO
主要内容
1 2 3 4
轴承相关简介 滚动轴承故障诊断与分析 滑动轴承故障诊断与分析
参考文献
LOGO
轴承(Bearing)是机械中的固定机件。当其他机件在轴上彼此产生 相对运动时,用来保持轴的中心位置及控制该运动的机件,就称之为 轴承。轴承是各种机电设备中的重要组成部件,在各个机械部门有着 广泛的应用。
LOGO
小波包分析
小波包分析(Wavelet Packet Analysis) 是一种比小波分析更精细的分析方 法,它将频带进行多层次划分,并对小波变换中没有细分的高频部分做进一步 分解,从而提高时频分辨率。 小波包分解是一种分解更为精细的分解方法,它不仅对低频段部分进行分解, 而且对高频段部分也进行分解,并能根据分析信号的特征,自适应地选择相应 的频带,使之与信号频谱相匹配,从而提高时频分辨率。因此,小波包分析可以 提取振动信号中能量突出的频带,分析其频率特征,找出故障产生的根源。
故 障 诊 断 技 术
时频域分析 光纤诊断分析 油液诊断分析 轴承润滑状态监测诊断法 声学诊断分析(基于声发射)
热诊断(热成像诊断和温度诊断)
LOGO
基于振动信号诊断技术及分析
基于振动信号的诊断技术能够诊断大多数滚动轴 承故障,其优点是可在运动中测得轴承信号。目 前国内外开发生产的各种滚动轴承故障诊断与监 测仪器大都是根据振动法的原理制成的。 步骤:
LOGO
小波变换
小波变换是时间(空间)频率的局部化分析,它通过伸缩平 移运算对信号(函数)逐步进行多尺度细化,最终达到高频 处时间细分,低频处频率细分,能自动适应时频信号分析 的要求,从而可聚焦到信号的任意细节,有人把小波变换 称为“数学显微镜”。 小波分析是调和分析的重大突破。它继承和发展了Gobor 变换的局部化思想,同时又克服了窗口大小不随频率变化、 缺乏离散正交基的缺点,不仅是比较理想的局部频谱分析 工具,而且在时域也具有良好的局域性。通过小波分解能 够把任何信号(平稳或非平稳)映射到由一个小波伸缩、平 移而成的一组基函数上,在通频范围内得到分布在各个不 同频道内的分解序列,其信息量是完整的。

滚动轴承故障及其诊断方法

滚动轴承故障及其诊断方法
轴承因受到过大的冲击载荷、静载荷、落入硬质异物等 在滚道表面上形成凹痕或划痕。
而一旦有了压痕,压痕引起的冲击载荷会进一步引起附近 表面的剥落。
这样,载荷的累积作用或短时超载就有可能引起轴承塑性 变形。
1滚动轴承异常的基本形式
(4).腐蚀
润滑油、水或空气水分引起表 面锈蚀(化学腐蚀)
轴承内部有较大的电流通过造 成的电腐蚀
2.3 滚动轴承的振动及其故障特征
2. 幅值域中的概率密度特征 滚动轴承正常时和
发生剥落损伤时的轴 承振动信号的幅值概 率密度分布如图。
轴承振动的概率密度分布
从图中可以看出,轴承发生剥落时,幅值分布的幅 度广,这是由于存在剥落的冲击振动。这样,从概率 密度分布的形状,就可以进行异常诊断。
3 滚动轴承故障诊断方法
2.2 滚动轴承的特征频率
➢ 为分析轴承各部运动参数,先做如下假设: (1)滚道与滚动体之间无相对滑动; (2)每个滚道体直径相同,且均匀分布在内外滚道之间 (3)承受径向、轴向载荷时各部分无变形;
方法: 研究出不承受轴向力时轴承缺陷特征频率,进而,推导出 承受轴向力时轴承缺陷特征频率
1. 不承受轴向力时 轴承缺陷特征频率
d Dm
)
fr
滚动轴承的特征频率
➢ (3) 轴承内外环有缺陷时的特征频率:
➢ 如果内环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fi
f Bi Z
1 (1 2
d Dm
) frZ
➢ 如果外环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fo
f Bo Z
1 (1 2
d Dm
)
f
r
Z
➢ (4) 单个滚动体有缺陷时的特征频率:如果单个有缺陷的 滚动体每自传一周只冲击外环滚道(或外环)一次,则其 相对于外环的转动频率为

滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述引言:滚动轴承作为机械设备中常用的零部件之一,承担着支撑和传递载荷的重要作用。

然而,由于使用环境的恶劣和工作条件的复杂性,滚动轴承往往容易出现各种故障。

因此,为了保证机械设备的正常运行和延长轴承寿命,对滚动轴承的故障进行准确诊断非常重要。

一、故障诊断方法1. 观察法观察法是最常用的故障诊断方法之一。

通过观察滚动轴承的外观和运行状态来判断是否存在故障。

例如,如果发现滚动轴承有异常噪声、温度升高、润滑油泡沫、振动加剧等现象,很可能是轴承出现了故障。

2. 振动诊断法振动诊断法是一种先进的故障诊断方法,可以通过检测轴承的振动信号来判断轴承是否存在故障。

通过分析振动信号的频谱图,可以确定轴承故障的类型和位置。

常用的振动诊断方法包括时域分析、频域分析和小波分析等。

3. 声音诊断法声音诊断法是一种通过听觉判断轴承故障的方法。

通过专业人员对轴承产生的声音进行听觉分析,可以判断轴承是否存在异常。

常见的轴承故障声音包括金属碰撞声、摩擦声和振动声等。

4. 热诊断法热诊断法是一种通过测量轴承的温度来判断轴承故障的方法。

由于轴承在故障状态下会产生摩擦热,因此轴承的温度可以间接反映轴承的工作状态。

通过测量轴承的温度分布,可以判断轴承是否存在异常。

二、故障诊断技术1. 模式识别技术模式识别技术是一种基于机器学习的故障诊断技术,可以根据轴承的振动信号和声音信号等特征,通过训练模型来识别轴承的故障类型。

常用的模式识别技术包括支持向量机、神经网络和决策树等。

2. 图像诊断技术图像诊断技术是一种通过图像处理和分析来判断轴承故障的技术。

通过对轴承的外观图像进行特征提取和分类,可以实现对轴承故障的自动诊断。

常用的图像诊断技术包括边缘检测、纹理分析和目标识别等。

3. 声音信号处理技术声音信号处理技术是一种通过对轴承声音信号进行滤波、频谱分析和特征提取等处理,来判断轴承故障的技术。

通过对声音信号的频谱图和时域图进行分析,可以判断轴承故障的类型和位置。

滚动轴承的故障诊断方法研究

滚动轴承的故障诊断方法研究

滚动轴承的故障诊断⽅法研究滚动轴承的故障诊断⽅法研究第1章绪论1.1研究的⽬的和意义滚动轴承是⽣产机械中的地位⽆可替代,当然也最易损坏的部件。

其运⾏状态会直接影响整台机械⼯作效率、精度寿命和可靠性。

滚动轴承的损坏会导致⽣产机械剧烈振动,并伴有强⼤噪声,不仅会影响产品的加⼯质量,严重时会导致⽣产机械的损坏或机械事故。

随着电机的⼴泛应⽤及其⾃动化程度的不断提⾼,对其安全性、精度和故障诊断的准确性的要求也随之提⾼。

传统的诊断⽅法不仅成本较⾼、准确率偏低,并且更新费⽤⾼,已然不能满⾜⾼科技设备的需求。

基于以上原因,本⽂在虚拟仪器的环境下,利⽤多传感器信息融合技术,实现滚动轴承的故障诊断,会对现在和将来的⽣产技术提供强有⼒的帮助。

1.2国内外电机滚动轴承故障诊断的研究现状近现代以来,国内和国外的研究机构及学者在电机滚动轴承故障诊断的理论、技术与⽅法等⽅⾯进⾏了⼤量的研究分析⼯作,发表了诸多研究成果。

在国外,美国南卡罗林娜⼤学运⽤振动响应的多参数多频率的⽅法,对具有裂纹的和损伤的故障轴承进⾏诊断,⽬前已经取得了良好的成果。

美国宾州⼤学采⽤alpha beta -gamma跟踪滤波器和Kalman滤波器,对轴承故障的智能预⽰实现了完美成功。

⽇本九州⼯业⼤学运⽤基因算法优化组合特征参数,成功诊断出⼯况滚动轴承微弱故障。

意⼤利的Cassino⼤学,使⽤⾃谱技术对出现的轴承进⾏检测,判断故障轴承的初始问题,到⽬前为⽌也取得了有效的研究成果。

国外的这些技术有我们值得借鉴的地⽅,去其糟粕取其精华,研究更有技术的故障轴承诊断系统。

在国内,当滚动轴承存在故障时,⼤都以振动检测为主,因为轴承故障后常伴随巨⼤的声响,以及明显的外观表现。

国内的主要研究成果如下图所⽰。

或⾃⾝故障等多个⽅⾯的原因,会对故障造成误判或错判,如:声级计传感器易受到噪声的⼲扰,不能准确、⽆失真的反映滚动轴承的真实信号,温度传感器由于易受到外界温度的⼲扰,也常会出现误判或者错判等等。

滚动轴承的故障诊断

滚动轴承的故障诊断

滚动轴承的故障诊断一、滚动轴承的常见故障滚动轴承是转动设备中应用最为广泛的机械零件,同时也是最容易产生故障的零件。

据统计,在使用滚动轴承的转动设备中,大约有30%的机械故障都是由于滚动轴承而引起的。

滚动轴承的常见故障形式有以下几种。

1. 疲劳剥落(点蚀)滚动轴承工作时,滚动体和滚道之间为点接触或线接触,在交变载荷的作用下,表面间存在着极大的循环接触应力,容易在表面处形成疲劳源,由疲劳源生成微裂纹,微裂纹因材质硬度高、脆性大,难以向纵深发展,便成小颗粒状剥落,表面出现细小的麻点,这就是疲劳点蚀。

严重时,表面成片状剥落,形成凹坑;若轴承继续运转,将形成大面积的剥落。

疲劳点蚀会造成运转中的冲击载荷,使设备的振动和噪声加剧。

然而,疲劳点蚀是滚动轴承正常的、不可避免的失效形式。

轴承寿命指的就是出现第一个疲劳剥落点之前运转的总转数,轴承的额定寿命就是指90%的轴承不发生疲劳点蚀的寿命。

2. 磨损润滑不良,外界尘粒等异物侵入,转配不当等原因,都会加剧滚动轴承表面之间的磨损。

磨损的程度严重时,轴承游隙增大,表面粗糙度增加,不仅降低了轴承的运转精度,而且也会设备的振动和噪声随之增大。

3. 胶合胶合是一个表面上的金属粘附到另一个表面上去的现象。

其产生的主要原因是缺油、缺脂下的润滑不足,以及重载、高速、高温,滚动体与滚道在接触处发生了局部高温下的金属熔焊现象。

通常,轻度的胶合又称为划痕,重度的胶合又称为烧轴承。

胶合为严重故障,发生后立即会导致振动和噪声急剧增大,多数情况下设备难以继续运转。

4. 断裂轴承零件的裂纹和断裂是最危险的一种故障形式,这主要是由于轴承材料有缺陷和热处理不当以及严重超负荷运行所引起的;此外,装配过盈量太大、轴承组合设计不当,以及缺油、断油下的润滑丧失也都会引起裂纹和断裂。

5. 锈蚀锈蚀是由于外界的水分带入轴承中;或者设备停用时,轴承温度在露点以下,空气中的水分凝结成水滴吸附在轴承表面上;以及设备在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。

滚动轴承故障诊断分析全解

滚动轴承故障诊断分析全解

滚动轴承故障诊断分析全解
滚动轴承是机械设备中的重要元件,也是故障率最高的构件。

其突发的故障可能会严重影响机械设备的正常运行,即使是轻微的故障,也会降低设备的使用寿命。

因此,对滚动轴承的故障进行及时诊断和维修,是确保轴承的正常运行的关键。

本文将对滚动轴承故障诊断进行全面阐述,以便于有助于轴承的可靠运行。

一般来讲,滚动轴承的故障可以归结为以下几类:
(1)疲劳损坏:由于长期的使用,滚动轴承中的滚动体和锥形齿轮等内部零件可能会因疲劳而损坏,最终导致轴承的故障;
(2)腐蚀破坏:由于设备运行时的温度、湿度及磨损较大,滚动轴承容易受到空气、油品及其他化学性腐蚀剂的作用,从而造成内部零件的磨损;
(3)水分侵入:滚动轴承组装后,如果存在漏油现象,则滚动轴承内部容易污染,从而导致滚动体及锥形齿轮等内部零件受损;
(4)润滑油工作性能不佳:润滑油在机械设备运行时,若由于品质或温度等原因,润滑油的性能不佳,轴承容易受到损坏;
(5)安装不良:滚动轴承安装后,若没有正确地调整轴的负荷和动转瞬间,将会对轴承组件产生振动和噪音,从而导致故障。

滚动轴承故障诊断

滚动轴承故障诊断

第二组实验轴承故障数据:数据打开后应采用X105_DE_time作为分析数据,其他可作为参考,转速1797rpm轴承型号:6205-2RS JEM SKF, 深沟球轴承采样频率:12k Hz1、确定轴承各项参数并计算各部件的故障特征频率通过以上原始数据可知次轴承的参数为:轴承转速r=1797r/min;滚珠个数n=9;滚动体直径d=;轴承节径D=39mm;:滚动体接触角α=0由以上数据计算滚动轴承不同部件故障的特征频率为:外圈故障频率f1=r/60 * 1/2 * n(1-d/D *cosα)=内圈故障频率f2=r/60 * 1/2 * n(1+d/D *cosα)=滚动体故障频率f3=r/60*1/2*D/d*[1-(d/D)^2* cos^2(α)]=保持架外圈故障频率f4=r/60 * 1/2 * (1-d/D *cosα)=2.对轴承故障数据进行时域波形分析将轴承数据导入MATLAB中直接做FFT分析得到时域图如下:并求得时域信号的各项特征:(1)有效值:;(2)峰值:;(3)峰值因子:;(4)峭度:;(5)脉冲因子:;(6)裕度因子::3.包络谱分析对信号做EMD模态分解,分解得到的每一个IMF信号分别和原信号做相关分析,找出相关系数较大的IMF分量并对此IMF分量进行Hilbert变换。

由图中可以看出经过EMD分解后得到的9个IMF分量和一个残余量。

IMF分量分别和原信号做相关分析后得出相关系数如下:由上表得:IMF1的相关系数明显最大,所以选用IMF1做Hilbert包络谱分析。

所得Hilbert包络谱图如下:对包络谱图中幅值较大区域局部放大得到下图由以上包络图的局部放大图中可以看出包络图中前三个峰值最大也最明显,三个峰值频率由小到大排列分别为、、。

把这三个频率数值和前文计算所得的理论值进行比较可知:频率值最大为和内圈的故障理论计算特征频率f2=相近,说明此轴承的故障发生在轴承的内圈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滚动轴承故障诊断分析学院名称:机械与汽车工程学院专业班级:学生姓名:学生学号:指导教师姓名:摘要滚动轴承故障诊断本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。

通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。

本文对特征参数的提取,理论推导,和过程都进行了详细的阐述,关键词:滚动轴承;故障诊断;特征参数;特征;ABSTRACT :The Rolling fault diagnosisIn the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this paper, the parameters of the extraction, theoretical a nalysis, and process are described in detail. Keywords: Rolling Bearing; Fault Diagnosis; Symptom P arameter; Distinction Index; Distinction Rate0引言:随着科技的发展,现代工业正逐步向生产设备大型化、复杂化、高速化和自动化方向发展,在提高生产率、降低成本、节约能源、减少废品率、保证产品质量等方面具有很大的优势。

但是,由于故障所引起的灾难性事故及其所造成的对生命与财产的损失和对环境的破坏等也是很严重的,这就使得人们对诸如航空航天器、核电站、热电厂及其他大型化工设备的可靠性、安全性提出了越来越高的要求。

除了在设计与制造阶段,通过改进可靠性设计、研究和应用新材料、新工艺以及加强生产过程中的质检控制措施提高系统的可靠性与安全性外,提高系统可靠性与安全性的另一个重要途径就是对系统的工作状态进行实时的监测与诊断,从而实现对设备的有效控制,并对灾难性故障的发生进行预警,为采取相应的补救措施提供有效的信息。

故障诊断理论就是为了满足对系统可靠性和安全性要求的提高,减少并控制灾难性事故的发生而发展起来的。

因此,故障诊断理论的发展必将促进故障监测和监控系统的快速发展与广泛应用,从而可以进一步的提高系统运行的可靠性与安全性,并由此产生巨大的经济和社会效益。

而滚动轴承是旋转机械最重要的零部件之一,也是旋转机械中的易损零件。

据统计旋转机械的故障有30%是由轴承故障引起的, 轴承的故障会导致机器剧烈振动和产生噪声, 甚至会引起设备的损坏。

因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。

滚动轴承诊断方法有倒频谱分析、特征参数分析法、冲击脉冲法、包络分析法、小波分析等。

振动分析是对滚动轴承进行状态监测和故障诊断的常用方法。

一般方式为:利用数据采集器在设备现场采集滚动轴承振动信号并储存,传送到计算机,利用振动分析软件进行深入分析,从而得到滚动轴承各种振动参数的准确数值,进而判断这些滚动轴承是否存在故障。

1滚动轴承的故障形式滚动轴承在正常情况下,长时间运转也会出现疲劳剥落和磨损。

而制造缺陷、对重偏差大、转子不平衡、基础松动、润滑油变质等因素会加速轴承的损坏。

疲劳剥落滚动轴承的内外滚道和滚动体交替进入和退出轴承区域,这些部件因长时间承受交变载荷的作用,首先从接触表面以下最大交变切应力处产生疲劳裂纹,继而扩展到接触表面在表面产生点状剥落,逐步发展到大片剥落,称之为疲劳剥落。

磨损长时间运转使轴承的内外滚道和滚动体表面不可避免的产生磨损,持续的磨损使轴承间隙增大,振动和噪声增加。

润滑不良和硬质颗粒进入滚道会加速轴承的磨损。

断裂当轴承所受载荷、震动过大时,内外圈的缺陷位置在滚动体的反复冲击下,缺陷逐步扩展而断裂。

锈蚀水分或酸碱性物质直接侵入会引起轴承锈蚀。

当轴承内部有电流通过时,在滚道和滚动体的接触点处引起电火花而产生电腐蚀,在表面上形成搓板状的凹凸不平。

擦伤由于轴承的内外滚道和滚动体表面上的微观凸起或硬质颗粒使接触面受力不均,在润滑不良、高速重载工况下,因局部摩擦产生的热量造成接触面局部变形和摩擦焊合,严重时表面金属可能局部融化,接触面上作用力将局部摩擦焊接点从基体上撕裂。

2滚动轴承的失效形式轴承失效通常划分为四个阶段:第一阶段:在轴承失效的初始阶段,故障频率出现在超声频段。

有多种信号处理手段能够检测到这些频率,如峰值能量gSE、应力波PeakVue、包络谱ESP、冲击脉冲SPM等。

此时,轴承故障频率在加速度谱和速度频谱图上均无显示。

第二阶段:轻微的轴承故障开始激起轴承元件的固有频段,一般在500~2KHz范围内。

同时该频率还作为载波频率调制轴承的故障频率。

起初只能观察到这个频率本身,后期表现为在固有频率附近出现边频。

此时,轴承仍可安全运转。

第三阶段:轴承故障频率的谐波开始出现,边频带数目逐渐增多。

谐波有时会比基频更早被发现。

峰值能量gSE、应力波PeakVue、包络谱ESP、冲击脉冲SPM所测故障频率幅值显著升高。

加速度频谱图上也可能观察到轴承故障的高次谐波。

此时需要停机检修。

第四阶段:在加速度和速度频谱图上均能看到轴承故障频率的基频和高次谐波,并伴随有转速频率的边频带,各种手段所测频谱图的基底噪音水平升高,继而轴承故障频率开始消失被随机振动或噪音代替。

能明显听到故障轴承产生的噪声。

此时轴承已处于危险状态。

3故障分析方法3.1 倒频谱分析法倒频谱分析也称为二次频谱分析,是对信号x(t)作进一步的谱分析而得到的,通过对滚动轴承典型故障的振动信号功率谱和倒频谱的比较分析,可知倒频谱能将主要的信息从复杂的频率成分和噪声中识别出来,能较好地辨别出故障特征频率和其它特征频率。

在相关文献中采用倒频谱分析技术准确,快速地判定故障发生在轴承滚动体上。

3.2 特征参数分析法3.2.1 时域特征参数分析时域的特征参数分析包括有效值、峰值、峰值因子、峭度指标等方法。

有效值是指振动振幅的均方根值,表现滚动轴承振动的瞬时值随着时间在不断地进行变化,可用于检测表面皱裂无规则振动波形的异常,但对表面剥落或伤痕等具有瞬变冲击振动的异常是不适用的;峰值是在某个时间内振幅的最大值,对瞬时现象也可得出正确的指示值,对滚动体对保持架的冲击及突发性外界干扰或灰尘等原因引起的瞬时振动比较敏感;峰值因子是峰值与有效值的比,该值适用于点蚀类故障的诊断。

通过对峰值因子值随时间变化趋势的监测,可以有效地对滚动轴承进行早期预报,并能反映故障的发展趋势;峭度指标Kv 定义为归一化的4 阶矩,对于其振幅满足正态分布规律的无故障轴承,其峭度指标值约为3,随着故障的出现和发展,峭度指标值具有与峰值因子类似的变化趋势;3.2.2 频域特征参数分析当轴承无故障运行时,能量基本上集中在低频段;有故障时,故障引起的冲击力或摩擦力激发起轴承的高频振动,能量向中频段及高频段转移。

信号的功率谱反映了信号的能量随频率的分布情况,即反映了信号中的频率成分以及各频率成分的能量大小情况。

由此可以看出,通过描述功率谱中主频带位置的变化及谱能量分布的分散程度,可以较好地描述信号频域特征的变化。

频域参数主要有重心频率、均方频率、均方根频率、频率方差、频率标准差等。

3.3 冲击脉冲法(SPM 法)滚动轴承存在缺陷时,如有疲劳剥落、裂纹、磨损和滚道进入异物时,会发生冲击,引起脉冲性振动。

冲击脉冲的强弱反映了故障的程度,它还和轴承的线速度有关。

目前,基于该原理的故障诊断设备还广泛应用于工厂之中。

在有关文献中,作者对传统SPM的检测方法进行改进,成功地建立聚丙烯造粒机滚动轴承的在线监测仪器系统,并在现场运行中成功检测出轴承的运行故障,避免重大事故的发生。

3.4 包络分析法包络分析是目前诊断轴承和齿轮故障的最有效方法。

包络分析是一种基于滤波检波的振动信号处理方法。

包络分析在进行频谱分析之前,首先对振动信号进行高通或带通滤波,滤掉低频成分,然后对信号进行包络解调,提取附载在高频载波信号上的低频调制信号。

最后经过低频滤波,滤掉高频载波,剩下包络之后的低频振动信号。

目前,常用的包络解调分析方法有:宽带解调技术、共振解调技术、选频解调技术、Hilbert 解调技术等。

3.5 小波分析小波分析是继傅里叶分析之后,在20世纪80年代开始逐渐发展成熟起来的一个有力的信号分析工具。

滚动轴承的故障特征信号比较弱,被淹没在高频振动和噪声中不容易分辨,然而经典的功率谱方法又难以检测出信噪比较低的故障特征信号,并且对微弱的故障特征信号不敏感,影响了诊断的可靠性和精确性。

小波分析具有多尺度性和“数学显微镜”特性,这使得小波分析能识别振动信号中的突变信号。

并且小波变换的空间局部化性质用来来分析信号的奇异性是非常有效的。

小波变换可以对振动信号进行不同层度的分解,获取信号不同尺度的轮廓信息和细节信息,其反映了信号的本质信息从而为识别故障特征信号和其干扰信号提供了可能。

四、案例分析4.1电力机车滚动轴承诊断案例分析当一个发生局部损伤的轴承运行时,由于滚动体的不断滚动,在接触损伤时会发生周期性的冲击信号,但在故障的早期阶段,这些特征往往淹没于噪声之中,很难分辨,这为更大的故障发生留下了隐患。

因此需要及时发现故障并排除,保证机械设备的安全运行。

本节中将基于改进相邻系数法的多小波降噪方法应用于机车滚动轴承的早期故障诊断中,致力于提取强噪声背景下的微弱故障特征。

这里所检测的客运型电力机车走行部的滚动轴承与1节中为同一轴承,轴承参数如表1所示,损伤如图1所示。

测试时,采样频率为12800Hz,轴承转速为481r/rain。

可计算外圈的故障特征频率f=53Hz,而相应的周期即为18.9ms。

采集到的时域振动信号如图1所示。

可以看到,噪声强度很大,淹没了特征信息,通过时域信号很难分辨出存在冲击。

首先采用FFT与谱峭度方法分析信号。

相关文档
最新文档