发电厂电气部分课程设计

合集下载

发电厂电气部分课程设计

发电厂电气部分课程设计

目录设计任务书(置于目录前) (1)纲要 (3)前言 (4)1 系统与负荷资料剖析 (5)2电气主接线 (6)2.1 主接线方案的选择 (6)2.2 主变压器的选择与计算 (9)2.3 厂用电接线方式的选择 (11)2.4 主接线中设施配置的的一般规则 (13)3短路电流的计算 (14)3.1 短路计算的一般规则 (14)3.2 短路电流的计算 (15)3.3 短路电流计算表 (16)4电气设施的选择 (17)4.1 电气设施选择的一般规则 (17)4.2 电气选择的条件 (17)4.3 电气设施的选择 (20)4.4 电气设施选择的结果表 (22)5* 配电装置 (23)5.1 配电装置选择的一般原则 (23)5.2 配电装置的选择及依照 (25)结束语 (26)参照文件 (27)附录Ⅰ:短路计算 (28)附录Ⅱ:电气设施的校验 (33)附录 3:设计总图 (39)1、系统与负荷资料剖析依据原始资料,本电厂是中型发电厂,比较凑近负荷中心。

本电厂要向当地域的各工厂公司供电,还要与 220KV系统相连,并担负着向市里供电,保障市里人民生产和生活用电的责任。

因为本厂的地理地点优胜,一般状况下都简单获取燃料,能保证当地域以及邻近的工厂、市里的正常供电,还能够向220KV供给电能。

由资料我们可知,本电厂以110KV的电压等级向用户送电。

这里有两电压等级,分别是 110KV,有 8 回出线; 220KV,有 10 回出线,所有负荷有Ⅰ、Ⅱ、Ⅲ级负荷。

1.1 220KV电压等级架空线 10 回, I 级负荷,最大输送200MW,T MAX=6000h/a ;cos=0.85 。

出线回路数大于 4 回且为 I 级负荷,应采纳双母带旁路或一台半。

1.2 110KV电压等级架空线 8 回,Ⅰ级负荷,最大输送180MW,T MAX=6000h/a ;cos=0.85 。

出线回路数大于 4 回且为 I 级负荷,为使其出线断路器检修时不断电,应采纳双母分段或双母带旁路,以保证其供电的靠谱性和灵巧性。

发电厂电气部分课程设计

发电厂电气部分课程设计

课程设计报告专业班级姓名学号指导教师目录一、原始资料分析 (1)1.1设计原始资料 (1)1.2设计任务 (1)1.3设计资料分析 (1)二、主接线设计 (2)2.1主接线设计原则 (2)2.2备选主接线方案 (4)2.3 技术经济指标对比 (5)2.4 拟定主接线 (6)三、厂用电设计 (7)3.1厂用负荷分类及容量统计 (7)3.2厂用电压等级设定 (8)3.3厂用电主接线设计 (8)3.3.1中性点接地方式 (8)3.3.2厂用母线分段 (9)3.3.3厂用电源的引接方式 (9)四、短路电流计算 (11)4.1机组(或变压器)选型 (11)4.1.1发电机组选型 (11)4.1.2发电厂主变压器选定 (11)4.2电路元件参数计算 (13)4.2.1发电机电抗 (13)4.2.2变压器电抗 (13)4.3网络变换 (14)4.4短路点选择 (15)4.5短路电流计算 (15)4.5.1 K1短路时 (15)4.5.2 K2短路时 (17)4.6计算成果汇总 (19)五、电气设备选型 (20)5.1电气设备选型的技术要求 (20)5.1.1一般原则 (20)5.1.2技术条件 (20)5.1.3环境条件 (21)5.2高压断路器选型 (22)5.2.1主变220kV侧及其出线断路器的选择 (23)5.2.2主变110kV侧及其出线断路器的选择 (24)5.3高压隔离开关选型 (25)5.3.1主变220kV侧及其分段隔离开关 (25)5.3.2主变110kV侧及其分段隔离开关 (26)5.4互感器选型 (27)5.4.1电流互感器选型 (27)5.4.2电压互感器选型 (29)5.5母线导体的选型 (30)5.5.1选择要求 (30)5.5.2母线选择 (32)六、附录 (34)一、原始资料分析1.1设计原始资料1、发电厂情况(1)、类型:火电厂(2)、发电厂容量与台数 23002200MW ⨯+⨯,发电机电压15.75kV ,cos 0.85ϕ=。

长沙理工大学《发电厂电气部分》课程设计

长沙理工大学《发电厂电气部分》课程设计

目录摘要.............................................................................................. - 2 -引言.............................................................................................. - 4 -第一篇设计说明书 .................................................................. - 5 - 第一节变电站主接线选定方案................................................ - 5 - 第二节变压器选定方案......................................................... - 7 - 第三节断路器与隔离开关选定方案 .................................... - 7 - 第四节母线选定方案............................................................. - 9 -第二篇设计计算书.............................................................. - 9 - 第一节电气主接线 .................................................................. - 9 - 第二节主变压器选择............................................................. - 19 - 第三节设备型号选择............................................................. - 21 - 断路器与隔离开关的选择 ................................................. - 24 -母线的选择........................................................................ - 29 - 设计心得体会........................................................................... - 32 -摘要由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。

电厂电气部分课程设计

电厂电气部分课程设计

电厂电气部分课程设计一、课程目标知识目标:1. 学生能够理解并掌握电厂电气系统的基础知识,包括发电机、变压器、配电装置等主要设备的结构与工作原理。

2. 学生能够了解电厂电气设备的运行维护及安全管理措施,明确各类电气设备的安全操作规程。

3. 学生掌握电厂电气主接线及辅助接线的基本原理,具备分析和设计简单电气接线图的能力。

技能目标:1. 学生能够运用所学知识,分析电厂电气设备在实际运行中可能出现的故障及原因,并提出相应的解决措施。

2. 学生通过实验和操作练习,掌握基本的电气设备检查、维护和操作技能,提高动手能力。

3. 学生能够利用电气接线图进行简单电气系统的分析和设计,培养解决实际问题的能力。

情感态度价值观目标:1. 学生在学习过程中,培养对电力工程及电气设备的兴趣,增强对电力行业发展的关注和责任感。

2. 学生通过学习电厂电气设备的安全操作规程,树立安全意识,养成良好的安全操作习惯。

3. 学生通过小组合作和讨论,培养团队协作精神和沟通能力,提高自身综合素质。

本课程旨在帮助学生掌握电厂电气设备的基本知识,提高实际操作技能,同时注重培养学生的安全意识和团队协作能力,为今后从事电力工程及相关领域工作打下坚实基础。

二、教学内容本课程教学内容主要包括以下几部分:1. 电厂电气设备概述:介绍发电机、变压器、配电装置等主要设备的结构、原理及性能,对应教材第一章。

2. 电厂电气主接线及辅助接线:讲解电气主接线的基本原理、接线方式及辅助接线的配置,对应教材第二章。

3. 电厂电气设备运行与维护:分析电厂电气设备的运行特性、维护方法及安全管理措施,对应教材第三章。

4. 电气设备故障分析及处理:探讨电气设备在实际运行中可能出现的故障类型、原因及处理方法,对应教材第四章。

5. 电气设备操作与检查:教授电气设备的操作方法、检查流程及注意事项,对应教材第五章。

6. 电气接线图分析与设计:培养学生分析、设计简单电气接线图的能力,对应教材第六章。

电厂电气部分课程设计

电厂电气部分课程设计

电厂电气部分课程设计一、课程目标知识目标:1. 让学生掌握电厂电气设备的基本原理和结构,理解其工作流程。

2. 使学生了解电厂电气设备的主要参数及其在电力系统中的作用。

3. 帮助学生掌握电厂电气设备的安全操作规程和日常维护方法。

技能目标:1. 培养学生能够正确使用电厂电气设备,进行简单的操作和维护。

2. 提高学生分析电厂电气设备故障原因及处理问题的能力。

3. 培养学生运用所学知识解决实际问题的能力。

情感态度价值观目标:1. 培养学生对电厂电气设备的兴趣,激发他们学习电力知识的热情。

2. 培养学生团队合作意识,学会在团队中沟通交流,共同解决问题。

3. 增强学生的安全意识,认识到遵守安全操作规程的重要性。

课程性质:本课程为专业实践课程,以理论教学和实践操作相结合的方式进行。

学生特点:学生为高中年级,具备一定的物理和电学基础,对电厂电气设备有一定了解,但实践经验不足。

教学要求:结合学生特点,注重理论与实践相结合,强化实践操作环节,提高学生的实际操作能力和解决问题的能力。

通过课程学习,使学生能够达到预定的学习成果。

二、教学内容本课程教学内容主要包括以下几部分:1. 电厂电气设备基本原理:讲解电厂电气设备的工作原理,包括发电机、变压器、断路器、隔离开关等主要设备。

2. 电厂电气设备结构:介绍电厂电气设备的主要结构组成,使学生了解各部件的作用和相互关系。

3. 电厂电气设备参数:阐述电厂电气设备的主要技术参数,如额定电压、额定电流、短路电流等,分析其在电力系统中的作用。

4. 安全操作规程与维护:详细讲解电厂电气设备的安全操作规程,以及日常维护保养方法。

5. 故障分析与处理:分析电厂电气设备常见故障原因,教授学生如何进行故障排查及处理。

6. 实践操作:安排学生进行电厂电气设备的实际操作,包括设备启动、停止、切换等操作,以及简单故障排除。

教学内容安排与进度:1. 第1周:电厂电气设备基本原理及结构介绍。

2. 第2周:电厂电气设备主要参数学习。

发电厂电气部分课程设计

发电厂电气部分课程设计

一煤矸石电厂基础资料1.1电厂基本情况煤矸石电厂装机为两台高温高压循环流化床锅炉配两台50MW冷凝式汽轮机2*50MW发电机;采用发电机变压器单元接线,发电机出口电压为6KV,经变压器升压为110KV送入电网;常用高压工作电源由发电机主回路经限流电抗器接引,发电机出口电压为6KV,发电机至110KV升压变压器的引线采用封闭母线。

1.2环境条件该所位于某乡镇,有公路可达,海拔高位86米,土壤点阻系数P=25000,土壤地下0.8米处温度20摄氏度;该地区年最高温度40摄氏度,最低温度-10摄氏度,最热月7月份其最高气温月平均34.0摄氏度,最冷月1月份其最低气温月平均值为1摄氏度;年雷暴雨日数为58天。

1. 3电源情况厂用高压工作电源由发电机主回路经限流电抗器接引,启动备用电源由110KV系统电源降为6KV取得。

二设计说明书电力系统要求发电厂的电能生产要安全、可靠、节能,技术经济合理,能够长期稳定的向电力系统输送电能。

此设计有2*50MW的两台发电机,本文根据2*50MW煤矸石发电厂的实际情况,并适当考虑生产的发展。

按供电的基本要求,首先对该电厂的原始资料进行分析处理:首先对厂用电的接线方式的初步选择,电厂容量的大概估算等;其次,根据电厂的容量进行厂用变压器的初步选择,并对其相关的参数进行计算;再者,因为该发电机的机压为6KV与该电厂的6KV 高压母线为同一等级,所以不用设厂用高压变压器,为了限制发电机出口处的短路电流,所以这里采用分列电抗器,待选完厂用变压器以及分离电抗器后,开始进行短路计算,断路器的选择以及电动机的选择和校验做准备。

此发电厂共包含四个车间五类负荷,它们包括6KV厂用高压负荷、0.4KV主厂房厂用负荷、电除尘车间的常用负荷、气力除灰车间的厂用负荷以及化水车间的厂用负荷。

在主厂房内(按1#机组说明)共需厂用低压变压器两台,它们的容量是相同的都为1000KVA,型号为SL7—1000/6,在电除尘车间,由于常用负荷的容量减小,故变压器的容量也相对减小,该车间内我们采用的变压器型号为SL7—800/6,在气力除灰车间,我们采用的变压器的型号为SL7—250/6,在化水车间我们采用的变压器的型号为SL7—400/6。

发电厂电气部分课程设计

发电厂电气部分课程设计

一、对原始资料分析
14
(1)工程情况,包括发电厂类型(凝汽式火电厂,热 工程情况,包括发电厂类型 凝汽式火电厂 凝汽式火电厂, 工程情况 电厂,或者堤坝式、引水式、混合式水电厂等), 电厂,或者堤坝式、引水式、混合式水电厂等 , 设计规划容量(近期 远景),单机容量及台数, 近期、 设计规划容量 近期、远景 ,单机容量及台数, 最大负荷利用小时数及可能的运行方式等。 最大负荷利用小时数及可能的运行方式等。 发电厂运行方式及利用小时数直接影响着主接线 设计。承担基荷为主的发电厂,设备利用率高, 设计。承担基荷为主的发电厂,设备利用率高, 一般年利用小时数在5000h以上;承担腰荷的发 以上; 一般年利用小时数在 以上 电厂,设备利用小时数应在3000~ 5000h;承担 电厂,设备利用小时数应在 ~ ; 峰荷的发电厂,设备利用小时数在3000h以下。 以下。 峰荷的发电厂,设备利用小时数在 以下
二、电气主接线设计的原则
电气主接线设计的基本原则是以设计任务书为依 以国家经济建设的方针、政策、技术规定、 据,以国家经济建设的方针、政策、技术规定、 标准为准绳,结合工程实际情况, 标准为准绳,结合工程实际情况,在保证供电可 调度灵活、满足各项技术要求的前提下, 靠、调度灵活、满足各项技术要求的前提下,兼 顾运行、维护方便,尽可能地节省投资, 顾运行、维护方便,尽可能地节省投资,就近取 力争设备元件和设计的先进性与可靠性, 材,力争设备元件和设计的先进性与可靠性,坚 持可靠、先进、适用、经济、美观的原则。 持可靠、先进、适用、经济、美观的原则。
发电厂电气部分课程设计
1. 2. 3. 4. 5. 电气主接线设计原则和程序 主接线方案的拟定与选择 计算短路电流 选择电气设备 绘制电气主接线图
1. 电气主接线设计原则和程序

发电厂电气部分教案

发电厂电气部分教案

发电厂电气部分教案一、教学目标1. 让学生了解发电厂电气部分的基本概念、原理和组成。

2. 使学生掌握发电厂电气部分的主要设备及其工作原理。

3. 培养学生对发电厂电气部分的安全操作和维护能力。

二、教学内容1. 发电厂电气部分的基本概念发电厂电气部分的定义发电厂电气部分的作用2. 发电厂电气部分的组成发电机变压器开关设备电缆和线路3. 发电厂电气部分的主要设备及其工作原理发电机的工作原理变压器的工作原理开关设备的工作原理电缆和线路的工作原理4. 发电厂电气部分的安全操作操作规范操作注意事项5. 发电厂电气部分的维护保养维护保养内容维护保养周期三、教学方法1. 讲授法:讲解发电厂电气部分的基本概念、原理和组成。

2. 演示法:展示发电厂电气部分的主要设备及其工作原理。

3. 实践法:进行发电厂电气部分的安全操作和维护保养实践。

四、教学准备1. 教材:发电厂电气部分相关教材。

2. 课件:发电厂电气部分的相关图片、图表和动画。

3. 设备:发电机、变压器、开关设备等模型或实物。

4. 工具:维护保养工具和设备。

五、教学评价1. 考试:评估学生对发电厂电气部分的基本概念、原理和组成的掌握程度。

2. 实践操作:评估学生在实际操作中的安全性和维护保养能力。

3. 课堂表现:评估学生在课堂上的参与程度、提问回答等情况。

六、教学安排1. 课时:本章节共计4课时。

2. 教学步骤:a) 复习上节课的内容。

b) 讲解本节课的教学内容。

c) 进行课堂讨论和提问。

d) 总结本节课的主要内容。

七、教学内容1. 发电厂电气部分的自动化控制系统自动化控制系统的定义自动化控制系统的作用自动化控制系统的组成2. 发电厂电气部分的保护系统保护系统的定义保护系统的作用保护系统的组成3. 发电厂电气部分的监控系统监控系统的定义监控系统的作用监控系统的组成八、教学方法1. 讲授法:讲解发电厂电气部分的自动化控制系统、保护系统和监控系统的基本概念、原理和组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要……………………………………………......................第1章设计任务…………………………….....................第2章电气主接线图………………………........................2.1 电气主接线的叙述……………………………..2.2 电气主接线方案的拟定.....................................2.3 电气主接线的评定..................................................第3章短路电流计算……………………….....................3.1 概述..................................................................3.2 系统电气设备电抗标要值的计算.................3.3 短路电流计算..................................................第4章电气设备选择……………………….....................4.1电气设备选择的一般规则……………………….4.2 电气选择的技术条件…………………………….4.2.1 按正常情况选择电器……………………….......4.2.2 按短路情况校验……………………………........4.3 电气设备的选择………………………………….4.3.1 断路器的选择……………………………….4.3.2 隔离开关的选择…………………………….第5章设计体会及以后改进意见…………........................参考文献……………………………………….......................摘要由发电、变电、输电、和用电等环节组成的电能生产与消费系统,他的功能是将自然界的一次能源通过发电动力装置转化为电能,再经过输、变电系统及配电系统将电能供应到个负荷中心。

电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的首要环节。

主接线的确定对整个电力系统及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关。

并且对电气设备的选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。

电能的使用已经渗透到社会、经济、生活的各个领域。

而在我国电源结构中火力设备的容量占总装机容量的75%。

本文是对有2台50MW和2台300MW汽轮发电机的大型火电厂的一次部分的初步设计、主要完成电气主接线的设计。

包括电气主接线的形式比较、选择;主变压器、启动/备用变压器和厂用高压变压器的计算、台数、型号的选择;短路电流的计算和高压电气设备的选择与校验;并做了变压器保护装置。

【关键词】发电厂、变压器、电力系统、继电保护、电气设备。

电力系统故障每年新设计的电力设备都是系统的可靠性不断提高,然而,设备的使用不当以及一些偶然遇到的外在因素均会导致系统故障的发生。

发生故障时,电流、电压变化的不正常,从电厂到用户的送点在相当大得内不令人满意。

此时若故障设备不立即从系统中切除的话,则会造成其他运行设备的损坏。

故障时由于有意或无意地两个或更多的导体接触造成的,导体间本来是有电流存在的而这种接触可能是金属性接触,也可能是电弧引起的。

如果是前者造成的故障,则两部分导体之间电压下降为零;若为后者,则电压便得很低,超长的大电流经过网络留至故障处。

此短路电流通常会大大超出导线以及供电发电机的热承受能力,其结果,温度的升高会导致导体烧毁或绝缘焦化。

在允许的期限内,最靠近故障处的电压会变的很低,致使用电设备无法运行。

显然,系统设计者必须事先考虑到故障可能发生在什么地方,能够推测出故障期间的各种情况,提供调节好的设备,以使驱动为将故障设备切除所必须断开的开关能够跳闸。

通常希望此时系统无其他开关打开,否则会导致系统线路不必要的修改。

过负荷与故障是两个概念。

过负荷仅指施加于系统的负荷超过了设计值。

发生这种情况时,过负荷处的电压可能很低,但并不等于零。

这种电压不足的情形可能会超过过负荷处蔓延一定距离,进而影响系统其他部分。

过负荷设备的电流变大而超过预定的热极限,但是这种情况比发生故障时的电流要小。

此时,供电虽然往往能维持,点电压较低。

过负荷的情况在家里发生,例如请街坊邻居聚会时,女主人可能会将五个化夫饼干烘烤器的插头同时插入厨房的插座,诸如此类的过负荷倘若不能迅速处理的话,就会造成电力线发热甚至酿成火灾。

为了避免这种情况的发生,须采用保险丝或断路器来保护住宅区电路免受损坏。

断路器会在电流超出预定值时迅速切断电路。

当用户安装的用电器增加时,也会超过变压器负荷能力,因此有必要不时地监视配电线路以确保在负荷增加时变压器的容量也相应增加。

电力系统会发生各种类型,由各种原因引起的故障。

我们在家看到过破损的照明灯电线,是得其两根导线相触,并会发生弧光。

如果此时断路器或保险丝能够正常工作,则电路能被自动切断。

大部分架空明线是用裸导体假设的,又是由于风、雨、雷或大树、起重机。

飞机及支撑物的损坏等因素会使导线偶然碰到一起。

由雷电或开关瞬变过程中引起的过电压会在支撑物或导体之间产生电弧,即便在电压正常的情况下,绝缘材料的污染也会引起电弧。

通常采用油浸电缆纸或聚乙烯一类固体塑料绝缘材料将埋地电缆中的导线与导线和导线与地隔开。

这些绝缘会随着时间的流逝而老化,尤其是在过负荷引起的高温下运行时更是如此。

绝缘材料内的空隙会造成气体的电离,其生成物对绝缘不利。

绝缘材料老化会引起绝缘性能下降而导致导线短路。

电缆故障的可能性会因雷电或开关瞬间引起的导线的电压骤然变高而增加。

变压器故障可能是由绝缘老化、加上雷电、开关顺便过程导致的过高压造成的,其结果会导致发电机匝内短路。

绝缘损坏也可能会发生在某一绕组与定子铁芯的接地钢架构之间。

同一槽内不同绕组之间的绝缘损坏会导致点击大范围短路。

像处理平衡三相负荷一样,处理平衡三相故障也是依照基于由火线到零线的电路或等效单相电路的原则进行。

可以通过电压、电流和电阻的规律来求解问题。

当然,单相线路上的故障的处理方法也可以用于在单项等效电路下三线故障的处理中。

鉴于线路故障的这些特征,许多公司都用一种叫高速重合器的装置。

故障发生时,线路两端的断路器跳闸,电流即被切断,经过一定的时间间隔,待电弧熄灭后,断路器又自动进行再次合闸,大多数情况下,不到一秒既可以恢复正常供电。

当然,如果因结构损坏,故障不能很快排除的话,则断路器必须再次跳闸且保持这种跳闸状态。

设计任务:完成火力发电厂的电气主接线的选择及电气主设备,包括变压器、断路器、电流互感器。

原始资料:火力发电厂的原始资料:装机4台,分别为供热式机组2*50MW(N U =10.5KV ),凝汽式机组2*300MW (15.75N U KV =),厂用电率6%,机组年利用小时max 6500T h =。

电力负荷和电力系统连接情况如下:1、 10.5KV 电压级最大负荷20MW ,最小负荷15MW ,cos 0.8ϕ=,电缆馈线6回;2、 220KV 电压级最大负荷250MW ,最小负荷200MW ,cos 0.85ϕ=,max 4500T h =,架空线6回;系统归算到本厂22KV 母线上的电抗标幺值0.024s x =(基准容量为100KV ·A ) 3、 110KV 电压级与容量为3500MW 的电网连接,架空线6回,系统归算到本电厂110KV 母线上的电抗标幺值0.02s x =(基准容量为100MV ·A )电气主接线形式:220KV 采用双母线带旁路母线接线,110KV 采用双母线带旁路母线接线。

电气设备的选择:公共部分:变压器分组部分:110KV 与220KV 联络变接220KV 母线侧断路器,隔离开关,电流互感器。

原始资料分析:设计电厂总容量2502300700MW ⨯+⨯=。

当本厂投入生产后,将占系统总容量的700/(3500700)100%16.7%15%+⨯=>,超过了电力系统的检修备用容量和事故备用容量,说明了该电厂在未来供电系统中的作用和地位很重要,而且max 65005000T h h =>,又为火电厂,在电力系统中将主要承担基荷,从而该电厂主接线务必着重考虑可靠性。

从负荷点及电压等级可知,它具有10.5KV、110KV、220KV三级电压负荷。

10.5KV容量不大,为地方负荷。

110KV与系统6回馈线,备用一回,呈强联系形式,并接受本厂剩余功率,最大可接受本厂送出电力为---⨯=,最小可接受本厂送出电力为700152007006%443MW---⨯=,可见,该厂110KV接线对可靠性要求很高,采用双母带旁路700202507006%388MW母线接线形式。

220KV架空线6回,为了提高其供电的可靠性,采用双母线带旁路母线接线形式。

10.5KV电压级共有6回电缆出线,其电压恰与发电机端电压相符,采用直馈线为宜。

主接线方案的拟定:在对原始资料的分析基础上,结合对电气接线的可靠性、灵活性及经济性等基本要求,综合考虑。

在满足技术,积极政策的前提下,力争使其技术先进,供电安全可靠、经济合理的主接线方案。

发电、供电的可靠性是发电厂生产的重要问题,主接线的设计,首先应保证其满发,满供,不积压发电能力。

同时尽可能减少传输能量过程中的损失,以保证供电的连续性,因为根据对原始资料的分析,将主接线方案拟定如下:(1)10.5KV:鉴于出现回路多,且发电单机容量为50MW,远大于有关设计规程对选定单母线分段接线不得超过24MW的规定,应确定为双母线分段的接线形式,两台50MW机组分别接在两段母线上,剩余功率通过主变压器送往高一级电压220KV。

由于50MW机组均接在10.5KV母线上,可选择轻型设备,在分段处加母线电抗器,各条电缆出线装有电缆电抗器。

(2)220KV:出线6回,采用双母线带旁路接线形式。

进线从10.5KV侧送来的剩余容量⨯-⨯+=,不能满足220KV最大最小负荷的要求。

为此以一台300MW机250[(7006%)20]38MW组按发电机—变压器单元接线形式接至220KV母线上,剩余容量机组检验时不足容量由联络变压器与110KV接线相连,相互交换功率。

(3)110KV:出线6回,为使出线断路器检修期间不断电,采用双母带旁路母线接线。

其进线一路通过联络变压器与220KV相连,另一路为一台300MW机组与变压器组成单元接线,直接接入110KV,将功率送入电力系统。

据以上分析,接线形式如下:电气主接线2.3 电气主接线方案的判断该电气主接线始终遵循了可靠性、经济性、灵活性的要求。

相关文档
最新文档