实验一图像增强实验

合集下载

实验1图像增强帮助文档

实验1图像增强帮助文档

一、卷积滤波卷积(Convolution)滤波是通过消除特定的空间频率来增强图像。

根据增强类型(高频、中频、低频)可以分为低通滤波、带通滤波和高通滤波。

此外,还有增强图像某些方向特征的方向滤波等。

它们的核心部分是卷积核。

各种滤波说明High Pass( 高通滤波器):保持图像高频信息,消除图像中的低频成分。

可以用来增强纹理、边缘等信息。

Low Pass(低通滤波器): 保存图像中的低频成分,是图像平滑。

Laplacian(拉普拉斯算子):不考虑图像的边缘部分,只强调图像中的最大值。

可以增强边缘。

:Directional(方向滤波器): 选择性的增强有特定方向成分的(如梯度)图像特征。

Gaussian High Pass(高斯高通滤波: 通过指定大小的高斯卷积函数对图像进行滤波。

Gaussian High Pass(高斯低通滤波):通过指定大小的高斯卷积函数对图像进行滤波。

Median(中通滤波器): 保留卷积核的边缘的同时,平滑图像。

可以消除噪声和斑点。

Soble : 边缘增强。

Roberts : 用于边缘的锐化与分离。

自定义卷积核可以通过选择和编辑一个用户卷积核,定义常用的卷积变换核。

二数学形态学滤波ENVI 中的数学形态学滤波包括以下类型:主要是对二值图像和灰度图像操作膨胀(Dilate):填充比结构元素小的孔。

腐蚀(Erode): 消除比结构元素小的像元。

开启(Opening)平滑图像边缘,消除孤立像元,锐化图像最大、最小信息。

闭合(closing)平滑图像,消除图像中得小孔,填充图像边缘的间隙。

三纹理分析Texture使用Texture 选项可以应用基于概率统计或二阶统计的纹理滤波。

纹理是指图像色调作为等级函数在空间上的变化。

1、基于概率统计的滤波(Occurrence measures)使用Occurrence measures 可以应用于5个不同的基于概率统计的纹理滤波。

包括数据范围(Data Range)、平均值(M,ean)、方差(Variance)、信息熵(Entropy)、偏斜(skewness).把每一个灰阶出现的次数用于纹理计算。

数字图像处理实验报告 实验一 图像增强实验

数字图像处理实验报告 实验一 图像增强实验

实验一图像增强实验一、实验目标:掌握图像增强的算法。

二、实验目的:1. 了解灰度变换增强和空域滤波增强的Matlab实现方法2. 掌握直方图灰度变换方法3. 掌握噪声模拟和图像滤波函数的使用方法三、实验内容:(1)图像的点操作、邻域操作算法。

(2)图像的直方图处理算法。

四、实验设备:1.PIII以上微机; 2.MATLAB6.5;五、实验步骤:(1)读入图像:用matlab函数实现图像读入(可读入Matlab中的标准测试图像)(原始图像)(2)实现图像点操作运算(如gamma校正,对数校正等)(3)实现图像的邻域处理(实现均值滤波,拉普拉斯滤波)(4)实现直方图均衡处理matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2) count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');图像处理结果六、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。

图像增强原理的应用实验报告

图像增强原理的应用实验报告

图像增强原理的应用实验报告1. 引言图像增强是数字图像处理中的一项重要技术,通过改善图像质量,使图像在视觉上更加清晰、鲜明和易于解析。

本实验旨在探究图像增强原理的应用,并对不同的图像增强算法进行评估和比较。

2. 实验方法本实验使用Python编程语言,在Jupyter Notebook环境下进行实验,主要使用了以下几个库: - OpenCV:用于图像的读取和处理。

- NumPy:用于数组和矩阵的处理。

- Matplotlib:用于图像的显示和绘图。

实验步骤如下: 1. 导入所需的库。

2. 读取待处理的图像。

3. 实现不同的图像增强算法,包括直方图均衡化、自适应直方图均衡化等。

4. 比较不同算法的效果,包括图像的对比度、亮度和细节增强等方面。

5. 对实验结果进行分析和总结。

3. 实验结果实验中使用了一张室外风景照片作为待处理图像。

下面列出了不同图像增强算法的实验结果:3.1 直方图均衡化直方图均衡化是一种常用的图像增强算法,通过重新分布图像像素的灰度级来增强图像的对比度。

实验结果显示,直方图均衡化可以有效地增强图像的对比度,使暗部和亮部细节更加清晰。

3.2 自适应直方图均衡化自适应直方图均衡化是对传统直方图均衡化算法的改进,它根据图像局部的统计信息进行直方图均衡化,避免了全局均衡化带来的图像过度增强的问题。

实验结果表明,自适应直方图均衡化能够更好地保留图像的细节,并且对于不均匀光照的图像效果更好。

3.3 其他图像增强算法除了直方图均衡化和自适应直方图均衡化,还有许多其他图像增强算法可以应用于不同的图像处理任务,如图像去噪、边缘增强等。

这些算法的实验结果因具体应用场景而异,需要根据实际需要进行选择和评估。

4. 分析与讨论根据实验结果,可以看出不同的图像增强算法对图像的处理效果有所不同。

直方图均衡化能够提高图像的对比度,但对于光照不均匀的图像可能产生过度增强的效果。

自适应直方图均衡化通过局部统计信息进行直方图均衡化,能够更好地保留图像的细节。

图像增强实验报告

图像增强实验报告

图像增强实验报告图像增强实验报告引言:图像增强是数字图像处理中的重要技术之一,它可以通过改变图像的亮度、对比度、色彩等参数,使图像更加清晰、细节更加突出。

本实验旨在探究不同图像增强方法对图像质量的影响,并比较它们的效果。

一、实验目的通过实验比较不同的图像增强方法,包括直方图均衡化、拉普拉斯算子增强、灰度变换等,对图像质量的影响,了解各种方法的优缺点,为实际应用提供参考。

二、实验步骤1. 实验准备:准备一组包含不同场景、不同光照条件下的图像样本,以及实验所需的图像处理软件。

2. 直方图均衡化:将图像的直方图进行均衡化,使得图像的像素值分布更加均匀,从而提高图像的对比度和亮度。

3. 拉普拉斯算子增强:使用拉普拉斯算子对图像进行边缘增强,突出图像的细节和纹理。

4. 灰度变换:通过调整图像的灰度级别,改变图像的亮度和对比度,使图像更加清晰明亮。

5. 实验结果分析:对比不同图像增强方法处理后的图像,分析它们在视觉效果上的差异,并根据实验结果评估各种方法的优劣。

三、实验结果与讨论在本次实验中,我们选择了一张室内拍摄的暗淡图像作为样本进行增强处理。

首先,我们对该图像进行了直方图均衡化处理。

结果显示,通过直方图均衡化,图像的亮度和对比度得到了明显的提升,细节也更加清晰可见。

然而,由于直方图均衡化是全局处理,可能会导致图像的局部细节过于突出,从而影响整体视觉效果。

接下来,我们采用了拉普拉斯算子增强方法。

通过对图像进行边缘增强,图像的纹理和细节得到了突出展示。

然而,拉普拉斯算子增强也存在一定的局限性,对于噪声较多的图像,可能会导致边缘增强过程中出现伪影和锯齿现象。

最后,我们尝试了灰度变换方法。

通过调整图像的灰度级别,我们改变了图像的亮度和对比度,使图像的细节更加突出。

与直方图均衡化相比,灰度变换方法更加灵活,可以根据实际需求对图像进行个性化的调整。

综合对比三种图像增强方法的实验结果,我们可以得出以下结论:直方图均衡化适用于对整体亮度和对比度进行提升的场景;拉普拉斯算子增强适用于突出图像的边缘和纹理;灰度变换方法可以根据实际需求对图像进行个性化调整。

matlab数字图像处理实验报告

matlab数字图像处理实验报告

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。

二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。

其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。

此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。

频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。

常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。

假定原图像为f(x,y),经傅立叶变换为F(u,v)。

频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。

四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 1962.给定函数的累积直方图。

实验一图像增强

实验一图像增强

实验一图像增强第一篇:实验一图像增强《数字图像处理》实验报告实验一图像增强班级:姓名:学号:实验目的一、熟悉MATLAB中的图像处理工具箱。

二、熟悉MATLAB中常用的图像处理函数。

三、掌握图像增强的基本原理与实现方法,掌握基本的空间域操作。

四、了解imread、imshow、imhist、imwrite、rgb2gray、mat2gray、imresize、imrotate、imtransform等函数的使用方法。

五、实验内容1.熟悉MATLAB图像处理工具箱的功能及常用的图像处理函数。

2.实现“DIPUM2E_PROJECT_STATEMENTS”中的PROJECT2.1、2.2、2.3、2.5、3.1、3.5、3.6六、实验结果第一题function I = isinteger(A)if ~isnumeric(A)error('A must be a numeric array.');endA = double(A);I = A == floor(A);A=[6.1 2.1;0.1 2] isinteger(A)结果ans = 0 0 0 1 2.2代码function E = iseven(A)if ~isnumeric(A)error('A must be a numeric array.');end A = double(A);E = floor(A/2)==(A/2);A=[3 5;0.1 6] iseven(A)结果ans =《数字图像处理》实验报告0 0 0 1 2.3代码function D = isodd(A)if ~isnumeric(A)error('A must be a numeric array.');endA = double(A);D = floor((A + 1)/2)==((A + 1)/2);A=[2 3;6 1] isodd(A)结果 ans = 0 1 0 1 2.5代码function [I, map] = imagein1(path)if nargin < 1 path = pwd;endoriginal_directory = pwd;[file, pathname] = uigetfile('*.*', 'Image Open');if isequal(file, 0)| isequal(pathname, 0)disp('Image input canceled.');I = [];map = [];else[I, map] = imread(file);end 结果>>imagein1 Image input canceled.ans = []3.1、代码《数字图像处理》实验报告function z = intxform(s, map)classin = class(s);[s, revertclass] = tofloat(s);x = linspace(0, 1, numel(map))';y = map(:);z = interp1(x, y, s, 'linear');z = revertclass(z);A=imread('Fig0210(a).tif');subplot(2,1,1);imshow(A) ;t = linspace(0, 1, 256);map = t.^2;z = intxform(A, map);subplot(2,1,2);imshow(z);结果:3.5、代码function w = genlaplacian(n)if ~isinteger1(n)| n <= 0 | iseven(n)error('n must be a positive, odd integer')end center =(n^2)imfilter(fd, genlaplacian(3), 'replicate');g5 = fdimfilter(fd, genlaplacian(9), 'replicate');g15 = fdimfilter(fd, genlaplacian(25),'replicate');subplot(2,3,1);imshow(fd);title('a');subplot(2,3,2);imsh ow(g3);title('b');subplot(2,3,3);imshow(g5);title('c');subplot(2,3,4); imshow(g9);title('d');subplot(2,3,5);imshow(g15);title('e');subplot( 2,3,6);imshow(g25);title('f');结果:《数字图像处理》实验报告3.6 代码:w = fspecial('unsharp', 0);f =imread('Fig0217(a).tif');imshow(f)g = imfilter(f, w, 'replicate');figure, imshow(g)结果七、本实验的心得体会通过本实验的学习与实践,我学到了很多图像处理的技巧,掌握图像增强的基本原理与实现方法,掌握基本的空间域操作,也对学习图像处理产生了更多的兴趣。

数字图像处理实验报告——图像增强实验

数字图像处理实验报告——图像增强实验

实验报告课程名称数字图像处‎理导论专业班级_____‎_____‎_____‎姓名_____‎_____‎_____‎学号_____‎_____‎_____‎电气与信息‎学院和谐勤奋求是创新‎2.编写函数w‎ = genla‎p laci‎a n(n),自动产生任‎一奇数尺寸‎n的拉普拉‎斯算子,如5×5的拉普拉‎斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 14.采用不同的‎梯度算子对‎b lurr‎y_moo‎n.tif进行‎锐化滤波,并比较其效‎果。

[I,m ap]=im rea‎d('trees‎.tif');I=doubl‎e(I);subpl‎o t(2,3,1)imsho‎w(I,m ap);title‎(' Origi‎nal Im age‎');[Gx,Gy]=gradi‎e nt(I); % gradi‎e n t calcu‎l atio‎nG=sqrt(Gx.*Gx+Gy.*Gy); % matri‎xJ1=G; % gradi‎e nt1subpl‎o t(2,3,2)imsho‎w(J1,m ap);title‎(' Opera‎tor1 Im age‎');J2=I; % gradi‎e nt2 K=find(G>=7);J2(K)=G(K);subpl‎o t(2,3,3)im sho‎w(J2,m ap);title‎(' Opera‎tor2 Im age‎');J3=I; % gradi‎e n t3 K=find(G>=7);J3(K)=255;subpl‎o t(2,3,4)im sho‎w(J3,m ap);title‎(' Opera‎tor3 Im age‎');J4=I; % gradi‎e n t4 K=find(G<=7);J4(K)=255;subpl‎o t(2,3,5)im sho‎w(J4,m ap);title‎(' Opera‎tor4 Im age‎');J5=I; % gradi‎e nt5 K=find(G<=7);J5(K)=0;Q=find(G>=7);J5(Q)=255;subpl‎o t(2,3,6)im sho‎w(J5,m ap);title‎(' Opera‎tor5 Im age‎');5.自己设计锐‎化空间滤波‎器,并将其对噪‎声图像进行‎处理,显示处理后‎的图像;附录:可能用到的‎函数和参考‎结果**************报告里不能‎用参考结果‎中的图像1)采用3×3的拉普拉‎斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]滤波I=im rea‎d('moon.tif');T=doubl‎e(I);subpl‎o t(1,2,1),im sho‎w(T,[]);title‎('Origi‎n al Im age‎');w =[1,1,1;1,-8,1;1,1,1];K=conv2‎(T,w,'sam e');subpl‎o t(1,2,2)im sho‎w(K);title‎('Lapla‎cian Trans‎f orm a‎tion');图2.9 初始图像与‎拉普拉斯算‎子锐化图像‎2)编写函数w‎ = genla‎p laci‎a n(n),自动产生任‎一奇数尺寸‎n的拉普拉‎斯算子,如5×5的拉普拉‎斯算子:w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]funct‎i on w = genla‎p laci‎a n(5)%Com pu‎t es the Lapla‎c ian opera‎t orw = ones(n);x = ceil(n/2);w(x, x) = -1 * (n * n - 1);3)分别采用5‎×5,9×9,15×15和25‎×25大小的‎拉普拉斯算‎子对blu‎rry_m‎o on.tif进行‎锐化滤波,并利用式完‎成图像的锐‎化增强,观察其有何‎不同,要求在同一‎窗口中显示‎。

实验一,图像增强

实验一,图像增强

电子科技大学实验报告学生姓名:骆骏学号: 2010051060023指导老师:彭真明日期:2013年3月31日一、实验室名称:光电楼329机房二、实验项目名称:实验一:图像增强三、实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。

图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。

空间域的增强主要有:灰度变换和图像的空间滤波。

1.灰度变换灰度变换主要有线性拉伸、非线性拉伸等。

灰度图像的线性拉伸是将输入图像的灰度值的动态范围按线性关系公式拉伸到指定范围或整个动态范围。

令原图像),(y x f 的灰度变化范围为],[b a ,线性变换后图像),(y x g 的范围为],[''b a ,线性拉伸的公式为:]),([),(''a y x f ab a b a y x g ---+= 灰度图像的非线性拉伸采用的数学函数是非线性的。

非线性拉伸不是对图像的灰度值进行扩展,而是有选择地对某一灰度范围进行扩展,其他范围的灰度值则可能被压缩。

常用的非线性变换:对数变换和指数变换。

对数变换的一般形式:cb y x f a y x g ln ]1),(ln[),(++= 指数变换的一般形式:1),(]),([-=-a y x fc b y x g(c b,a,用于调整曲线的位置和形状的参数。

)2.直方图均衡化图像的直方图实际上就是图像的各像素点强度概率密度分布图,是一幅图像所有像素集合的最基本统计规律,均衡化是指在每个灰度级上都有相同的像素点过程。

3.中值滤波该方法是把邻域内所有像素按序排列,然后用中间值作为中心像素的输出。

四、实验目的:1.熟悉和掌握利用Matlab 工具进行数字图像的读、写、显示等数字图像处理的基本步骤。

2.熟练掌握各种空间域图像增强的基本原理及方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一图像增强实验
实验目的:1.掌握图像增强的算法
2.学习利用MATLAB进行图像的增强
实验内容:1.图像的点操作、邻域操作算法
2.图像的直方图处理算法
实验步骤:
1.读入图像,用MATLAB函数实现图像读入
(1)启动MATLAB
(2)在命令行窗口直接输入MATLAB命令,按“回车”键后执行(3)读入命令和显示命令分别为 imread 和 imshow
(4)如A=imread('D:\上官军\medical image\woman.jpg')
Imshow (A)
结果显示
2.实现图像点操作运算(gamma校正和对数校正)(1)根据图像线形变换三种形式,图像反转 S=L-1-r 、对数变换S=c*log(1+r) 、幂次变换 S=c*r .^γ编写图像点操作函数
(2)建立新的M文件,点操作函数代码如下:
function s=dian(r,leixing,chengshu,gamma1)
% r为处理图像,leixing为操作类型
s1=imread(r);
s2=im2double(s1);
%将图像转为double数据型
switch leixing
case 'fanzhuan'
s=1-s2;
case 'duishu'
s=chengshu*log(1+s2);
case 'gamma'
s=chengshu*s2.^gamma1;
otherwise
error('错误')
end
subplot(1,2,1), imshow(s1);
subplot(1,2,2),imshow(s);
(3)实际操作,如反转:
Y=dian('D:\上官军\medical image\woman.jpg','fanzhuan',1,1);
3.图像邻域处理
(1)图像邻域处理是通过设计相应的滤波器来处理相邻图像像素,主要为均值滤波器、中指滤波器、高斯滤波器等
(2)建立新的M文件,均值滤波函数代码如下:
function d=avefilt(x,n)
a(1:n,1:n)=1;
%a即n×n模板,元素全是1
p=size(x);
%输入图像是p×q的
x1=double(x);
%A(a:b,c:d)表示A矩阵的第a到b行,第c到d列的所有元素for i=1:p(1)-n+1
for j=1:p(2)-n+1
c=x1(i:i+(n-1),j:j+(n-1)).*a;
%取出x1中从(i,j)开始的n行n列元素与模板相乘
s=sum(sum(c));
%求c矩阵(即模板)中各元素之和
x1(i+(n-1)/2,j+(n-1)/2)=s/(n*n);
%将模板各元素的均值赋给模板中心位置的元素
end
end
d=uint8(x1);
subplot(1,2,1),imshow(x);
title('均值滤波前图像');
subplot(1,2,2),imshow(d);
title('均值滤波后图像');
(3)实际操作,代码如下:
A=imread('D:\上官军\medical image\woman.jpg');
Y=avefilt(A,3);
滤波前图像滤波后图像
4.直方图的均衡处理
(1)图像直方图利用MATLAB工具箱中imhist产生,根据直方图均衡计算公式:
编写直方图均衡函数
(2)建立新的M文件,直方图均衡代码如下:
function s=zhifangtu(r)
s1= r;
[m,n]=size(s1);
%检测图像大小
count=0;
s2=zeros(m,n);
% s2是行列分别为m、n的0矩阵s3=zeros(1,255);
figure,imhist(s1);
[counts]=imhist(s1);
for k=1:255
count=count+counts(k); s3(k)=255*count/(m*n); end
%根据直方图均衡公式编写
for x=1:m
for y=1:n
s2(x,y)=s3(s1(x,y)+1); end
end
s=s2;
s=mat2gray(s);
s=im2uint8(s);
subplot(1,2,1),imshow(s);
title('均衡后的图片');
subplot(1,2,2),imhist(s);
title('均衡后的直方图');
(3)实际操作,代码如下:
A=imread('D:\上官军\medical image\woman.jpg'); Y=zhifangtu(A)
均衡后的图片
050100150200250
均衡后的直方图
.。

相关文档
最新文档