工程材料—合金的结晶
工程材料基础名词解释

⼯程材料基础名词解释⼯程材料基础名词解释⼀、合⾦:合⾦是指由两种或两种以上的⾦属元素、或⾦属元素与⾮⾦属元素组成的具有⾦属特性的物质。
⼆、固溶体:合⾦组元通过溶解形成⼀种成分和性能均匀、且结构与组元之⼀相同的固相称为固溶体。
三、固溶强化:通过融⼊某种溶质元素形成固溶体⽽是⾦属的强度、硬度升⾼的现象称为固溶强化。
四、结晶:物质从液态冷却转变为固态的过程称为凝固,凝固后的物质可以为晶体也,可以为⾮晶体。
若凝固后的物质为晶体,则这种凝固称为结晶。
五、相图:指在平衡条件下,合⾦的成分、温度和组织之间关系的图形。
六、硬度:是指材料抵抗局部变形,特别是塑形变形、压痕或划痕的能⼒。
七、热处理:是指采⽤适当的⽅式在固态下对⾦属进⾏加热、保温和冷却,以获得所学的组织和性能⼯艺⽅法。
⼋、本质晶粒度:根据标准试验⽅法,在c?930保温⾜够时间(3-8⼩时)±10后测定的钢中晶粒的⼤⼩。
是表⽰钢中奥⽒体晶粒长⼤的倾向性。
九、淬⽕:把钢进⾏奥⽒体化,保温后以适当⽅式冷却,已获得马⽒体或以下贝⽒体组织的热处理⼯艺⽅法称为淬⽕。
⼗、回⽕脆性:淬⽕钢回⽕时冲击韧性并不总是随挥回⽕温度的升⾼⽽简单的增加,有些钢在某个温度范围内回⽕时,其冲击韧性显著下降,这种脆化现象称为回⽕脆性。
⼗⼀、调质:⽣产上习惯将淬⽕加⾼温回⽕称为调质处理。
⼗⼆、变质处理:在液态⾦属结晶之前,特意加⼊某些难熔固态颗粒,造成⼤量以⾮⾃发晶核的固态质点,使结晶时晶核数量⼤⼤增加,从⽽提⾼了形核率,细化晶粒,这种处理⽅式即为变质处理。
⼗三、过冷和过冷度:实际结晶温度低于理论结晶温度的现象称为过冷,理论结晶温度T0与实际结晶温度T1之差称为过冷度。
⼗四、时效:⾦属或合⾦在⼤⽓温度下经过⼀段时间后,由于过饱和固溶体脱溶和晶格沉淀⽽使强度逐渐升⾼的现象。
⼗五、红硬性:⼜叫热硬性,钢在⾼温下保持硬度的能⼒。
⼗六、选材的基本原则:所选的材料的使⽤性能应能满⾜零件的使⽤要求,易加⼯,成本低,寿命⾼。
合金的结晶过程较为复杂,通常运用合金相图来分析合金结晶...

LE C N
恒温
3)cf:为Sn在Pb中的溶解度线(或α相的固溶线)。温度降低, 固溶体的溶解度下降。从固态α相中析出的β相称为二次β,常 写作βⅡ。这种二次结晶可表示为:α→βⅡ 。 4)eg:为Pb在Sn中溶解度线(或相的固溶线)。Sn含量小于g 点的合金,冷却过程中同样发生二次结晶,析出二次α;即 β→αⅡ。
2)固溶体结晶是在一个温度区间内进行,即 为一个变温结晶过程。
工程材料原理
温 度 L4 A 1083℃ L3 L2 t4
I L1 t3
L L+α t α 1 t2 α α 3 2
B 1452℃
1
L L α
、α 4 3
α
α
Cu
XL X0 Xα Ni % Ni (a) (b) 图3-4 Cu-Ni合金相图
工程材料原理
1. 发生匀晶反应的合金的结晶
匀晶转变:从液相中不断结晶出单相固溶体的过程 称为匀晶转变。 匀晶相图:二组元在液态、固态时均能无限互溶的 二元合金相图就是匀晶相图。这样的二元合金系 称为匀晶系。 属于匀晶系的合金系有Cu-Ni、Nb-Ti、AgAu、Cr-Mo、Fe-Ni、Mo-W等。几乎所有二元合 金相图都包含有匀晶转变部分,因此掌握这一类 相图是学习二元合金相图的基础。
20%Ni
1. 纯金属冷却曲线上有水平台阶,是 TNi 因为凝固时释放的结晶潜热补偿了 冷却时的热量散失,故温度不变; 说明纯金属凝固是恒温过程;
T2. Cu
100%Cu
时间
Cu-Ni合金相图的测绘 冷却曲线
合金冷却出现二次转折,是因为合 金凝固时释放的结晶潜热只能部分 补偿冷却时的热量散失,使冷却速 Cu 20 40 60 80 Ni 率降低,出现第一个拐点,凝固结 Ni % 束后,没有潜热补偿,冷却速率加 快,出现第二个拐点,两个点分别 为凝固开始点和凝固结束点。
工程材料 第2章 纯金属和合金的结晶-part1

水晶
结晶crystallization: 液体 凝固solidfication: 液体
晶体 固体
结晶
一、结晶的宏观现象
结晶过程的分析方法——热分析法(thermal analysis)
(一)
过冷现象
1.纯金属结晶时的冷却曲线
冷却曲线:金属结晶时温度与时间的关系曲线
温 度 To T1
理论冷却曲线
G=H-TS 式中,H是焓,T是绝对温度,S是熵,可推得 dG=Vdp-SdT 在等压时,dp=0,故上式简化 为:(dG/dT)P=-S
由于熵恒为正值,所以自由能 是随温度增高而减小。 熵的物理意义是表征系统中原 子排列混乱程度的参数。
交点温度(Tm):两相自由能相等。
GL=GS 固态金属自由能与液态金 属的自由能之差ΔG构成了 金属结晶的驱动力。 由于金属在结晶前后液固 体积发生变化。因此,可 以通过液固单位体积自由 能的变化ΔGV来描述相变 过程。
二、晶核的长大机制
——指液态原子以什么方式添加到固相上去 (1)二维晶核长大机制 (2)螺型位错长大机制 (3)垂直长大机制 横向长大机制
(一)二维晶核长大机制 ——具有光滑界面的物质的长大机制 晶体的长大只能依靠液相中的结构起伏和能量起伏,使 一定大小的原子集团几乎同时降落到光滑界面上,形成 具有一个原子厚度并且有一定宽度的平面原子集团,使 △GS↑<△GV↓ ,液态原子不断降落在原始原子集团周 围,自发形成了一个大于临界晶界面的稳定状态。这晶 核即为二维晶核。 晶体以这种方式长大时,其长大速度十分缓慢(单位时 间内晶体长大的线速度称为长大速度,用G表示,单位 为cm/s)。
S1 2r 2 (1 cos )
L L cos
工程材料02(金属与合金的晶体结构)

金属材料的性能特点一般地,金属材料与非金属材料相比,金属材料具有良好的力学性能,而且工艺性能也较好。
即使都是金属材料,不同成分和不同状态下的性能也会有很大的差异。
造成这些性能差异的主要原因是材料内部结构不同,因此掌握金属与合金的内部结构特点,对于合理选材具有重要意义。
金属材料是靠原子间金属键结合起来的。
金属键——金属材料内部,呈一定规律排列的正离子与公有化的自由电子靠库仑力结合起来,这种结合力即为金属键。
(正离子+公有电子云、无方向性、非饱和性)金属材料的性能特点:1、良好的导电、导热性。
2、正的电阻温度系数3、良好的塑性4、不透明、有金属光泽第一节晶体的基本知识金属材料一般都是晶体,具有晶体的特性。
一、晶体——内部原子呈规则排列的物质。
晶体材料(单晶体)的特性:①具有固定的熔点。
②具有规则的几何外形。
③具有“各向异性”。
二、晶格、晶胞和晶格常数1、晶格——描述晶体中原子排列规律的空间点阵。
将原子的振动中心抽象为一几何点,再用直线的连接表示原子之间的相互作用。
2、晶胞——由于晶格排列具有周期性,研究晶格时,取出能代表晶格特征的最小基本单元即称为晶胞。
3、晶格常数——用来描述晶胞大小与形状的几何参数。
三条棱长:a、b、c三条棱的夹角:α、β、γ对于简单立方晶胞:棱长a=b=c 夹角α= β= γ= 90°第二节纯金属的晶体结构一、典型的晶格类型各种晶体由于其晶格类型和晶格常数不同,往往呈现出不同的物理、化学及力学性能。
除少数金属具有复杂晶格外,大多数晶体结构比较简单,典型的晶格结构主要有以下三种:1、体心立方晶格(bcc)2、面心立方晶格(fcc)3、密排六方晶格(hcp)1、体心立方晶格(bcc )晶格常数: a = b = c ;α=β=γ= 90°密排方向(原子排列最紧密的方向):立方体的对角线方向原子半径:属于bcc 晶格的金属主要有:α-Fe 、Cr 、W 、Mo 、V 等ar 432、面心立方晶格(fcc )晶格常数: a = b = c ;α=β=γ= 90°密排方向:立方体表面的对角线方向原子半径:属于fcc 晶格的金属主要有:γ-Fe 、Cu 、Al 、Au 、Ag 等。
工程材料第三章金属与合金的结晶

匀晶转变
α
2
L 2’
(α+β)
α
βⅡ
3
(α+β) (α+β)
α βⅡ
时间
一次α相 一次α的成分沿AC线变化到C点
析出
βⅡ 液相的成分沿AE线变化到E点
183℃
LE
αc + βD
三、二元共晶相图
共晶相图:二元合金系中两组元在液态能完全溶解,而 在固态互相有限溶解,并发生共晶转变的相图
(一)相图分析
其它相线:液相线,固相线,固溶线
合金系:两个或两个以上的组元按不同比例下配制成 的一系列不同成分的合金的总称
合金的结晶特点:
1.合金的结晶过程不一定在恒温下进行,而是在一个温 度范围内完成,而纯金属在恒温下完成; 2.合金的结晶不仅会发生晶体结构的变化,还会伴有化 学成分的变化,而纯金属仅发生晶体结构的变化。
合金结晶:非恒温结晶 一、二元合金相图的基本知识 合金相图:又称合金平衡图, 表示在平衡状态下,合金的组 成相和温度、成分之间关系的 图解
补充:共析相图 共析转变:在恒定的温度下,一个有特定成分的固相分解成另外
两个与母相成分不相同的固相的转变过程,与共晶转变类似,S点为 共析点
共析相图:发生共析转变的相图
第三章 金属与合金的结晶
思考题
什么是过冷度? 什么是共晶转变? 工业生产中常采用哪些方法细化晶粒,
改善铸件的性能?
本章到此结束。
ALB为液相线,开始结晶,液相线以上为液态,L; AαB为固相线,结晶终了,固相线以下为固态区,α; 液相线与固相线之间为两相共存区,L+α
分析
1.液、固相线不仅是相区分线,也是结晶时两 相的成分变化线
机械工程材料 第二章 金属的晶体结构与结晶

均匀长大
树枝状长大
2-2
晶粒度
实际金属结晶后形成多晶体,晶粒的大小对力学性能影响很大。 晶粒细小金属强度、塑性、韧性好,且晶粒愈细小,性能愈好。
标准晶粒度共分八级, 一级最粗,八级最细。 通过100倍显微镜下的 晶粒大小与标准图对 照来评级。
2-2
• 影响晶粒度的因素
• (1)结晶过程中的形核速度N(形核率) • (2)长大速度G(长大率)
面心立方晶 格
912 °C α - Fe
体心立方晶 格
1600
温 度
1500 1400
1300
1200
1100
1000
900
800
700 600 500
1534℃ 1394℃
体心立方晶格
δ - Fe
γ - Fe
γ - Fe
912℃
纯铁的冷却曲线
α – Fe
体心立方晶 格
时间
由于纯铁具有同素异构转变的特性,因此,生产中才有可能通过 不同的热处理工艺来改变钢铁的组织和性能。
2-3
• 铁碳合金—碳钢+铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。 Fe、C为组元,称为黑色金属。 Fe-C合金除Fe和C外,还含有少量Mn 、Si 、P 、 S 、 N 、O等元素,这些元素称为杂质。
2-3
• 铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC。 • 含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。 • 实际所讨论的铁碳合金相图是Fe- Fe3C相图。
2-2
物质从液态到固态的转变过程称为凝固。 材料的凝固分为两种类型:
3金属与合金的结晶

铸锭结晶组织
工程材料 第3章 金属与合金的结晶 11
三、金属结晶后的晶粒大小
金属的强度、硬度、塑性和韧性等都随晶 粒细化而提高 1.晶粒度——用来表示晶粒大小
①单位体积内的晶粒的数目;
②单位面积内的晶粒的数目; ③晶粒的平均直径或半径;
第3章 金属与合金的结晶 12
工程材料
晶粒度 —— 表示晶粒大小,分8级 晶粒度 1 2 3 4 5 6 7 8 32 64 128 256 512 1024 2048 单位面积晶粒数 16 细晶强化 (个/mm2) —— 晶粒细化使金属机械性能提高的现象 250 177 125 88 62 44 31 22 晶粒平均直径 (μm)
QL/Q=b1c1/a1b1
T,C L 1500 1 1400 a1 b1 1300 L+ 1200 1100 a 1083 2 1000 Cu 20
工程材料
1455 c
c1
杠杆定律推论:在两 相区内,对应温度T1 时两相在合金b中的相 T1 对质量各为 T2 QL/QH=b1c1/a1c1
单相无限固溶体;
第3章 金属与合金的结晶
工程材料
29
2.杠杆原理
确定两相区内两个组成 相(平衡相)以及相的 成分和相的相对量。
2. 随着温度的降低, 1. 在两相区内,对应 杠杆定律:在两相区内,对 两相的成分分别沿液 每一确定的温度,两 应每一确定的温度T1,两相 质量的比值是确定的。即 相线和固相线变化。 相的成分是确定的。
也叫平衡结晶温度,是在无限缓慢的冷却条件下结晶
的温度,用T0表示。
原因:结晶释放的结晶潜热补偿了向外界散失的热量。
工程材料
工程材料—纯金属的结晶

铸锭的缺陷
1)缩孔(集中缩孔) ——最后凝固的地方 2)疏松(分散缩孔) ——枝晶间和枝晶内 3)气孔(皮下气孔)
20
第一节
纯金属的结晶
一、纯金属的结晶
二、同素异构转变
三、铸锭的结构
四、细化铸态金属晶粒的措施
五、单晶的制取
21
四、细化铸态金属晶粒的措施
1、晶粒度
晶粒度表示晶粒的大小, 可用晶粒的平均面积或
(1) ab—液态逐渐冷却 (2) bc—温度低于理论结晶 温度 过冷现象
过冷度
T T0 Tn
(3)cd—正在结晶 回升——结晶时释放的结晶潜热 大于向环境中散失的热量
Δt——孕育期
Δt
(4)de—正在结晶 平台——结晶时释放的结晶潜热与向环境中散失的热量 相等 (5)ef—固态逐渐冷却
6
ห้องสมุดไป่ตู้
三个特殊温度:
1538 º C、1394º C、912º C
• 固态相变
特点: • 形核和长大 • 过冷度较大
钛、锡、钴、锰等金属也存在 同素异构转变。
16
第一节
纯金属的结晶
一、纯金属的结晶 二、同素异构转变 三、铸锭的结构 四、细化铸态金属晶粒的措施
五、单晶的制取
17
三、铸锭的结构
表层细等轴晶区 中间柱状晶区 心部粗等轴晶区
2) 树枝状长大: 冷却速度较大,形成负温度梯度,树枝 状的形状长大。
金属结晶示意图
12
平面长大的规则形状晶体
树枝状长大的树枝状晶体
金 属 的 树 枝 晶
金 属 的 树 枝 晶
13
第一节
纯金属的结晶
一、纯金属的结晶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料组织和性能的控制
第一节 纯金属的结晶
第二节
第三节 第四节 第五节
合金的结晶
金属的塑性加工 钢的热处理 钢的合金化
1
第二节
2.2.1
合金的结晶
二元合金的结晶
2.2.2
2.2.3
合金的性能与相图的关系
铁碳合金的结晶
2
本节重点
1. 合金相图的表示方法 2. 杠杆定律 3. 匀晶转变和共晶转变的平衡凝固过程
10
2. 共晶反应
Ⅰ
1 2 α 4 3 2 L+α α+β 3
过共晶合金组织的形态
Ⅲ 1 L
Ⅳ 1 L+β 2 β
11
3. 包晶反应:由一固定成分的液相与一个固定成分 的固相作用,生成另一个成分固定的固相的反应。
LC+αD→βP
12
4. 共析反应:由一个固相同时结晶出另外两个固相的反应。 共析反应可写成:γd → αc + βe
有同素异构转变——可进行再结晶退火和正火细晶
有溶解度变化——时效处理 有共析转变——淬火等热处理
分为发生匀晶反应、共晶反应、包晶反应、共析反应的合金 的结晶和含有稳定化合物的合金的结晶等。 1.匀晶反应:由液相结晶出单相固溶体的过程。
匀晶相图及其合金的结晶过程
结晶过程中,液相成分沿液相线变化,固相成分沿固相线变化。
5
杠杆定律
杠杆定律:在两相区内,对 2. 1. 随着温度的降低,两 在两相区内,对应每 应每一确定的温度 T1,两相 相的成分分别沿液相线和 一确定的温度,两相的成 质量的比值是确定的。即 固相线变化。 分是确定的。 QL /Q=b1c1/a1b1 杠杆定律推论:在两 相区内,对应温度T1 时两相在合金b中的相 对质量各为 QL/QH=b1c1/a1c1 Q/QH=a1b1/a1c1 =1- QL/QH
a1
1
b1
c1
2
T1 T2
b
6
QL bc Q ab ( L) ; ( ) Q合金 ac Q合金 ac
杠杆定律的适用范围: (1)只适用于相图中的两相区; (2)只能在平衡状态下使用 (3)支点为合金的成分点,两个端点为给定温度时两 相的成分
7
例:将20kg纯铜与30kg纯镍熔化后慢冷至如图温度T1,求此时:
1)两相的成分;
L, 50%Ni; α, 80%Ni
2)两相的重量比;
T1
80 60 L / 2 :1 60 50
3)两相的相对重量;
80 60 66.7% 80 50 60 50 ( ) 33.3% 80 50
( L)
4)两相的重量。
L重量 66.7% 50 33.4kg
T,C L
L中析出γ ——→ 1点开始 不断析出γ
L+ γ
L
1
L+
2
1-2之间 γ冷却 ————→ 2-3之间
————→ γ
γ
(α+β)
共析反应γ →α+β —————→ 3点时 α中析出βⅡ
Ⅱ
3 + + c d e + 4
————→α Ⅱ+βⅡ+(α+β) β中析出α
3-4之间
重量 33.3% 50 16.7kg
8
2. 共晶反应:由液相同时结晶出两个固相的反应。
共晶反应可写成:Ld → αc + βe
Ⅱ L L+α α α+β 2 1 L+β β
共晶合金组织的形态
9
2. 共晶反应
Ⅲ
亚共晶合金组织的形态
亚共晶合金的平衡凝固
α初中析出βⅡ 共晶反应L→α+β L析出α L ——→L+ α初 —————→ α初+(α+β) ————→α初+βⅡ+(α+β)
A
共析相图
B
13
5. 含有稳定化合物的相图
把稳定化 合物看成 是独立的 组元,将 整个相图 为分向个 简单相图。
含有稳定化合物的相图
14
2.2.2
合金性能与相图的关系
1.根据相图判断合金的物理性能
2.根据相图判别合金的工艺性能
2.根据相图判别合金的工艺性能
铸造性能: 共晶点附近的合金 熔点低,流动性好,易形成集中缩孔,合金致密 压力加工性能: 单相固溶体 固溶体强度低,塑性好,变形均匀 热处理性能:根据升温过程的相变及其类型判断 无固态转变——不能进行热处理
4. 根据相图判断合金的工艺性能
3
2.2.1 二元合金的结晶
纯金属:冷却曲线,状态(相)—温度、时间 合金:相图,状态(相)—温度、成分 相图(状态图、平衡 图):表示合金系中合 金的状态与温度、成分 间的关系的图解。 图中的每一点表示一
●
定成分的合金在一定
温度时的稳定相状态
4
根据结晶过程中出现的不同类型的结晶反应,可把结晶过程