3D打印技术之熔融沉积成型工艺(FDM)
fdm熔融沉积建模方法

fdm熔融沉积建模方法FDM(Fused Deposition Modeling)熔融沉积建模方法是一种常用的3D打印技术,也被称为熔融层积制造。
该方法通过将熔化的材料通过喷嘴层层堆积,逐渐构建出所需的三维模型。
熔融沉积建模方法需要一个CAD软件来设计所需的模型。
设计完成后,CAD软件会将模型转换为切片文件,切片文件包含了每一层的几何信息。
接下来,通过将熔融材料加载到3D打印机中,熔融沉积建模方法开始工作。
3D打印机中的喷嘴会加热熔化材料,并将其挤出到建造平台上。
喷嘴在建造平台上移动,逐渐堆积出一层层的材料,直到最终完成整个模型的制造。
fdm熔融沉积建模方法有许多优点。
首先,它可以制造出复杂的几何形状,包括内部空腔和曲线结构,这是传统制造方法无法实现的。
其次,fdm熔融沉积建模方法可以使用各种类型的材料,如塑料、金属、陶瓷等,以满足不同的制造需求。
此外,这种方法制造的模型具有较高的精度和表面质量,可以用于多种应用领域,如汽车、航空航天、医疗器械等。
在制造业中,fdm熔融沉积建模方法被广泛应用。
首先,它可以用于快速原型制作。
制造商可以使用该方法制造出产品的原型,以便进行测试和验证。
这大大缩短了产品开发周期,并提高了产品的成功率。
fdm熔融沉积建模方法也可以用于小批量生产。
与传统的制造方法相比,fdm熔融沉积建模方法无需制造模具,可以直接从CAD模型开始制造产品。
这不仅降低了生产成本,还提高了生产效率。
fdm熔融沉积建模方法还可以用于个性化定制。
由于该方法可以制造出各种复杂的几何形状,制造商可以根据客户的需求定制产品。
这在医疗领域尤为重要,可以制造出适应患者个体差异的医疗器械。
然而,fdm熔融沉积建模方法也存在一些挑战。
首先,由于材料的熔化和喷嘴的运动,可能会导致材料的收缩和变形。
这会影响制造品的尺寸精度和形状精度。
其次,打印速度较慢,制造大型产品需要较长的时间。
此外,目前可用的材料种类有限,还需要进一步研发更多种类的材料来满足不同的制造需求。
FDM(熔融沉积制造)

A
1
一、熔融沉积工艺的基本原理
熔融沉积又叫熔丝沉积,它
是将丝状的热熔性材料加热熔化,
通过带有一个微细喷嘴的喷头挤
喷出来。喷头可沿着X轴方向移
动,而工作台则沿Y轴方向移动。
如果热熔性材料的温度始终稍高
于固化温度,而成型部分的温度
稍低于固化温度,就能保证热熔
性材料挤喷出喷嘴后,随即与前
一层面熔结在一起。一个层面沉
采用FDM工艺制作玩具水枪
A
10
(3)FDM在Mizunos公司的应用
Mizuno是世界上最大的综合性体育用品制造公司。1997年1月,Mizuno美国 公司开发一套新的高尔夫球杆,通常需要13个月的时间。FDM的应用大大缩短 了这个过程,设计出的新高尔夫球头用FDM制作后,可以迅速地得到反馈意见 并进行修改,大大加快了造型阶段的设计验证,一旦设计定型,FDM最后制造 出的ABS原型就可以作为加工基准在CNC机床上进行钢制母模的加工。新的高尔 夫球杆整个开发周期在7个月内就全部完成,缩短了40%的时间。目前,FDM快 速原型技术已成为Mizuno美国公司在产品开发过程中起决定性作用的组成部分。
ห้องสมุดไป่ตู้
积完成后,工作台按预定的增量
下降一个层的厚度,再继续熔喷
沉积,直至完成整个实体造型。
熔融沉积制造工艺的具体过程如
下:
A
2
将实芯丝材原材料缠绕在供料辊上,由电机驱动辊子旋转,辊子和丝材之间的 摩擦力使丝材向喷头的出口送进。在供料辊与喷头之间有一导向套,导向套采用低 摩擦材料制成,以便丝材能顺利、准确地由供料辊送到喷头的内腔(最大送料速度 为10~25mm/s,推荐速度为5~18mm/s)。喷头的前端有电阻丝式加热器,在其 作用下,丝材被加热熔融(熔模铸造蜡丝的熔融温度为74℃,机加工蜡丝的熔融温 度为96℃,聚烯烃树脂丝为106℃,聚酰胺丝为155℃,ABS塑料丝为270℃),然 后通过出口(内径为0.25~1.32mm,随材料的种类和送料速度而定),涂覆至工作 台上,并在冷却后形成界面轮廓。由于受结构的限制,加热器的功率不可能太大, 因此,丝材一般为熔点不太高的热塑性塑料或蜡。丝材熔融沉积的层厚随喷头的运 动速度(最高速度为380mm/s)而变化,通常最大层厚为0.15~0.25mm。
3D打印技术之FDM熔融沉积成型工艺(Fused Deposition Modeling)

3D打印技术之FDM熔融沉积成型工艺(Fused Deposition Modeling)熔融沉积成型工艺(Fused Deposition Modeling,FDM)是继LOM工艺和SLA工艺之后发展起来的一种3D打印技术。
该技术由Scott Crump于1988年发明,随后Scott Crump创立了Stratasys公司。
1992年,Stratasys公司推出了世界上第一台基于FDM技术的3d打印机——“3D造型者(3D Modeler)”,这也标志着FDM技术步入商用阶段。
熔融沉积有时候又被称为熔丝沉积,它将丝状的热熔性材料进行加热融化,通过带有微细喷嘴的挤出机把材料挤出来。
喷头可以沿X轴的方向进行移动,工作台则沿Y 轴和Z轴方向移动(当然不同的设备其机械结构的设计也许不一样),熔融的丝材被挤出后随即会和前一层材料粘合在一起。
一层材料沉积后工作台将按预定的增量下降一个厚度,然后重复以上的步骤直到工件完全成型。
下面我们一起来看看FDM的技术原理(如图所示):图FDM熔融沉积成型工艺热熔性丝材(通常为ABS或PLA材料)先被缠绕在供料辊上,由步进电机驱动辊子旋转,丝材在主动辊与从动辊的摩擦力作用下向挤出机喷头送出。
在供料辊和喷头之间有一导向套,导向套采用低摩擦力材料制成以便丝材能够顺利准确地由供料辊送到喷头的内腔。
喷头的上方有电阻丝式加热器,在加热器的作用下丝材被加热到熔融状态,然后通过挤出机把材料挤压到工作台上,材料冷却后便形形成了工件的截面轮廓。
采用FDM工艺制作具有悬空结构的工件原型时需要有支撑结构的支持,为了节省材料成本和提高成型的效率,新型的FDM设备会采用了双喷头的设计,一个喷头负责挤出成型材料,另外一个喷头负责挤出支撑材料。
一般来说,用于成型的材料丝相对更精细一些,而且价格较高,沉积效率也较低。
用于制作支撑材料的丝材会相对较粗一些,而且成本较低,但沉积效率会更高些。
支撑材料一般会选用水溶性材料或比成型材料熔点低的材料,这样在后期处理时通过物理或化学的方式就能很方便地把支撑结构去除干净。
fdm和mem工艺原理

fdm和mem工艺原理一、FDM工艺原理FDM工艺(Fused Deposition Modeling)即熔融沉积成型,在3D打印领域广泛应用。
该工艺主要通过加热熔融的热塑性聚合物,将其喷射到工作平台上,根据预设轨迹进行控制,逐层堆积形成三维实体。
1.加热喷嘴FDM工艺最基本的组成部分是加热喷嘴,其主要作用是将热塑性聚合物加热至一定温度,使其熔化,便于喷射。
加热喷嘴还需要能够准确的控制喷射的速度和位置,以实现对打印模型的精细控制。
2.热床热床是FDM工艺中的另一个重要部分,其主要作用是加热打印的工作平台,以减少模型变形或撕裂的风险。
热床的加热方式通常是通过加热丝、加热板或者PID温控系统进行。
3.打印材料FDM工艺使用的打印材料主要是热塑性聚合物,如ABS、PLA、PETG等。
它们通过在加热喷嘴中熔化,然后被逐层堆积到工作平台上进行打印。
4.逐层堆积FDM工艺最为独特的部分就是逐层堆积的过程。
当打印机将喷嘴移动到工作平台的特定位置时,聚合物被加热喷嘴熔化,然后通过石英管和挤出机喷出,逐层堆积成模型。
MEM工艺(Micro-Electromechanical Systems)即微电子机械系统,是一种通过微纳加工技术制造微小机械结构的技术。
MEM工艺可以制造出很小的元件,比如传感器、阀门、显示器等,应用非常广泛。
1.微电子技术微电子技术是MEM工艺的核心技术之一,其主要用于制造微小的电路、传感器和集成电路等。
它的制造工艺一般分为晶圆制造、微影制造、刻蚀、沉积、半导体器件制造等环节。
2.微加工技术MEM工艺中的微加工技术包括激光加工、电化学加工、微切削、离子束刻蚀等。
这些技术一般都能够对材料进行较为精确的加工处理,以满足微小结构的制造需求。
3.微纳米制造微纳米制造是MEM技术的重要内容,其主要包括微型器件的设计、制造和组装等过程。
制造微米级物体需要高分辨率的制造设备,并且需要具备高度的精度和可靠性。
4.微机械结构MEM工艺可以制造各种微型机械结构,如微型电机、微型阀门、微型传感器等。
3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析

3D打印技术:SLA、FDM、SLS等技术的特点和应用对比分析3D打印技术的发展已经取得了显著的成就,现在市面上有多种不同的3D打印技术,如SLA(光固化)、FDM(熔融沉积建模)和SLS (选择性激光烧结)等。
这些技术各自具有自己的特点和应用,本文将对它们进行详细的分析和比较。
一、SLA(光固化)技术SLA(Stereo Lithography Apparatus)是一种利用紫外线激光固化光敏树脂来进行3D打印的技术。
在SLA打印中,紫外线激光照射到光敏树脂表面,树脂在紫外线激光的作用下进行固化,一层一层地堆积,从而构建出3D打印模型。
SLA技术的特点:1.高精度:由于SLA技术采用激光光束对光敏树脂进行点对点的固化,因此该技术打印出的模型具有很高的精度和表面光滑度。
2.高速度:SLA技术在固化光敏树脂时只需要进行点对点的激光照射,因此打印速度较快。
3.适用于小批量生产:由于SLA技术具有高精度和高速度的特点,因此适用于小批量生产,尤其是一些需要高精度模型的领域,如医疗、汽车、航空航天等。
4.材料多样性:SLA技术使用的光敏树脂种类繁多,可以根据不同的需求选择不同性能的光敏树脂进行打印,可以满足不同行业的需求。
SLA技术的应用:1.医疗领域:SLA技术可以打印出高精度的医疗模型,用于手术模拟、人体组织重建等领域。
2.工程领域:SLA技术可以打印出高精度的工程模型,用于产品设计、样机制作等领域。
3.艺术领域:SLA技术可以打印出艺术品模型,用于雕塑、装饰等领域。
二、FDM(熔融沉积建模)技术FDM(Fused Deposition Modeling)是一种利用熔化的热塑性材料进行3D打印的技术。
在FDM打印中,熔融的热塑性材料从喷嘴中挤出,通过移动喷嘴进行层层堆积,从而构建出3D打印模型。
FDM技术的特点:1.低成本:FDM技术使用的材料相对较为便宜,因此成本较低。
2.材料多样性:FDM技术使用的热塑性材料种类繁多,可以根据不同的需求选择不同性能的材料进行打印。
FDM快速成型加工工艺问题研究

FDM快速成型加工工艺问题研究一、引言FDM(Fused Deposition Modeling),即熔融沉积成型技术,是一种快速成型技术,其工艺流程主要是利用专用的3D打印机,通过计算机将设计好的三维模型切割成一层一层的二维截面,然后逐层堆叠打印材料,最终形成三维实体。
FDM技术在快速成型领域具有广泛的应用,但在实际生产过程中还存在一些问题,本文将对FDM快速成型加工工艺中的问题进行研究,以期能够提高FDM技术的应用效率和成型质量。
二、FDM快速成型加工工艺存在的问题1. 打印精度不高FDM技术在打印过程中容易受到热胀冷缩的影响,导致成品尺寸与设计尺寸存在差异,尤其在大型件的打印过程中更为明显,影响了产品的精度。
材料在堆叠成型中容易出现变形和翘曲现象,进一步影响了打印精度。
2. 表面质量不佳FDM技术在堆叠打印过程中,由于材料温度的影响和层与层之间的连接问题,导致成品表面存在明显的层状纹理和毛刺,降低了产品的外观质量。
3. 加工速度慢FDM技术在实际应用中,由于打印速度受到电机性能和材料熔化速度的限制,导致加工速度较慢,尤其在大型件的打印过程中更为明显,影响了生产效率。
4. 材料选择有限FDM技术在材料选择上存在一定的局限性,一方面受到打印机型号的限制,另一方面受到材料熔化温度的影响,导致无法满足一些特殊性能要求。
5. 设备和成本限制FDM技术的设备价格昂贵,同时耗材成本也相对较高,加之设备维护费用和操作成本,限制了FDM技术的大规模应用,影响了产业的发展。
三、针对FDM快速成型加工工艺问题的解决方法1. 提高打印精度针对FDM技术打印精度不高的问题,可以通过优化打印参数、提高材料的熔化温度和改善材料层间粘结等手段进行改进。
还可以引入先进的自动补偿技术和实时监测技术,提高成品的精度。
2. 改善表面质量针对FDM技术表面质量不佳的问题,可以通过优化打印路径、调整层厚和选择合适的材料等手段进行改进。
FDM(熔融沉积制造)

精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精品课件
精车品灯课件-1
车灯-2
精品课件
精车品课灯件-3
精车品灯课件-4
缺点
成型件的表面有较明显的条纹 。
沿成型轴垂直方向的强度比较弱。
需要设计与制作支撑结构。
需要对整个截面进行扫描涂覆,成型时间较长。
原材料价格昂贵。
精品课件
精品课件
精品课件
三、熔融沉积工艺成形过程影响因素分析 材料性能的影响 喷头温度和成形室温度的影响 挤出速度的影响 填充速度与挤出速度交互的影响 分层厚度的影响 成形时间的影响 扫描方式的影响
该模具在模具后部设计成中空区,以减少用钢量,中空区填入化学粘结 瓷。仅花5周时间和一半的原来成本,而且制作的模具至少可生产30000套衬板。
采用FDM工艺后,福特汽车公司大大缩短了运输部件衬板的制作周期, 并显著降低了制作成本。
精品课件
(5)FDM在韩国现代公司的应用
韩国现代汽车公司采用了美国Stratasys公司的FDM快速原型系统,用于 检验设计、空气动力评估和功能测试。FDM系统在启亚的Spectra车型设计上得到 了成功的应用,现代汽车公司自动技术部的首席工程师Tae Sun Byun说:空间的 精确和稳定对设计检验来说是至关重要的,采用ABS工程塑料的FDM Maxum系统满 足了两者的要求,在1382mm的长度上,其最大误差只有0.75mm。
熔融沉淀技术fdm

熔融沉淀技术fdm
熔融沉淀技术(Fused Deposition Modeling,FDM)是一种常见的三维打印技术,也被称为熔融沉积成型或熔融沉积建模。
它是由斯特拉塔西斯(Stratasys)公司于1988年发明并商用化的。
FDM技术通过将热塑性材料(通常是塑料)从喷头挤出,逐层堆积来构建物体。
下面是FDM技术的基本工作原理:
1.设计模型:首先,使用计算机辅助设计(CAD)软件创建或下载
一个三维模型文件,它将被用于打印物体。
2.切片处理:接下来,使用切片软件将三维模型切割成一系列的薄
层(层高通常在几十到几百微米之间)。
每一层都会转化为一组指令,以控制打印机的运动和喷头的挤出。
3.材料挤出:FDM打印机将选择的热塑性材料(通常是丙烯腈丁
二烯苯乙烯共聚物ABS或聚乳酸PLA)加热到熔化状态,并通
过一个细管或喷嘴挤出。
4.层层堆积:挤出的材料通过控制喷头在打印平台上的运动,逐层
堆积在一起,形成三维物体。
每一层挤出后,会迅速冷却固化,与下一层连接在一起。
5.支撑结构:对于悬空或悬垂部分,打印机可能需要添加支撑结
构,以保持物体的稳定性。
这些支撑结构在打印完成后可以被移除。
6.打印完成和后处理:完成打印后,可以进行必要的后处理,如去
除支撑结构、打磨或修整表面等。
FDM技术具有广泛的应用领域,包括原型制作、工业设计、教育、医疗、建筑和消费品等。
它的优点包括低成本、易于使用、快速迭代以及可打印大型物体。
然而,由于受到材料选择和打印分辨率等因素的限制,FDM打印的物体可能在表面质量和精度方面相对较低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2D图案定制个性化礼物、3D打印产品/手板和3D打印机—首选忆典定制3D打印技术之熔融沉积成型工艺(FDM)
熔融沉积成型工艺(Fused Deposition Modeling,FDM)是继LOM工艺和SLA 工艺之后发展起来的一种3D打印技术。
该技术由Scott Crump于1988年发明,随后Scott Crump创立了Stratasys公司。
1992年,Stratasys公司推出了世界上第一台基于FDM技术的3D打印机——“3D造型者(3D Modeler)”,这也标志着FDM技术步入商用阶段。
国内的清华大学、北京大学、中科院广州电子技术有限公司都是较早引进FDM技术并进行研究的科研单位。
FDM工艺无需激光系统的支持,所用的成型材料也相对低廉,总体性价比高,这也是众多开源桌面3D打印机主要采用的技术方案。
熔融沉积有时候又被称为熔丝沉积,它将丝状的热熔性材料进行加热融化,通过带有微细喷嘴的挤出机把材料挤出来。
喷头可以沿X轴的方向进行移动,工作台则沿Y轴和Z轴方向移动(当然不同的设备其机械结构的设计也许不一样),熔融的丝材被挤出后随即会和前一层材料粘合在一起。
一层材料沉积后工作台将按预定的增量下降一个厚度,然后重复以上的步骤直到工件完全成型。
下面我们一起来看看FDM的详细技术原理:
2D图案定制个性化礼物、3D打印产品/手板和3D打印机—首选忆典定制
热熔性丝材(通常为ABS或PLA材料)先被缠绕在供料辊上,由步进电机驱动辊子旋转,丝材在主动辊与从动辊的摩擦力作用下向挤出机喷头送出。
在供料辊和喷头之间有一导向套,导向套采用低摩擦力材料制成以便丝材能够顺利准确地由供料辊送到喷头的内腔。
喷头的上方有电阻丝式加热器,在加热器的作用下丝材被加热到熔融状态,然后通过挤出机把材料挤压到工作台上,材料冷却后便形形成了工件的截面轮廓。
采用FDM工艺制作具有悬空结构的工件原型时需要有支撑结构的支持,为了节省材料成本和提高成型的效率,新型的FDM设备会采用了双喷头的设计,一个喷头负责挤出成型材料,另外一个喷头负责挤出支撑材料。
一般来说,用于成型的材料丝相对更精细一些,而且价格较高,沉积效率也较低。
用于制作支撑材料的丝材会相对较粗一些,而且成本较低,但沉积效率会更高些。
支撑材料一般会选用水溶性材料或比成型材料熔点低的材料,这样在后
2D图案定制个性化礼物、3D打印产品/手板和3D打印机—首选忆典定制期处理时通过物理或化学的方式就能很方便地把支撑结构去除干净。