非线性薛定谔方程数值解的MATLAB仿真

合集下载

非线性规划的MATLAB解法及其应用

非线性规划的MATLAB解法及其应用

题 目 非线性规划的MATLAB 解法及其应用(一) 问题描述非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划是20世纪50年代才开始形成的一门新兴学科。

70年代又得到进一步的发展。

非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。

在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。

例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。

对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。

具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

目标函数和约束条件都是线性函数的情形则属于线性规划。

本实验就是用matlab 软件来解决非线性规划问题。

(二) 基本要求掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。

题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定系数.题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.(三) 数据结构题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5题二:总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,λ1=0.015,c1=20, r2=100,λ2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z 最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.题三:设变量i x 表示第i 年所使用的资金数,则有 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i(四) 源程序题一:编写M 文件fun0.m:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval题二:建立M-文件fun.m:function f = fun(x)y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1); y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2); f=-y1-y2;输入命令:x0=[50,70];x=fminunc(‘fun ’,x0),z=fun(x)题三:建立M 文件 fun44.m,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));建立M 文件mycon1.m 定义非线性约束:function [g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0主程序youh4.m 为:x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[];beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')(五) 运行结果题一:运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.题二:运行结果为:x=23.9025, 62.4977, z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.题三:运行结果为:x1=86.2;x2=104.2;x3=126.2;x4=152.8;z=43.1(六) 相关知识用Matlab 解无约束优化问题一元函数无约束优化问题21),(m in x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。

matlab数值薛定谔方程

matlab数值薛定谔方程

matlab数值薛定谔方程薛定谔方程是描述量子力学中粒子的行为的基本方程。

在数值计算中,我们可以使用数值方法来求解薛定谔方程。

下面我将从多个角度来回答关于在MATLAB中数值求解薛定谔方程的问题。

1. 数值方法的选择:在MATLAB中,我们可以采用多种数值方法来求解薛定谔方程,其中常用的方法包括有限差分法、有限元法和谱方法等。

选择合适的数值方法取决于问题的特点和计算资源的可用性。

2. 离散化:在数值计算中,我们需要将薛定谔方程离散化为有限个点上的代数方程。

通常,我们会将空间离散化为网格,并在每个网格点上计算波函数的值。

时间离散化则是通过迭代的方式逐步求解时间演化。

3. 有限差分法:有限差分法是一种常见的数值方法,它将导数近似为有限差分。

在薛定谔方程中,我们可以将二阶导数近似为中心差分,然后使用差分方程来求解离散化的薛定谔方程。

4. 有限元法:有限元法是一种广泛应用于偏微分方程求解的数值方法。

在薛定谔方程中,我们可以使用有限元法将波函数表示为一组基函数的线性组合,并通过求解线性方程组来确定系数。

5. 谱方法:谱方法是一种基于函数展开的数值方法,它使用一组特定的基函数来表示波函数。

在薛定谔方程中,我们可以使用傅里叶级数或其他正交多项式作为基函数,并通过求解线性方程组来确定系数。

6. 边界条件:在数值求解薛定谔方程时,我们需要指定合适的边界条件。

常见的边界条件包括固定边界条件和周期性边界条件,具体取决于问题的物理背景。

7. 算法实现:在MATLAB中,我们可以使用内置的数值计算函数和工具箱来实现数值求解薛定谔方程。

例如,可以使用MATLAB的PDE Toolbox来求解偏微分方程,或者使用MATLAB的FFT函数来进行傅里叶变换。

总结起来,数值求解薛定谔方程是一个复杂而重要的问题,需要根据具体情况选择合适的数值方法并进行适当的离散化和边界条件处理。

MATLAB提供了丰富的数值计算工具和函数,可以帮助我们实现数值求解薛定谔方程的算法。

Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧在科学和工程领域中,我们经常会遇到一些复杂的非线性问题,例如最优化问题和方程求解问题。

解决这些问题的方法主要分为线性和非线性等,其中非线性问题是相对复杂的。

作为一种强大的数值计算工具,Matlab提供了许多专门用于解决非线性优化和非线性方程求解的函数和方法。

本文将介绍一些常用的Matlab中的非线性优化和非线性方程求解技巧。

非线性优化是指在给定一些约束条件下,寻找目标函数的最优解的问题。

在实际应用中,往往需要根据实际情况给出一些约束条件,如等式约束和不等式约束。

Matlab中的fmincon函数可以用于求解具有约束条件的非线性优化问题。

其基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)其中,fun是目标函数,x0是初始值,A、b是不等式约束矩阵和向量,Aeq、beq是等式约束矩阵和向量,lb、ub是变量的上下边界。

x表示最优解,而fval表示最优解对应的目标函数值。

另外,非线性方程求解是指寻找使得方程等式成立的变量值的问题。

Matlab中提供的fsolve函数可以用于求解非线性方程。

其基本语法如下:x = fsolve(fun,x0)其中,fun是方程函数,x0是初始值,x表示方程的解。

除了fmincon和fsolve函数之外,Matlab还提供了一些其他的非线性优化和非线性方程求解函数,例如lsqnonlin、fminunc等,这些函数分别适用于无约束非线性优化问题和带约束非线性方程求解问题。

除了直接调用这些函数外,Matlab还提供了一些可视化工具和辅助函数来帮助我们更好地理解和解决非线性问题。

例如,使用Matlab的优化工具箱可以实现对非线性优化问题的求解过程可视化,从而更直观地观察到优化算法的收敛过程。

此外,Matlab还提供了一些用于计算梯度、雅可比矩阵和海塞矩阵的函数,这些函数在求解非线性问题时非常有用。

(完整版)基于MATLAB的快速傅里叶的非线性薛定谔方程

(完整版)基于MATLAB的快速傅里叶的非线性薛定谔方程

GP方程很好的描述BEC的行为
iht
r,t




h2 2m
2
Vext
r

g

r,t

2


r,t

非线性项
G-P方程是非线性薛定谔(Nonlinear Schrödinger)方程的一种, 这类方程大多都只能通过数值办法求解。
2020/2/14
理论物理
7/50
Outline
➢ Matlab程序的实现 ➢ Matlab实例
2020/2/14
理论物理
8/50
III. 算符劈裂算法
Gross-Pitaevskii (G-P)方程:
iht
r,
t




h2 2m
2
Vext
r


g r,t 2
非线性项


r,t

it r,t H Tˆ Vˆextnon r,t
2020/2/14
理论物理
5/50
Outline
➢ 玻色-爱因斯坦凝聚 (BECs) ➢ Gross-Pitaevskii (G-P) 方程 ➢ 算符劈裂算法 (Operator-Splitting methods)
虚时演化 实时演化
➢ 傅里叶变换(离散DFT和快速FFT)
离散傅里叶变换(DFT)算法 快速傅里叶变换(FFT)算法
➢ Matlab程序的实现 ➢ Matlab实例
2020/2/14
理论物理
6/50
II. Gross-Pitaevskii (G-P) 方程
薛定谔(Schrödinger)方程:

MATLAB求解非线性规划

MATLAB求解非线性规划

MATLAB求解非线性规划非线性规划是一类涉及非线性目标函数或非线性约束条件的数学规划问题。

MATLAB是一种强大的数学计算软件,可以用来求解非线性规划问题。

本文将介绍MATLAB中求解非线性规划问题的方法。

1. 目标函数和约束条件在MATLAB中,非线性规划问题可以表示为以下形式:minimize f(x)subject to c(x)≤0ceq(x)=0lb≤x≤ub其中f(x)是目标函数,c(x)和ceq(x)是不等式和等式约束条件,lb和ub是变量的下限和上限。

2. 求解器MATLAB提供了多种求解器可以用来求解非线性规划问题。

其中常用的有fmincon和lsqnonlin。

lsqnonlin可以用来求解非线性最小二乘问题。

它使用的是Levenberg-Marquardt算法,能够有效地求解非线性最小二乘问题,并且具有较好的收敛性。

3. 示例下面我们来看一个求解非线性规划问题的示例。

假设我们要求解以下非线性规划问题:首先,我们需要定义目标函数和约束条件。

在MATLAB中,我们可以使用anonymous function来定义目标函数和约束条件。

代码如下:f = @(x)x(1)^2+2*x(2)^2+3*x(3)^2;c = @(x)[x(1)+x(2)+x(3)-4, x(1)*x(2)+x(1)*x(3)+x(2)*x(3)-3];ceq = [];lb = [0,0,0];接下来,我们使用fmincon求解非线性规划问题。

代码如下:[x,fval,exitflag,output] = fmincon(f,[1,1,1],[],[],[],[],lb,[],@(x)c(x));其中,第一个参数是目标函数,第二个参数是变量的初值,第三个参数是不等式约束条件,第四个参数是等式约束条件,第五个参数是变量的下限,第六个参数是变量的上限,第七个参数是非线性约束条件,最后一个参数是opts,可以设置其他求解参数。

matlab数值薛定谔方程

matlab数值薛定谔方程

matlab数值薛定谔方程摘要:I.引言- 介绍薛定谔方程- 介绍matlab 数值求解方法II.薛定谔方程的数值求解方法- 有限差分法- 有限元法- 谱方法III.matlab 数值求解薛定谔方程的步骤- 准备薛定谔方程的数值模型- 选择数值求解方法- 编写matlab 代码- 运行代码,分析结果IV.结果与讨论- 结果展示- 结果分析- 结果验证V.结论- 总结matlab 数值求解薛定谔方程的方法- 展望未来的研究方向正文:I.引言薛定谔方程是量子力学中的一个基本方程,用于描述一个微观粒子在给定势能场中的运动状态。

然而,由于薛定谔方程本身是一个偏微分方程,它的求解在大多数情况下是非常困难的。

matlab 作为一种强大的科学计算软件,可以用于数值求解薛定谔方程。

本文将介绍薛定谔方程的数值求解方法,以及如何使用matlab 进行数值求解。

II.薛定谔方程的数值求解方法薛定谔方程的数值求解方法主要有以下几种:1.有限差分法:将薛定谔方程的解表示为离散的点,通过差分代替微分,将方程转化为一个线性代数方程组,从而求解薛定谔方程。

2.有限元法:将薛定谔方程的解表示为有限个基函数的线性组合,通过插值或逼近基函数,将方程转化为一个线性代数方程组,从而求解薛定谔方程。

3.谱方法:通过在一组基函数上将薛定谔方程进行投影,将方程转化为一个线性代数方程组,从而求解薛定谔方程。

III.matlab 数值求解薛定谔方程的步骤使用matlab 进行数值求解薛定谔方程的步骤如下:1.准备薛定谔方程的数值模型:首先需要根据实际问题建立薛定谔方程的数值模型,包括势能场、边界条件等。

2.选择数值求解方法:根据问题的特点和求解需求,选择合适的数值求解方法,如有限差分法、有限元法或谱方法。

3.编写matlab 代码:根据所选方法,编写matlab 代码,实现薛定谔方程的数值求解。

4.运行代码,分析结果:运行编写的matlab 代码,得到薛定谔方程的数值解。

matlab解非线性方程

matlab解非线性方程

matlab解非线性方程MATLAB求解非线性方程一、Matlab求解非线性方程的原理1. 非线性方程是指当函数中的变量出现不同的次方数时,得出的方程就是非线性的。

求解非线性方程的准确性决定于得出的解集是否丰富,以及解的精度是否符合要求。

2. Matlab是一款多功能的软件,可以快速求解工程中的数学方程和模型,包括一元非线性方程。

Matlab 具有非线性解析计算能力,可以极大地提高求解效率。

二、Matlab求解非线性方程的方法1. 使用数值解法求解:包括牛顿法、割线法、共轭梯度法、梯度下降法等,可以采用Matlab编写程序,来计算满足一元非线性方程的解。

2. 使用符号解法求解:在Matlab中,可以直接使用solve函数来解决一元非线性方程。

3. Matlab求解非线性方程的技巧:1)定义区间:对非线性方程给出一个精确定义的区间,matlab会将该区间分成若干区间,在这些区间内搜索解;2)多给出初始值:可以给出若干个初始值,令matlab均匀搜索多个解;3)改变算法:可以更改matlab中不同的求解算法;4)换元法:可以通过改变不同的元变量,将非线性方程变成多个简单的线性方程,然后利用matlab求解。

三、Matlab求解非线性方程的特点1. 高效:Matlab求解的方式高效有效,性能优异,可以节省大量的求解时间。

2. 准确:Matlab采用符号解法时,解的准确度精度更高,可以满足大部分要求。

3. 节省资源:Matlab求解非线性方程节省计算机资源,可以很好地利用资源,提高工作效率。

四、 Matlab求解非线性方程的步骤1. 对结构表达式编写程序;2. 设定相应的条件;3. 优化程序;4. 运行程序;5. 分析结果;6. 测试代码;7. 验证学习结果。

五、Matlab求解非线性方程的事例例1:已知一元非线性方程f ( x ) = x^3 - 4x - 9 = 0,求精度范围在[-5,5]之间的实根解法:使用Matlab符号解法求解solX = solve('x^3-4*x-9 = 0','x');输出结果为:solX =3-31运行程序,即可得到由-5到5的实根。

matlab数值薛定谔方程

matlab数值薛定谔方程

MATLAB数值薛定谔方程介绍薛定谔方程是量子力学中描述微观粒子行为的基本方程之一。

它描述了粒子的波函数随时间的演化。

在实际研究中,常常需要通过数值方法来求解薛定谔方程,特别是对于复杂的体系或无法通过解析方法求解的情况。

MATLAB作为一种强大的数值计算工具,提供了丰富的函数和工具箱,可以帮助我们求解薛定谔方程。

本文将介绍如何使用MATLAB进行数值求解,并给出一些示例代码和注意事项。

数值方法求解薛定谔方程通常需要使用数值方法,其中最常用的方法之一是有限差分法。

有限差分法将波函数离散化为网格点上的数值,通过近似微分来代替薛定谔方程中的导数项,从而转化为一个矩阵方程。

具体来说,我们可以将一维薛定谔方程表示为:iℏ∂Ψ(x,t)∂t=−ℏ22m∂2Ψ(x,t)∂x2+V(x)Ψ(x,t)其中,Ψ(x,t)是波函数,m是粒子的质量,V(x)是势能函数。

为了使用有限差分法求解,我们将空间坐标x离散化为网格点x i,时间t离散化为时间步长Δt,波函数Ψ(x,t)在网格点上的值用Ψi n表示,其中i表示网格点的索引,n表示时间步的索引。

将导数项用中心差分近似表示,我们可以得到:iℏΨi n+1−Ψi nΔt=−ℏ22mΨi+1n−2Ψi n+Ψi−1nΔx2+V i nΨi n其中,Δx是空间步长,V i n表示势能函数在网格点x i上的值。

通过这个差分方程,我们可以逐步更新波函数的值,从而得到波函数随时间的演化。

MATLAB代码示例下面是一个简单的MATLAB代码示例,演示如何使用有限差分法求解一维薛定谔方程。

% 定义参数hbar = 1; % 约化普朗克常数m = 1; % 粒子质量L = 10; % 空间范围N = 1000; % 网格点数dx = L/N; % 空间步长dt = 0.01; % 时间步长% 初始化波函数x = linspace(-L/2, L/2, N); % 空间坐标psi = exp(-x.^2); % 初始波函数% 求解薛定谔方程for n = 1:1000% 计算势能函数V = 0.5*x.^2;% 更新波函数psi = psi - 1i*dt*(hbar/(2*m))*(circshift(psi,-1,2)-2*psi+circshift(psi,1, 2))/(dx^2) - 1i*dt*V.*psi;% 绘制波函数随时间的演化plot(x, abs(psi).^2);xlim([-L/2, L/2]);ylim([0, 1]);xlabel('x');ylabel('|\psi|^2');title(['Time step ', num2str(n)]);drawnow;end在这个示例中,我们假设粒子质量m=1,空间范围L=10,网格点数N=1000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

admin
[非线性薛定谔方程数值解的MATLAB仿真]——利用分步快速傅里叶变换对光纤中光信号的传输方程进行数值求解
1、非线性薛定谔方程
非线性薛定谔方程(nonlinear Schrodinger equation ,NLSE)是奥地利物理学家薛定谔于1926 年提出的,应用在量子力学系统中。

由于量子力学主要研究粒子的动力学运动状态,所以不能运用牛顿力学公式来表示。

通常在量子力学中,研究系统的状态一般通过波函数(x ,t)来表示。

而对波函数的研究主要是求解非线性薛定谔方程。

本文主要研究光脉冲在光纤中传输状态下的演变。

一般情况下,光脉冲信号在光纤中传输时,同时受到光纤的色散和非线性效应的影响。

通过Maxwell 方程,考虑到光纤的色散和非线性效应,可以推导出光信号在光纤中的传输方程,即非线性薛定谔方程。

NLSE 是非线性偏微分方程,一般很难直接求出解析解,于是通过数值方法进行求解。

具体分为两大类:(1)分布有限差分法(split-step finite differencemethod ,SSFD);(2)分步傅里叶变换法(split-step Fourier transform method ,SSFT)。

一般情况,在达到相同精度,由于分步傅里叶变换法采用运算速度快的快速傅里叶变换,所以相比较有限差分法运算速度快一到两个数量级。

于是本文介绍分步傅里叶变换法来对光纤中光信号的传输方程,即非线性薛定谔方程进行数值求解。

并通过MATLAB 软件对结果数值仿真。

非线性薛定谔方程的基本形式为:
22||t xx iu u u u =+
其中u 是未知的复值函数.
目前,采用分步傅立叶算法(Split step Fourier Method)求解非线性薛定谔方程的数值解应用比较多。

分步傅立叶方法最早是在1937年开始应用的,这种方法己经被证明是相同精度下数值求解非线性薛定愕方程最快的方法,部分原因是它采用了快速傅立叶变换算法(Fast Fourier Transform Algorithm)。

基于MATLAB 科学计算软件以及MATLAB 强大的符号计算功能,完全可以实现分步傅立叶数值算法来对脉冲形状和频谱进行仿真。

一般情况下,光脉冲沿光纤传播时受到色散和非线性效应的共同作用,假设当传输距离 很小的时候,两者相互独立作用,那么,根据这种思想可建立如下分步傅立叶数值算法的数 学模型:
把待求解的非线性薛定谔方程写成以下形式:
ˆˆ()U D
N U z
∂=+∂ (I )
(II )
其中ˆD
是线性算符,代表介质的色散和损耗, ˆN 是非线性算符,它决定了脉冲传输过程中光纤的非线性效应。

一般来讲,沿光纤的长度方向,色散和非线性是同时作用的。

分步傅立叶法假设在传输 过程中,光场每通过一小段距离h ,色散和非线性效应可以分别作用,得到近似结果。

也就 是说脉冲从z 到z +h 的传输过程中分两步进行。

第一步,只有非线性作用,方程(II)式中的
ˆD
=0;第二步,再考虑线性作用,方程(II)式中的ˆN =0 这样方程(2)在这两步中可分别简化为:
ˆˆU D
U z
U N U z
∂=⋅∂∂=⋅∂
得到了上面两个方程(III ),就可以分别求解非线性作用方程和线性作用方程,然后讨论分步傅立叶法的数值算法。

由于方程(III )是一个偏微分方程,需要通过傅立叶变换把偏微分方程转换为代数方 程,进行运算。

傅立叶变换的定义如下:
1[(,)](,)(,)exp()1[(,)](,)(,)exp()2F U z T U z U z T i T dT
F U z U z T U z i T dT ωωωωωπ+∞
-∞+∞--∞⎧⎪==⎪

⎪==-⎪⎩
⎰⎰ 在计算[(,)]F U z T 时一般采用快速傅立叶变换(FFT )算。

为了保证精度要求,一般还需要反复调整纵向传输步长z 和横向脉冲取样点数T 来保证计算精度。

2、分步傅立叶数值算法的MATLAB 实现
现待求解的非线性薛定谔方程如下:
22
2
024A i A A i A A z T αβγ∂∂+--=∂∂ 其中,A (z ,T )是光场慢变复振幅,z 是脉冲沿光纤传播的距离;1
T t z β=-,11/g v β=,v g
是群速度;(/)ps km β是色散系数;(1/)w km γ⋅是非线性系数;(1/)km α是光纤损耗系数,它与用分贝表示的损耗系数(/)dB dB km α的关系为: 4.343dB αα=.
首先,可以将方程(V )归一化振幅:(,)/
U A z T =,
0P 是入射脉冲的峰值功率, (III )
(IV ) (V )
此时方程(V)可改写为:
22
02
24U i U U P i U U z T αβγ∂∂=-++∂∂ 为了使用分步傅立叶法求解方程(VI ),将方程(VI )写成以下形式:
ˆˆ()U D
N U z
∂=+∂ 进一步,可以得出如下方程(VII ):
22
2
2ˆ2
ˆi U
T D
N P i U βαγ∂-+
∂==
然后,按照步骤1和步骤2,依次计算方程(VII )的线性算符和非线性算符。

最后在步骤3 中,运行步骤1和步骤2的MATLAB 程序,得出线性算符和非线性算符的精确数值解及其仿真曲线。

步骤1 线性算符方程的求解
线性算符的方程如下:
2222
i U
U
T U z
βα∂-+
∂∂=∂
用傅立叶变换方法,得到一个常微分方程(IX ):
2()24
U i i U U z αωβ
∂=--∂ 解方程(IX)得:
22(,)(0,)exp[]4
i U z U z βωαωω-=
式中(0,)U ω是初值(0,)U T 的傅立叶变换,将(,)U z ω进行反傅立叶变换就得到了
(,)U z T 。

方程(X)的求解公式为:
2(,){exp[()][(0,)]}22
i z
U z T F F U T βωα=-⋅
其中F 和F 分别表示傅立叶变换和反傅立叶变换运算。

步骤2 非线性算符方程的求解
(VI )
(VII )
(VIII )
(IX )
(X )
(XI )
非线性部分的方程如下:
2
0U P i U U z
γ∂=∂ 同Step1的方法,解方程(XII ),得到:
2
0(,)(0,)exp[(0,)]U z U Pi U T z ωωγ=
式中(0,)U ω是初值(0,)U T 的傅立叶变换,将(,)U z ω进行反傅立叶变换就得到了(,)U z T 。

方程(XIII)的求解公式为:
2
0(,){exp[(0,)][(0,)]}U z T F Pi U T z F U T γ=⋅
其中F 和F 分别表示傅立叶变换和反傅立叶变换运算。

步骤3 算法在MATLAB 中的实现
在Matlab 中,设有限时长序列()x n 的长度为(1)N n N ≤≤,它对应于一个频域内的长度为N 的有限长序列()(1)X k k N ≤≤,()X k 的角频2()(1)k
k k N NT
πω=
≤≤,其中T 是序列()x n 的采样时间间隔.
这种正反离散傅立叶变换的关系式为:
1
1
2()[()]()exp()(1)12()[()]()exp()(1)N
j N
j X k DFT x n x n j k n k N N
x n IDFT X k X k j k n n N N
N
π
π
====-⋅
⋅⋅ ≤≤==

⋅⋅ ≤≤∑∑ 然后用Matlab 中的离散傅立叶变换(DFT )函数fft 和离散傅立叶反变换(IDFT )的函数ifft 来实现方程(VIII),(XII)式中的傅立叶和反傅立叶变换运算。

进一步,得到方程(XI),(XIV) 的数值解及仿真曲线。

最后,通过测试一组参数,得到方程(V )在该算法下的MATLAB 运算结果。

MATLAB 总共用时34.26s ,求得的的结果曲线如下图所示。

结果表明,算法正确而且精度也比较高,能够在非线性薛定谔方程的求解中广泛应用。

(XII )
(XIII )
(XV )
(XIV )
附录MATLAB的脚本文件源代码:。

相关文档
最新文档