椭圆知识点总结与测试

合集下载

椭圆知识点总结及练习

椭圆知识点总结及练习

椭圆知识点总结及典型方法知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

a 和b 分别叫做椭圆的长半轴长和短半轴长。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记ac a c e ==22。

知识点四:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系知识点五: 椭圆的第二定义:平面内与一个定点(焦点)和一定直线(准线)的距离的比为常数e ,(0<e <1)的点的轨迹为椭圆。

椭圆知识点总结(最新)

椭圆知识点总结(最新)

椭圆知识点总结
一、椭圆的标准方程
椭圆的标准方程共分两种情况:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);
其中a^2-c^2=b^2
推导:PF1+PF2>F1F2(P为椭圆上的点F为焦点)
二椭圆的对称性
不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

顶点:
焦点在X轴时:长轴顶点:(-a,0),(a,0)
短轴顶点:(0,b),(0,-b)
焦点在Y轴时:长轴顶点:(0,-a),(0,a)
短轴顶点:(b,0),(-b,0)
注意长短轴分别代表哪一条轴,在此容易引起混乱,还需数形结合逐步理解透彻。

焦点:
当焦点在X轴上时焦点坐标F1(-c,0)F2(c,0)
当焦点在Y轴上时焦点坐标F1(0,-c)F2(0,c)
【椭圆知识点总结】
1。

最新椭圆知识点总结及经典习题练习

最新椭圆知识点总结及经典习题练习

椭圆知识点总结及经典习题练习知识点一:1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.注意:椭圆122=+b y a x ,122=+bx a y )0(>>b a 的相同点:形状、大小都相同;参数间的关系都有)0(>>b a 和)10(<<=e ac e ,222c b a +=;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222ba c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心. (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤.(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点.②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=.a 和b 分别叫做椭圆的长半轴长和短半轴长.(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作ac a c e ==22. ②因为)0(>>c a ,所以e 的取值范围是)10(<<e .e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆. 当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+22.注意:椭圆12222=+b y a x 的图像中线段的几何特征(如下图):(1))2(21a PF PF =+;e PM PF PM PF ==2211;)2(221c a PM PM =+;(2))(21a BF BF ==;)(21c OF OF ==;2221b a B A B A +==;(3)c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;规律方法:1.如何确定椭圆的标准方程?任何椭圆都有一个对称中心,两条对称轴.当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式.此时,椭圆焦点在坐标轴上.确定一个椭圆的标准方程需要三个条件:两个定形条件b a ,;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型.2.椭圆标准方程中的三个量c b a ,,的几何意义椭圆标准方程中,c b a ,,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的.分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:)0(>>b a ,)0(>>c a ,且)(222c b a +=.可借助右图理解记忆:显然:c b a ,,恰构成一个直角三角形的三条边,其中a 是斜边,b 、c为两条直角边.3.如何由椭圆标准方程判断焦点位置椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看2x ,2y 的分母的大小,哪个分母大,焦点就在哪个坐标轴上.4.方程均不为零)C B A C By Ax ,,(22=+是表示椭圆的条件方程C By Ax =+22可化为122=+CBy C Ax ,即122=+B C By A C x ,所以只有A 、B 、C 同号,且A ≠B 时,方程表示椭圆.当BCA C >时,椭圆的焦点在x 轴上;当BCA C <时,椭圆的焦点在y 轴上. 5.求椭圆标准方程的常用方法:①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数c b a ,,的值.其主要步骤是“先定型,再定量”;②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程.6.共焦点的椭圆标准方程形式上的差异共焦点,则c 相同.与椭圆12222=+by a x )0(>>b a 共焦点的椭圆方程可设为12222=+++mb y m a x )(2b m ->,此类问题常用待定系数法求解. 7.如何求解与焦点三角形△PF 1F 2(P 为椭圆上的点)有关的计算问题思路分析:与焦点三角形△PF 1F 2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式2121sin 2121PF F PF PF S F PF ∠⨯⨯=∆相结合的方法进行计算解题. 将有关线段2121F F PF PF 、、,有关角21PF F ∠ (21PF F ∠≤21BF F ∠)结合起来,建立21PF PF +、21PF PF ⨯之间的关系. 9.如何计算椭圆的扁圆程度与离心率的关系?长轴与短轴的长短关系决定椭圆形状的变化.离心率)10(<<=e ace ,因为222b a c -=,0>>c a ,用b a 、表示为)10()(12<<-=e ab e .显然:当a b 越小时,)10(<<e e 越大,椭圆形状越扁;当ab越大,)10(<<e e 越小,椭圆形状越趋近于圆. (二)椭圆练习题一、选择题1、与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是 ( )(A)185y 80x )D (145y 20x )C (125y 20x )B (120y 25x 22222222=+=+=+=+2、椭圆的两个焦点和短轴两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为( ) (A)21 (B)23 (C)33 (D)21或233、椭圆13622=+y x 中,F 1、F 2为左、右焦点,A 为短轴一端点,弦AB 过左焦点F 1,则∆ABF 2的面积为 ( ) (A )3 (B )233 (C )34 (D )4 4、方程my x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( )(A)-16<m<25 (B)-16<m<29 (C)29<m<25 (D)m>29 5、已知椭圆1522=+my x 的离心率e =510,则m 的值为 ( )(A)3 (B)3或(C)(D)或6、椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的长轴长是短轴长的 ( )(A)3倍 (B)2倍 (C)2倍 (D)23倍 7、椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标为 ( )(A)(0,±b a -) (B)(±b a -,0) (C)(0,±a b -) (D)(±a b -,0) 8、椭圆x 2+4y 2=1的离心率为 ( ) (A)2)D (25)C (22)B (239、从椭圆短轴的一个端点看两焦点的视角是1200,则这个椭圆的离心率e= ( ) (A)23 (B)21 (C)33 (D)31 10、曲线19y 25x 22=+与曲线1m9y m 25x 22=-+-(m<9)一定有 ( ) (A)相等的长轴长 (B)相等的焦距 (C)相等的离心率 (D)相同的准线 二、填空题11.(1)中心在原点,长半轴长与短半轴长的和为92,离心率为0.6的椭圆的方程为________;(2)对称轴是坐标轴,离心率等于23,且过点(2,0)的椭圆的方程是_______12.(1)短轴长为6,且过点(1,4)的椭圆标准方程是__________; (2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是__________13.已知椭圆2222ay a x +=1的焦距为4,则这个椭圆的焦点在_____轴上,坐标是_____ 14.已知椭圆1422=+y m x 的离率为21,则m= 三、解答题15、求椭圆)0(12222>>=+b a by a x 的内接矩形面积的最大值16.已知圆22y x +=1,从这个圆上任意一点P 向y 轴作垂线段PP′,求线段PP′的中点M 的轨迹.17.△ABC 的两个顶点坐标分别是B (0,6)和C (0,-6),另两边AB 、AC 的斜率的乘积是-94,求顶点A 的轨迹方程.18. (本小题满分15分)已知椭圆的焦点在x 轴上,短轴长为4, (1)求椭圆的标准方程; (2)若直线l 过该椭圆的左焦点,交椭圆于M 、N 两点,且MN 求直线l 的方程.。

必修二椭圆知识点总结

必修二椭圆知识点总结

必修二椭圆知识点总结一、椭圆的基本概念1. 定义椭圆是一个点到两个给定点的距离之和等于常数的动点轨迹。

这两个给定点称为焦点,距离之和等于常数称为椭圆的离心率。

2. 公式表示椭圆的一般方程为:$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$其中,$(h,k)$为椭圆的中心,$a$和$b$分别为椭圆长轴、短轴的长度。

二、椭圆的性质1. 焦点、离心率和长短轴之间的关系椭圆上任意一点到两个焦点的距离之和等于长轴的长度,即$2a=2\sqrt{a^2-b^2}$。

离心率$e$的定义为:$e=\frac{c}{a}$其中,$c$为焦点到中心的距离。

2. 椭圆的对称性椭圆以其中心为中心对称,有两个对称轴,分别为长轴和短轴。

长轴上有两个端点,称为顶点;短轴上也有两个端点。

3. 椭圆的参数方程椭圆可以用参数方程表示为:$x=h+a\cos t$$y=k+b\sin t$其中,$(h,k)$为椭圆的中心,$a$和$b$分别为椭圆长轴、短轴的长度。

4. 椭圆的离心角椭圆上任意一点到两个焦点的连线与椭圆长轴的夹角称为椭圆的离心角。

椭圆的离心角范围在0到$\pi$之间。

三、椭圆的相关定理1. 椭圆的偏心率椭圆的偏心率为:$e=\sqrt{1-\frac{b^2}{a^2}}$其中,$a$和$b$分别为椭圆长轴、短轴的长度。

2. 椭圆的焦点、半焦距和离心率的关系椭圆上任意一点到两个焦点的距离之和等于长轴的长度,即$2a=2\sqrt{a^2-b^2}$。

离心率$e$的定义为:$e=\frac{c}{a}$其中,$c$为焦点到中心的距离。

3. 椭圆的切线方程椭圆上一点处的切线方程为:$\frac{xh}{a^2}+\frac{yk}{b^2}=1$四、椭圆的应用1. 物理学中的应用椭圆在天体运动、热力学等领域都有广泛的应用。

例如,行星绕太阳的运动轨迹就是一个椭圆。

2. 工程学中的应用椭圆在工程学中也有着重要的应用,例如在建筑设计、轨道运输等方面。

椭圆知识点以及题型总结

椭圆知识点以及题型总结

椭圆知识点以及题型总结一、椭圆的定义与基本性质椭圆是平面上到定点F1与F2的距离之和等于常数2a的点P的轨迹。

其中的定点F1和F2称为焦点,常数2a称为长轴的长度。

椭圆还有一个重要的参数e,称为离心率,定义为e=c/a,其中c是焦点与中心之间的距离。

椭圆是一个非常重要的几何图形,它有许多独特的性质,需要我们逐一来了解。

1. 椭圆的标准方程椭圆的标准方程一般可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(a>b)。

其中(h,k)是椭圆的中心坐标。

2. 椭圆的焦半径和半短轴椭圆的焦半径是指从焦点到椭圆上任意一点的线段,它的长度等于椭圆的长半轴的长度a。

而椭圆的半短轴的长度等于b。

3. 相邻两焦点和任意一点的距离之和椭圆上任意一点P到椭圆的两个焦点的距离之和等于2a。

即PF1+PF2=2a。

4. 椭圆的离心率椭圆的离心率e定义为e=c/a,其中c是焦点与中心之间的距离,a是长半轴的长度。

离心率是描述椭圆形状的一个重要参数,它的取值范围为0<e<1。

5. 椭圆的参数方程椭圆还可以用参数方程来表示,一般可以表示为x=h+a*cosθ,y=k+b*sinθ。

其中θ的取值范围一般为0≤θ≤2π。

二、常见椭圆的题型及解题方法1. 椭圆的焦半径与半短轴的关系题这类题目一般给定椭圆的长半轴的长度a和离心率e,要求求出椭圆的焦半径和半短轴的长度。

解题方法:根据离心率e=c/a,可以求出焦点与中心之间的距离c,然后根据椭圆的焦点与半短轴之间的关系,可以求出半短轴的长度b。

2. 椭圆的标准方程题这类题目一般给定椭圆的焦点、长轴的长度和中心坐标,要求写出椭圆的标准方程。

解题方法:根据给定的信息,可以用(x-h)²/a²+(y-k)²/b²=1的形式写出椭圆的标准方程。

3. 椭圆的参数方程题这类题目一般给定椭圆的中心坐标、长半轴、半短轴的长度,要求写出椭圆的参数方程。

椭圆练习题带答案,知识点总结(基础版)

椭圆练习题带答案,知识点总结(基础版)

椭圆练习题带答案,知识点总结(基础版)椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (其中2a>F1F2)的点的轨迹。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

当椭圆焦点在x轴上时,标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。

当椭圆焦点在y轴上时,标准方程为x^2/b^2+y^2/a^2=1(a>b>0)。

椭圆的范围为-a≤x≤a,-b≤y≤b。

椭圆有x轴和y轴两条对称轴,对称中心为坐标原点O(0,0)。

椭圆的长轴长为2a,短轴长为2b。

椭圆的顶点坐标为(±a,0),(0,±b)。

椭圆的焦点坐标为(±c,0),其中c^2=a^2-b^2.椭圆的离心率为e=c/a(其中0<e<1)。

a、b、c、e的几何意义:a叫做长半轴长;b叫做短半轴长;c叫做半焦距;a、b、c之间满足a^2=b^2+c^2.e叫做椭圆的离心率,e可以刻画椭圆的扁平程度,e越大,椭圆越扁,e 越小,椭圆越圆。

对于椭圆上任一点P和椭圆的一个焦点F,PF_max=a+c,PF_min=a-c。

当点P在短轴端点位置时,∠F1PF2取最大值(余弦定理)。

椭圆方程常用三角换元为x=acosθ,y=bsinθ。

弦长公式为:设直线y=kx+b交椭圆于P1(x1,y1),P2(x2,y2),则|P1P2|=√(1+k^2(x1-x2)^2)或|P1P2|=√(1+(y1-y2)^2/k^2)(k≠0)。

判断点P(x,y)是否在椭圆内,当且仅当x^2/a^2+y^2/b^21.若椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为c/a,短轴长为4√2,则它的长轴长为2a=6.1.在椭圆$x^2/a^2+y^2=1$的内部,点$A(a,1)$,则$a$的取值范围是$-2<a<2$。

2.已知椭圆方程$x^2/16+y^2/8=1$,焦点为$F_1,F_2$,点$P$在椭圆上且$\angle F_1PF_2=\pi/3$。

椭圆基本知识点与题型总结

椭圆基本知识点与题型总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的简单几何性质标准方程12222=+by a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点、焦距)0,(1c F -,)0,(2c F ,cF F 221=),0(1c F -,),0(2c F cF F 221=范围a x ≤,b y ≤b x ≤,ay ≤顶点)0,(a ±,),0(b ±),0(a ±,)0,(b ±对称性关于x 轴、y 轴,轴对称,关于原点中心对称轴长长轴长=a 2,短轴长=b2离心率()10122<<-==e ab ac e e 越小,椭圆越圆;e 越大,椭圆越扁通径过焦点且垂直于长轴的弦,其长ab 22(通径为最短的焦点弦)准线方程ca x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -=01ey a PF +=,02ey a PF -=1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=(见右图)2.椭圆的一般方程:22Ax By C +=()B A C B A 0ABC ≠≠同号,,,,且3.椭圆的参数方程:{cos sin x a y b ϕϕ==(其中ϕ为参数)4.椭圆焦点三角形问题(1)焦点三角形周长:ca 22+(2)在21F PF ∆中,有余弦定理:()θcos 2P P 22122212PF PF F F c -+=经常变形为:()()θcos 22-PF 221212212PF PF PF PF PF c -+=即:()()θcos 22-22212122PF PF PF PF a c -=(3)焦点三角形面积2tan cos 1sin sin 21S 2221P 21θθθθb b PF PF y c p F F =+=⋅=⋅=∆,其中21PF F ∠=θ5.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义:1、椭圆的定义:平面与两个定点F i 、F 2的距离之和等于定长(大于 IRF 2I )的点的轨迹叫做椭圆。

这两个定点 F i 、F 2叫做椭圆的 焦点,两焦点的距离 厅汀2|叫做椭圆的 焦距。

对椭圆定义的几点说明:(1) “在平面”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2) “两个定点”的设定不同于圆的定义中的“一个定点” ,学习时注意区分;(3) 作为到这两个定点的距离的和的 “常数”,必须满足大于| F i F 2|这个条件。

若不然, 当这个“常数”等于| F i F 2|时,我们得到的是线段 F 1F 2;当这个“常数”小于| F i F 2|时,无 轨迹。

这两种特殊情况,同学们必须注意。

(4) 下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个 对称中心,我们把它的两条对称轴与椭圆的交点记为 A i , A 2, B i , B 2,于是我们易得| A i A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F i |、|B i F 2|+|B i F i |也等于那个“常数”。

同学们想一想 其中的道理。

(5)中心在原点、焦点分别在 x 轴上,y 轴上的椭圆标准方程分别为:2 2 2 2i (a b 0),77i (a b 0),a ba b2 2 2相同点是:形状相同、大小相同;都有 a > b > 0, a c b 。

不同点是:两种椭圆相对于坐标系的位置不同, 它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(一c , 0)和(c , 0),第二个椭圆的焦点坐标为(0,— c )和(0, c )。

椭圆的 焦点在x 轴上 标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上标准方程中y 2项的分母较大。

(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标; 一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只2 2要X 2 每 i (a b 0)的有关性质中横坐标x 和纵坐标y 互换,就可以得出 a b2 2^2 —2 i (a b 0)的有关性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 x y c2=5,故椭圆的方程为 + =1. 5 4
【答案】
x2 y2 (1)3 (2) + =1 5 4
1.(2013· 惠州调研)已知椭圆 G 的中心在坐标原点,长轴在 x 轴 上,离心率为 3 ,且椭圆 G 上一点到其两个焦点的距离之和为 12, 2 ) x2 y2 B. + =1 9 4 x2 y2 D. + =1 9 36
聚 焦 考 向 透 析
◆一个统一
2 x 椭圆焦点位置与 x2,y2 系数间的关系是统一的, 给出椭圆方程 m
y2 + =1 时,椭圆的焦点在 x 轴上⇔m>n>0;椭圆的焦点在 y 轴上 n ⇔0<m<n. ◆两种方法 (1)定义法:根据椭圆定义,确定 a2、b2 的值,再结合焦点位置, 直接写出椭圆方程. (2)待定系数法:根据椭圆焦点是在 x 轴还是 y 轴上,设出相应 形式的标准方程,然后根据条件确定关于 a、b、c 的方程组,解出 a2、b2,从而写出椭圆的标准方程.
对称中心:原点 A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)
聚 焦 考 向 透 析
长轴 A1A2 的长为 2a ;短轴 B1B2 的长为 2b |F1F2|= 2c
c (0,1) 离心率 e= ∈ a a,b,c 的关系 c2= a2-b2
【基础自测】 1.(教材改编)若椭圆的对称轴为坐标轴,长轴长与短轴长的和 为 18,焦距为 6,则椭圆的方程为( x2 y2 A. + =1 9 16 x2 y2 x2 y2 C. + =1 或 + =1 25 16 16 25 ) x2 y2 B. + =1 25 16 D.以上都不对
聚 焦 考 向 透 析
则椭圆 G 的方程为( x2 y2 A. + =1 4 9 x2 y2 C. + =1 36 9
x2 y 2 解析:依题意设椭圆 G 的方程为 2+ 2=1(a>b>0), a b ∵椭圆上一点到其两个焦点的距离之和为 12, ∴2a=12, ∴a=6. 3 ∵椭圆的离心率为 , 2 a2-b2 3 ∴ a = , 2 36-b2 3 ∴ = ,解得 b2=9, 6 2 x2 y2 ∴椭圆 G 的方程为 + =1.故选 C. 36 9 答案:C
聚 焦 考 向 透 析
聚 焦 考 向 透 析
考向一
椭圆的定义及标准方程
聚 焦 考 向 透 析
x2 y2 (1)(2013· 徐州模拟)已知 F1、F2 是椭圆 C: 2+ 2=1(a>b a b →1⊥PF →2.若△PF1F2 的 >0)的两个焦点,P 为椭圆 C 上的一点,且PF 面积为 9,则 b=________. x2 y2 (2)(2011· 高考江西卷)若椭圆 2+ 2=1 的焦点在 x 轴上,过点 a b
)
聚 焦 考 向 透 析
x2 y2 3.(2013· 合肥月考)设 P 是椭圆 + =1 上的点,若 F1、F2 是 25 16 椭圆的两个焦点,则|PF1|+|PF2|等于( A.4 C.8 B.5 D.10 )
聚 焦 考 向 透 析
解析:依椭圆的定义知:|PF1|+|PF2|=2×5=10. 答案:D
(2)∵x=1 是圆 x2+y2=1 的一条切线.∴椭圆的右焦点为(1,0), 即 c=1. 设
1 P1,2,则
聚 焦 考 向 透 析
1 kOP= ,∵OP⊥AB,∴kAB=-2,则直线 AB 2
的方程为 y=-2(x-1),它与 y 轴的交点为(0,2).∴b=2,a2=b2+
聚 焦 考 向 透 析
解析:∵2a+2b=18,∴a+b=9,又∵2c=6,∴c=3,则 c2
2 x =a2-b2=9,故 a-b=1,从而可得 a=5,b=4,∴椭圆的方程为 25
y2 x2 y 2 + =1 或 + =1. 16 16 25 答案:C
x2 y2 2. (教材改编)椭圆 + =1 的焦距为 4, 则 m 等于( 10-m m-2 A.4 C.4 或 8 答案:C B.8 D.12
1.掌握椭圆的定义、几何图形、标准方程及简单性质. 2.了解椭圆的实际背景及椭圆的简单应用. 3.理解数形结合的思想.
Байду номын сангаас
聚 焦 考 向 透 析
【知识梳理】 1.椭圆的概念 在平面内到两定点 F1、F2 的距离的和等于常数(大于|F1F2|)的点 的轨迹(或集合)叫椭圆 .这两定点叫做椭圆的焦点 ,两焦点间的距离 叫做焦距. 集合 P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中 a>0,c>0, 且 a,c 为常数: (1)若 2a>2c ,则集合 P 为椭圆; (2)若 2a=2c ,则集合 P 为线段; (3)若 2a<2c ,则集合 P 为空集.
r1+r2=2a, (1)设|PF1|=r1,|PF2|=r2,则 2 2 2 r1+r2=4c ,
聚 焦 考 向 透 析
2 2 2 2 ∴2r1r2=(r1+r2)2-(r2 + r ) = 4 a - 4 c = 4 b , 1 2
1 ∴S△PF1F2= r1r2=b2=9, 2 ∴b=3.
聚 焦 考 向 透 析
2.椭圆的标准方程和几何性质 标准方程 x2 y 2 + =1 a2 b2 (a>b>0) y 2 x2 + =1 a2 b 2 (a>b>0)
聚 焦 考 向 透 析
图形
性 质
范围
-a ≤x≤ a
-b≤x≤b -a≤y≤a
-b ≤y≤ b
对称性 顶点 性 质 轴 焦距
对称轴:坐标轴 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b)
x2 y2 10 4.(教材改编)已知椭圆 +m=1 的离心率 e= ,则 m 的值 5 5 为________. 25 答案:3 或 3 x2 y2 5.(教材改编)设 P 是椭圆 + =1 上的点,若 F1,F2 是椭圆 25 16 的两焦点,则△PF1F2 的周长为________. 答案:16
1 1, 作圆 x2+y2=1 的切线,切点分别为 2
A,B,直线 AB 恰好经过
椭圆的右焦点和上顶点,则椭圆方程是________.
【审题视点】 (1)从题目中关注△PF1F2 面积的表示以及椭圆的 两焦点与椭圆上的点组成的三角形的性质,结合定义求解. (2)利用 a,b,c 的意义,求 c 和 b 和 a 的值. 【解析】
相关文档
最新文档