最新1光电检测系统的基本工作原理

合集下载

光检测器工作原理

光检测器工作原理

光检测器工作原理
光检测器是一种用来测量光的强度、波长、频率和相位等参数的仪器。

它的工作原理可以分为两种类型:光电效应和光学效应。

一、光电效应
光电效应是指光照射到特定材料表面时,会产生光电子的释放现象。

光检测器利用光电效应来测量光的强度或波长。

其中一种常见的光电效应是光电子效应,即光照射到金属表面时,金属中的电子会被激发并从金属表面解离出来。

光检测器中的金属接收到光信号后,激发的电子会产生电流或电压,通过测量电流或电压的大小就可以知道光的强度或波长。

另一种光电效应是光致电离效应,即光照射到半导体材料表面时,会产生电子-空穴对,从而产生电流。

光检测器中的半导体材料接收到光信号后,电子-空穴对的产生会引起电流的变化,通过测量电流的变化就可以得到光的强度或波长。

二、光学效应
光学效应是指光在材料中的传播和衍射现象。

光检测器利用光学效应来测量光的频率、相位或其他参数。

其中一种常见的光学效应是干涉现象,即光在多个光学路径上相遇时会产生干涉,干涉现象与光的波长和相位有关。

光检测器中的光信号经过光学路径后,会产生干涉现象,通过测量干涉现象的变化就可以得到光的频率、相位或其他参数。

另一种光学效应是衍射现象,即光通过细缝或光栅等物体时会发生弯曲和扩散现象。

光检测器中的光信号经过细缝或光栅等物体后,会发生衍射现象,通过测量衍射的模式和角度就可以得到光的波长或其他参数。

综上所述,光检测器的工作原理主要包括光电效应和光学效应。

通过利用这些效应,可以实现对光的强度、波长、频率和相位等参数的测量。

光电检测器工作原理

光电检测器工作原理

光电检测器工作原理光电检测器是一种将光信号转换为电信号的装置。

其工作原理可以分为以下几个步骤:1. 光信号入射:光线经过透镜等光学元件聚焦成束,射向光电检测器的光敏元件。

2. 光敏元件吸收光能:光敏元件通常使用半导体材料,如硅、锗及化合物半导体等。

光敏元件能够吸收入射光的能量,使其内部的电子被激发。

3. 电子运动:激发后的电子受到电场的作用,开始在光敏元件中运动。

一部分电子通过电流传输到输出电路中。

4. 电荷生成:当光敏元件中的电子受到光照时,会产生一些正电荷不断积累,形成电荷对。

一部分电子-空穴对会在光敏元件中一直保持平衡,这样就形成了一个光生载流子。

5. 转化为电信号:通过连接在光敏元件上的电路,将电荷对转化为电信号。

这个电信号能够被检测器所连接的仪器或设备所读取和处理。

总结来说,光电检测器的工作原理就是利用光敏元件吸收光能,并将其转化为电信号。

这种转化过程是通过光生载流子的产生和电子运动来实现的。

光电检测器的性能主要由光敏元件的材料和结构决定。

不同的光电检测器根据其材料和结构的不同,可以实现不同波段的光信号检测。

当光线入射到光敏元件上时,光子的能量被转化为电子的激发能量。

这种转化过程产生了一个光生电子空穴对。

接下来,这些电子和空穴会被电场分开,形成电流。

光电检测器通常有不同的工作模式,包括光电导模式、光电二极管模式、光电倍增管模式和光电子倍增管模式等。

以下是一些光电检测器的工作原理:1. 光电二极管(Photodiode):光电二极管是一种PN结构的半导体器件。

当光照射到PN结上时,光子的能量被转化为电子的能量,并通过PN结的电场将电子和空穴分开,形成电流。

2. 光电导(Photoconductor):光电导使用光敏物质,如硒化铟(InSe)或硒化铟镉(InCdSe)等。

当光照射到光电导上时,光子的能量使光电导的电阻发生变化,从而产生电流。

3. 光电子倍增管(Photomultiplier Tube,PMT):光电子倍增管由光电阴极和多个倍增极组成。

光电检测器的工作原理

光电检测器的工作原理

光电检测器的工作原理
光电检测器是一种利用光电效应原理来检测光信号的装置。

它由光电发射器和光电接收器两部分组成。

光电发射器是一个发射光源,常见的有发光二极管(LED)或激光器。

当电流通过发光二极管时,其内部的半导体材料会发出特定波长的光。

光电接收器是一个接收光信号并产生电信号的元件,常见的有光敏二极管(LDR)或光电二极管(photodiode)。

光敏二极管或光电二极管的外围电路会对接收到的光信号进行放大和处理。

光电检测器的工作原理是当光电发射器发出的光照射到光电接收器上时,光能被光电接收器吸收并转化为电能。

这个转化过程是通过光电效应实现的。

光电效应的基本原理是当光束照射到半导体材料上时,光子会激发半导体材料中的电子跃迁到导带上,形成电子空穴对。

而这些电子空穴对可以导致半导体中的电流流动。

当光电接收器中的光电二极管或光敏二极管吸收到光子后,其内部会产生电流。

这个电流大小与光强度成正比。

通过对光电接收器产生的电流进行测量,我们可以间接地获得光的强度或光的存在与否。

光电检测器广泛应用于多个领域,如光通信、光电传感、光电测量等。

在各个领域中,光电检测器都起到了至关重要的作用。

光电检测两种基本工作原理

光电检测两种基本工作原理

光电检测两种基本工作原理光电检测是一种广泛应用于自动控制、仪器仪表、光学信号测量等领域的技术。

它通过光电传感器来实现光信号的检测和转化,从而实现对物体特征及其动态变化的测量。

光电检测技术在生产过程中被广泛使用,可以提高生产线的自动化程度,提高生产效率和质量。

下面将详细介绍光电检测的两种基本工作原理。

一种基本工作原理是光电敏感效应原理。

在光电传感器中,我们常常使用光敏器件来感受和转换光信号。

光敏器件是一种能够将光信号转化为电信号的电子器件。

它包括光敏电阻、光敏二极管、光敏三极管等。

当光信号照射到光敏器件上时,器件内部的光敏材料会发生光电效应,产生电流或电压信号。

通过测量这个信号的强度和变化,我们就可以获得光信号的相关信息。

另一种基本工作原理是光电反射原理。

在一些特殊的应用中,我们需要根据物体的反射光来进行光电检测。

这时,我们使用光电传感器中的光源和光敏器件来实现对物体反射光的检测。

光源会发射一束光,当物体处于光源的照射范围内时,它会反射部分光到光敏器件上。

光敏器件会感应到这个反射光,并将其转化为电信号。

通过对这个电信号的测量和分析,我们可以得到物体的特征和状态信息。

光电检测技术具有许多优点。

首先,它对被测物体没有接触,无需直接接触物体表面,避免了在测量过程中对物体造成损害的可能性。

其次,光电检测具有高精度和快速的特点,可以实时准确地获取物体的信息。

此外,光电传感器的体积小、重量轻,便于安装和使用,并且具有较长的使用寿命。

在实际应用中,我们可以根据需要选择合适的光电传感器和适当的光源来实现光电检测。

在选择光源时,应考虑被测物体的特性和环境条件,例如光强度、波长等。

在选择光敏器件时,要考虑其灵敏度、响应速度以及稳定性等因素。

总之,光电检测技术是一种非常重要和实用的技术,它通过光电传感器实现对物体特征和状态的检测,广泛应用于自动化控制和仪器仪表等领域。

掌握光电检测的基本工作原理,可以帮助我们更好地理解和应用这一技术,提高工作效率和产品质量。

光电检测器工作原理(一)

光电检测器工作原理(一)

光电检测器工作原理(一)光电检测器工作原理1. 简介光电检测器是一种能够将光信号转化为电信号的设备。

它在许多领域中都有广泛的应用,如光通信、光电传感等。

本文将从浅入深地介绍光电检测器的工作原理。

2. 光电检测器结构光电检测器通常由以下几个主要部分组成: - 光敏元件:负责接收光信号并产生电荷携带子。

- 电荷放大器:用于将光敏元件产生的微弱电荷转化为可观测的电信号。

- 信号处理电路:对电信号进行增强、滤波和解调等处理。

- 输出接口:将处理后的电信号输出给后续电路或设备。

3. 光敏元件的工作原理光敏元件是光电检测器的核心部分,常见的光敏元件有光电二极管(Photodiode)和光电导(Phototransistor)。

光电二极管光电二极管是一种具有半导体特性的元件。

当光照射到光电二极管的结区域时,光能会激发光电二极管内的载流子生成和移动,从而产生电流。

其工作原理主要包括以下两个过程: 1. 光吸收:光能被半导体材料吸收,形成电子-空穴对(Electron-Hole Pair)。

2. 电荷分离:由于内建电势的作用,电子和空穴被分离,形成电流。

光电导光电导是一种基于光敏二极管的光敏元件。

其工作原理类似于光电二极管,但光电导在集电极和基极之间引入了一个电流放大层,可以增强输出电流。

工作原理主要包括以下两个过程: 1. 光吸收和电子-空穴对的生成。

2. 电子和空穴进入电流放大层,引发电流放大,产生更大的输出电流。

4. 电荷放大器的工作原理电荷放大器是将光敏元件产生的微弱电荷进行放大的关键部分。

它采用了放大电路和电容器的组合,实现了电荷的积分和放大。

其工作原理主要包括以下几个步骤: 1. 电荷积分:电荷放大器中的电容器开始积放光敏元件产生的电荷。

2. 放大电路:在一定的时间间隔内,电荷放大器会将电容器上积累的电荷放大为可观测的电信号。

3. 放大比例:电荷放大器的放大比例决定了输出信号的幅度。

5. 信号处理电路的工作原理信号处理电路对电信号进行增强、滤波和解调等处理,以满足特定应用的需求。

光电检测教案模板及反思

光电检测教案模板及反思

教学对象:高中一年级教学目标:1. 知识目标:使学生了解光电检测的基本原理、应用领域和发展趋势。

2. 能力目标:培养学生运用光电检测技术解决实际问题的能力。

3. 情感目标:激发学生对光电检测技术的兴趣,培养学生的创新意识和团队协作精神。

教学重点:1. 光电检测的基本原理2. 光电检测器的种类及其应用3. 光电检测系统的组成及工作原理教学难点:1. 光电检测器的工作原理2. 光电检测系统的设计与应用教学过程:一、导入1. 提问:同学们,你们知道什么是光电检测技术吗?它在我们的生活中有哪些应用?2. 学生回答,教师总结并引入新课。

二、新课讲解1. 光电检测的基本原理- 讲解光电效应、光电转换原理- 结合实例,说明光电检测技术的应用领域2. 光电检测器的种类及其应用- 介绍光电检测器的种类,如光电二极管、光电三极管、光电倍增管等- 分析各类光电检测器的特点及适用范围3. 光电检测系统的组成及工作原理- 讲解光电检测系统的基本组成,如光源、光电检测器、信号处理器等- 分析光电检测系统的工作原理,说明各部分之间的联系三、课堂练习1. 让学生根据所学知识,设计一个简单的光电检测系统2. 学生分组讨论,教师巡视指导四、课堂小结1. 总结本节课所学内容,强调重点和难点2. 布置课后作业,要求学生查阅资料,了解光电检测技术的最新发展动态五、课后反思本节课教学效果较好,以下是反思:1. 教学内容丰富,结合实例讲解,使学生更容易理解光电检测技术的原理和应用。

2. 课堂练习环节,学生积极参与,提高了课堂氛围。

3. 教学过程中,注重培养学生的创新意识和团队协作精神,通过小组讨论,让学生在实践中学习。

4. 课后作业要求学生查阅资料,了解光电检测技术的最新发展动态,有助于拓宽学生的知识面。

不足之处:1. 部分学生对光电检测技术的原理理解不够深入,需要加强课后辅导。

2. 课堂练习环节,部分学生完成度不高,需要加强课堂管理,确保每个学生都能参与其中。

光电检测系统原理

光电检测系统原理

光电检测系统原理
光电检测系统是一种常用的检测技术,其原理基于光电效应。

光电效应是指当光照射到物质表面时,光子的能量被电子吸收,使电子获得足够的能量从而跳出原子的束缚,产生自由电子。

在光电检测系统中,一般采用光敏元件作为光电转换器件。

光敏元件根据其工作原理的不同可以分为光电二极管、光电三极管、光敏电阻等。

当光照射到光敏元件上时,会产生光生电流或改变电阻值,这种电信号可以被测量、放大并进一步处理。

光电检测系统的光源也是至关重要的组成部分。

光源的选择要根据被检测物体的特性来确定,可以使用白光、激光、红外线等不同种类的光源。

在某些应用中,还需要使用滤光片来选择特定波长的光源。

此外,光电检测系统中还包含光电信号的处理与分析。

光电信号一般较弱,需要经过放大、滤波、调整等处理,以提高信号质量和准确性。

处理之后的信号可以用于后续的数据分析、控制指令等。

总的来说,光电检测系统通过利用光电效应将光信号转化为电信号,进而实现对被检测物体的非接触式检测。

这种检测方式具有灵敏度高、响应速度快、精度较高等特点,广泛应用于工业制造、生命科学、环境监测等领域。

光电检测系统

光电检测系统

长度:直尺、游标卡尺、千分尺
电压:万用表
质量:天平
间接测量:测量几个与被测量相关的物理量,通过函数关系式 计算出被测量。例如:
电功率:P = I * V(电流/电压)
重力加速度:单摆测量(L:摆的线长,T:摆动的周
期)
g

4
T
2L
2
返回
光电探测器的种类
类型 PN结
非PN结 电子管类
以光电子学为基础,以光电器件为主体,研究和发展光电信 息的形成、传输、接收、变换、处理和应用。它涉及到:
1、光电源器件(包括激光器)和可控光功能器件及集成 2、光通信和综合信息网络 3、光频微电子 4、光电方法用于瞬态光学观测 5、光电传感、光纤传感和图象传感 6、激光、红外、微光探测,定向和制导 7、光电精密测试,在线检测和控制技术 8、混合光电信息处理、识别和图象分析
光信息量化的变换方式在位移量(长度、宽 度和角度)的光电测量系统中得到广泛的应 用。
若长度信息量L量化为条纹信息量,则长度 L=qn
q为量化单位,采用莫尔条纹变换时,其为光栅节距,达到微米 量级;若采用激光干涉时,其 等于激光波长的二分之一或四分之一;n为条纹个数。
信息载入光学信息的方式
光通讯方式的信息变换
光电检测系统
光 光 被 光 光变 电

学 系 统
测 对 象
学 变 换
电换 传电 感路
信 号 处 理
存储 显示 控制
光学变换
电路处理
Байду номын сангаас
光电检测系统
光学变换
时域变换:调制振幅、频率、相位、脉宽 空域变换:光学扫描 光学参量调制:光强、波长、相位、偏振 形成能被光电探测器接收,便于后续电学处理的光学信息。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1光电检测系统的基本工作原理1光电检测系统的基本工作原理。

光电检测系统是指对待测光学量或由非光学待测物理量转换成的光学量,通过光电变换和电路处理的方法进行检测的系统。

光电检测系统的基本组成及各部份的主要作用。

光电检测系统的组成:三要素:检测对象、光、光电变换。

能否使光束准确地携带所要检测量的信息,是决定所设计系统成败的关键光电检测技术的现代发展1)非接触化发展2)尽可能多的信息量3)集成化,智能化发展光电检测方法(1).光信息携带的物理量可分为:光强型、频率型、相位型、脉冲型、偏振型、位置型等(2).所用的光学现象分为:衍射法、干涉法、全息法、散射法、光谱法、莫尔条纹法、光扫描法等(3)从检测系统角度分为:直接作用法、差动法(差分法)、补偿法光辐射所带的信息如光强分布、时间、光谱能量分布、温度分布等由光电探测器转变成电信号测量出来2系统误差在检测过程中产生恒定不变的误差叫恒差或按一定规律变化的误差叫变差,统称为系统误差。

系统误差产生的原因有工具误差、装置误差、方法误差、外界误差和人身误差等随机误差在尽力消除并改正了一切明显的系统误差之后,对同一待测量进行反复多次的等精度测量,每次测量的结果都不会完全相同,而呈现出无规则的随机变化,这种误差称为随机误差。

灵敏度系统在稳态下输出量变化引起此变化的输入量变化的比值算术平均值:均方差或标准误差算术平均值的标准偏差均方差的标准误差σσ最大误差测量精度大误差测值出现的处理主要方法是:(1) 认真检查有无瞬时系统误差产生,及时发现并处理。

(2) 增加检测的次数,以减小大误差测值对检测结果的影响。

(3) 利用令人信服的判据,对检测数据进行判定后,将不合理数据给予剔除辐射度量(Radiometry):能量的分布的强弱、时间、空间等特性辐射能本身的客观度量,是纯粹的物理量。

光度量 (Photometry) :考虑到人眼的主观感受,包括生理学、心理学在内。

1)辐射能(Q):简称辐能,描述以辐射的形式发射、传输或接收的能量,单位焦耳(J)例:地球表面垂直阳光方向上,每平方米面积上每分钟太阳辐射能48000J。

(2)辐射密度(w) :定义为单位体积元内的辐射能,即8416.011==∑=NnnxNxσˆ0025.0)(11ˆ12=--=∑=NnnxxNσ00095.0===Nsxσσ00067.02==Nσσσxkxσ=∆%100⨯∆=xxJD(3)辐射通量或者辐射功率(Φ,P):定义为以辐射的形式发射、传输或接收的功率,用以描述辐能的时间特性。

4)辐射强度(I ):定义为在给定传输方向上的单位立体角内光源发出的辐射通量,即辐射强度描述了光源辐射的方向特性,且对点光源的辐射强度描述具有更重要的意义大多数光源向空间各方向的辐射强度是不均匀的。

辐射强度描述了光源在空间某个方向上发射辐射通量的大小和分布。

5)辐亮度 (L):定义为光源在垂直其辐射传输方向上单位表面积单位立体角内发出的辐射通量,即辐射亮度与辐射强度有何区别 前者描述面光源,后者描述点光源。

6)辐射出射度 (M):定义为离开光源表面单位面元的辐射通量,即 辐照度 (E ):定义为单位面元被照射的辐射通量,即辐照度和辐射出射度具有相同的定义方程和单位,但却分别用来描述微面元发射和接收辐射通量的特性 如果一个表面元能反射入射到其表面的全部辐射通量,那么该面元可看作是一个辐射源表面,即其辐射出射度在数值上等于照射辐照度为了描述光源的光通量与辐射通量的关系,通常引入光视效能K,其定义为目视引起刺激的光通量与光源发出的辐射通量之比,单位为lm/W 。

它度量了同样的辐射功率下人眼的不同亮度感觉。

照度和亮度的区别 不要把照度跟亮度的概念混淆起来。

它们是两个完全不同的物理量。

照度表征受照面的明暗程度,照度与光源至被照面的距离的平方成反比。

亮度是表征任何形式的光源或被照射物体表面是面光源时的发光特性。

如果光源与观察者眼睛之间没有光吸收现象存在,那么亮度值与二者间距离无关辐射度学和光度学 区别:1.适用范围 辐射度学适用于整个电磁波谱。

光度学适用于可见光波段。

2.参量性质不同 辐射度学量是客观物理参量。

光度学量生理量,由人眼感觉确定 联系:1.都是描述光辐射的强弱。

2.所用物理符号一一对应. 朗伯余弦定律 朗伯体反射或发射辐射的空间分布可表为 按照朗伯辐射体亮度不随角度θ 变化的定义 即 即在理想情况下,朗伯体单位表面积向空间规定方向单位立 体角内发射(或反射)的辐射通量和该方向与表面法线方向的夹角α的余弦成正比——朗伯余弦定律。

2. 朗伯体辐射出射度与辐亮度的关系图2-9,极坐标对应球面上微面元dA 的立体角为: 设朗伯微面元dS 亮度为L ,则辐射到dA 上的辐射通量为在半球内发射的总通量P 为按照出射度的定义得2.3 光电检测器件的特性参量(上)利用光电效应,把入射到物体表面的辐射能变换成可测量的电量 (下)利用热电效应,反映入射光辐射量dQ w dv=dQ dtΦ=2cos cos d dIL d dA dA θθΦ==Ωd M dAΦ=00()()()m e V m eeK V d K K V d λλλλλ∞∞ΦΦ===ΦΦ⎰⎰2cos d P L dAd θ=Ω0cos I I L dA dA θθ==0cos I I θθ=2sin dAd d d r ααϕΩ==⋅2cos sin d P L dsdd αααϕ=2/20cos sin P Lds d d Ldsππϕαααπ==⎰⎰PM Ldsπ==光磁电效应与霍尔效应 光磁电效应中在磁场作用下移动的是电子空穴对,而霍尔效应中移动的是自由电子。

2)针对材料不同,一个是半导体材料,一个是导体材料。

3)使用情形也不一样,一个需要光照,一个不需要响应度定义为单位辐射度量产生的电信号量,记作R ,电信号可以是电流,称为电流响应度;也可以是电压,称为电压响应度。

对应不同辐射度量的响应度用下标来表示对辐射通量的电流响应度(AW-1) 对辐照度的电流响应度(AW-1m2) 对辐亮度的电流响应度(AW-1m2Sr)探测器的响应度一般是波长的函数。

与上面定义的积分响应度对应的光谱响应度为光磁电效Φ=Φ/I R EI R E /=LI R L /=积分响应度和光谱响应度的关系为探测器的辐射通量光谱电流响应度为:对于光电探测器,由于受到材料能带之间的间隙——禁带宽度Eg的限制,响应波长具有长波限,最大响应波长为任何虚假的和不需要的信号称为噪声。

噪声总是伴随着测量信号存在测量过程是一个去除噪声、复原真实信号的过程研究噪声的目的:探讨系统探测信息的极限,以及在系统设计中如何抑制噪声以提高探测本领。

噪声的分类及性质外部干扰噪声:人为干扰噪声的和自然干扰噪声。

人为干扰:电器、电子设备的干扰噪声。

如焦距测量仪在日光灯下,人的走动对干涉仪的光程影响。

自然干扰:大气和宇宙间的干扰,雷电、太阳等。

如光电导盲器在太阳下受的干扰。

可采用适当的屏蔽、滤波等方法减小或者消除。

内部噪声:人为噪声和固有噪声两类。

人为噪声:工频干扰和寄生反馈造成的自激干扰。

如工频交流电(50Hz)、测试仪器的散热风扇引起的光路变化。

合理的设计和调整将其消除或者减小到允许范围。

固有噪声:光电探测器中光子和带电粒子不规则运动造成的。

散粒噪声、热噪声、产生-复合噪声、1/f 噪声、温度噪声,不可消除实际中,满足测量系统工作性能的前提下,尽可能减小频带宽度。

一种方法是利用固定频率对信号进行控制,如锁频技术;另一种是增加信号的积分时间,缩小测量系统的频带。

信号电流与噪声电流的均方根值之比——信噪比,作为表征探测系统探测能力和精度的一个十分重要的指标,记作SNR。

噪声等效功率是探测器产生与其噪声均方根电压相等的信号所需入射到探测器的辐射功率,即信噪比等于1时所需要的最小输入光信号的功率()()()() , () ,()()()()E LI I IR R RE LλλλλλλλλλΦ===Φ()()()()()(), ,()()()E LE LR d R E d R L d IR R Rd E d L dλλλλλλλλλλλλλλλλλλλλλΦΦΦ====ΦΦ⎰⎰⎰⎰⎰⎰()()()()()1239.8I qRhcληλληλλλλΦ===Φmax1.24/1.24/()gg AEE Eλ⎧⎪=⎨+⎪⎩内光电效应外光电效应2s NSNR I I=221KN kkI I==∑2NIΦ引入NEP的倒数探测率D来表示探测器的探测能力3按照发光机理,光源又可以分成热辐射光源、气体发光光源、固体发光光源和激光器四种。

1)热辐射光源:电流流经导电物体,使之在高温下辐射光能的光源。

包括白炽灯和卤钨灯两种。

2)气体发光光源:电流流经气体或金属蒸气,使之产生气体放电而发光的光源。

气体放电有弧光放电和辉光放电两种。

3)固体发光光源:电场作用下,使固体物质发光的光源,电能直接转变为光能。

包括场致发光光源和发光二极管(LED)两种。

4)激光器:按工作物质分类,可分为气体激光器、固体激光器、燃料激光器和半导体激光器一般的光电检测系统都要求光源特性满足检测需要,光源发光光谱与探测器的光谱响应要匹配光源选的基本要求主要包括哪三个方面1.对光源发光光谱特性的要求2.对光源发光强度的要求3.对光源稳定性的要求人工光源按照其工作原理大致分为热光源、气体放电光源、固体光源和激光光源热光源三大特点1.发光特性(光谱分布、出射度、亮度)可以用普朗克公式估算。

2.发出连续光谱,谱宽很宽,适应性强3. 大多属于电热型,可以通过控制输入电量控制发光特性。

作用:1.一般光电检测的光源(白光干涉)2.光(辐射)度量中做标准光源或标准辐射源,计量标准传递。

激光方向性好、高单色性和高亮度三个重要特性特点:极小的光束发散角激光的单色性好;激光的输出功率密度很高激光器种类繁多,按工作物质分类:固体激光器(如红宝石激光器)气体激光器(如氦-氖气体激光器、二氧化碳激光器)半导体激光器(如砷化镓激光器)液体激光器。

气体激光器 氦氖激光器要输出波长有0.6328μm 、1.15μm 和339μm ,氩离子激光器它的输出波长有多个,功率主要集中在0.5145μm 和0.4880μm 两条谱线 二氧化碳激光器输出谱线波长分布在9~11μm ,通常10.6μm固体激光器 红宝石激光器694.3 nm 玻璃激光器1.06μm 波长YAG 激光器1064 nm固体激光器运行方式多样:连续,脉冲,调Q,锁模等,可以获得高平均功率,高重复率,高脉冲能量,高峰值功率激光;主要在红外波段工作,采用光学泵浦方式; 结构紧凑,寿命较长,稳定可靠; ND:YAG,红宝石,钕玻璃激光器 半导体激光器0.84μm激光器除可作为检测光源外.还有着广泛的应用,其它主要用途有:(1)激光用作热源。

相关文档
最新文档