纳米科学技术简介
纳米科技简介

晏亮谷战军赵宇亮纳米(nm),它与米、厘米、毫米一样,是几何大小的量度单位,1nm=10−9 m,约等于4~5个原子排列起来的长度。
最早提出在纳米尺度上进行科学研究的是著名物理学家、诺贝尔物理学奖获得者理查德·费曼(Richard Feynman)。
1959年,费曼在美国加州理工学院召开的美国物理学会年会上所做的演讲《底部还有很大空间》中提出:能够用宏观的机器来制造比其体积小的机器,而这较小的机器还可能制备更小的机器,这样一步一步达到分子限度。
美丽的梦想往往是人类前进的动力,科学家开始试图从各个角度提出有关纳米技术的构想。
20世纪70年代,美国康奈尔大学的格兰奇维斯特(Granqvist)和比尔曼(Buhrman)利用气相凝集的方法制备出纳米颗粒,并提出了纳米晶体材料的概念,成为纳米材料的创始者。
随后,麻省理工学院的德雷克斯勒教授积极提倡纳米技术的研究,并成立了纳米科技研究小组。
到20世纪80年代,各种表征手段的不断涌现,特别是扫描隧道显微镜,为纳米技术的发展和纳米材料的制备奠定了实验基础。
德国的格莱特(Gleiter)教授利用惰性气体凝集的方法制备出6纳米的纳米颗粒,并且对其从理论以及性能上做了全面的研究,指出了在纳米界面上的奇异结构和特异功能。
进入21世纪以来,各种纳米材料已经可以被大规模生产,并且在工业、农业、食品、生活日用品、医药等领域的消费品和工业产品中广泛使用,以提高原有的性能或获得新的功能。
例如,把纳米级的TiO2添加到防晒霜中可增强对紫外线的吸收,Zn纳米材料也被用作催化剂处理汽车尾气。
纳米材料在各个领域都发挥着巨大的作用,已成为人们日常生活中密不可分的一部分,正在对国民经济发展和社会进步做出巨大的贡献。
正像美国科学家预计的:“这种人们肉眼看不见的极微小的物质很可能给各个领域带来一场革命。
”一、纳米技术纳米技术是指在纳米尺度下(0.1~100 nm)操纵原子和分子,对材料进行加工,制造具有特定功能的产品,或对物质及其结构进行研究,并掌握其原子、分子运动规律和特性。
纳米技术

• 利用纳米技术还可制成各种分子传感器和探测器。利
用纳米羟基磷酸钙为原料,可制作人的牙齿、关节等
仿生纳米材料。将药物储存在碳纳米管中,并通过一 定的机制来激发药剂的释放,则可控药剂有希望变为 现实。
• 另外,还可利用碳纳米管来制作储氢材料,用作燃料 汽车的燃料"储备箱"。利用纳米颗粒膜的巨磁阻效应 研制高灵敏度的磁传感器;利用具有强红外吸收能力 的纳米复合体系来制备红外隐身材料,都是很具有应 用前景的技术开发领域。
用扫描隧道显微镜的针尖 将原子一个个地排列成 汉字,汉字的大小只有 几个纳米。
纳米技术应用
1 、纳米技术在陶瓷领域方面的应用 2 、纳米技术在微电子学上的应用 3 、纳米技术在生物工程上的应用 4 、纳米技术在光电领域的应用 5 、纳米技术在化工领域的应用 6 、纳米技术在医学上的应用 7 、纳米技术在分子组装方面的应用 8、纳米技术在其它方面的应用
虽然纳米陶瓷还有许多关键技术需要解决,但其
优良的室温和高温力学性能、抗弯强度、断裂韧
性,使其在切削刀具、轴承、汽车发动机部件等 诸多方面都有广泛的应用,并在许多超高温、强 腐蚀等苛刻的环境下起着其他材料不可替代的作 用,具有广阔的应用前景。
返回
纳米级微电子元件
日本日立中心实验室利用半导体材料砷化镍,
认为:“物理学的规律不排除一个原子一个原子地制造物 质的可能性”,并表示: “我深信不移,当人们能操纵 细微物质的时候,将可获得极其丰富的新的物质的性质。”
费曼对纳米技术的最早梦想,成为一个光
辉的起点,人类开始了对纳米世界的探求。
科学家发现,在纳米的世界里,物质发生了质的飞 跃。比如硅晶体是不发光的,但纳米硅却会发光;陶瓷
纳米抗菌防静电面料
纳米技术及应用资料

纳米技术及应用资料纳米技术是一门研究和应用纳米尺度范围内的材料、器件和系统的科学与技术。
纳米尺度在1纳米到100纳米之间,纳米技术主要关注和操纵材料的纳米结构和性质,以实现对材料特性、性能和功能的精确控制和改进。
纳米技术的应用非常广泛,涵盖了各个领域。
以下是纳米技术的一些主要应用领域:1. 电子学和电子器件:纳米技术在电子学领域的应用极为重要,例如微电子器件、纳米电子结构等。
纳米技术可以提高电子器件的性能和功能,使得电子设备更小、更快速、更节能。
2. 材料科学:纳米技术可以用来制备和改进各种材料,包括金属、陶瓷、聚合物等。
纳米结构的材料具有特殊的物理、化学和生物性能,可以应用于传感器、催化剂、纳米粒子药物等领域。
3. 药物传递和医学诊断:纳米技术在药物传递和医学诊断领域有广泛的应用。
纳米粒子可以作为药物载体,通过调控纳米粒子的形状、大小、表面性质等,实现药物的快速、定向、可控释放,提高药物的疗效和减少副作用。
此外,纳米技术还可以用于制备和改进医学影像技术,如纳米探针、纳米共振探针等。
4. 能源和环境:纳米技术在能源和环境领域有着广泛的应用。
通过纳米技术可以制备高效的光电材料、催化剂等,用于太阳能电池、燃料电池、水处理等。
此外,纳米技术还可以应用于空气和水污染的治理,例如纳米材料的吸附和催化等作用可以有效地去除有害气体和污染物。
5. 纳米生物技术:纳米技术在生物领域的应用被称为纳米生物技术。
纳米生物技术可以用于生物传感、分子诊断、生物成像、基因治疗等。
通过纳米技术可以制备纳米生物传感器、纳米探针等,实现对生物分子和细胞的高灵敏、高选择性的检测和干预。
纳米技术的应用给人类带来了很多益处,但也存在一些挑战和问题需要解决。
例如,纳米材料对环境和生物体的安全性需要评估和监控;纳米器件的制备和集成技术仍然面临着一些技术难题;纳米尺度下的物理和化学现象仍然不完全理解等。
总之,纳米技术是一门前沿的科学和技术,其应用潜力巨大。
纳米技术简介

纳米技术包含下列四个主要方面
第一方面是纳米材料(或称超微粒子,尺度小于100nm的粒子),包括材料的制备和表征.在纳米尺度下,物质中电子的波动性以及原子的相互作用将受到尺寸大小的影响.如能得到纳米尺度的结构,就可能在不改变物质化学成分的情况下控制材料的基本性质,如熔点、磁性、电容甚至颜色等.纳米材料具有异乎寻常的性能.用超微粒子烧成的陶瓷,硬度可以更高,但不脆裂;无机超微粒子加入到橡胶中后,将粘在聚合物分子的端点上,由此做成的轮胎将大大减少磨损、延长寿命.
第二方面是纳米动力学(nanodynamics),主要是微机械和微电机,或总称为微型电动机械系统(MEMS).这主要用于有传动机械的微型传感器和执行器、光纤通讯系统、特种电子设备、医疗和诊断仪器等. MEMS用的是一种类似于集成电路设计和制造的新工艺.特点是部件很小,刻蚀的深度往往要求数百微米,而宽度误差只允许万分之一,这种工艺还可用于制作转子直径为400μm的三相电动机,用空气作轴承,转速可达106rad/min—l07rad/min,调向时间小于1μs,用于超快速离心机或陀螺仪等.这方面的研究还要相应地检测准原子尺度的微变形和微摩擦等.虽然此研究目前尚未真正进人纳米尺度,但有很大的潜在科学价值和经济价值.
(3)纳米技术的应用前景
纳米技术不纯粹是材料科学的问题,获益的也不仅仅局限在材料科学方面,下列各个领域将因纳米技术的发展而得益.
电子和通讯: 如用纳米薄层和纳米点记录的全媒体存储器、平板显示器和其他全频道通讯工程和计算机用的器件等.对此,美国军方提出的初期指标是:在室温下,比现有的器件运算速度快10~100倍,信息存贮密度大5~100倍,能耗小50倍.将来则要求存贮密度和运算速度都要比现在大或快3——6个数量级,且廉价而节能.
纳米科技技术的基本原理解析

纳米科技技术的基本原理解析引言:纳米科技是目前科技领域中备受关注的一个研究领域。
作为研发人员和科技爱好者,我们应该了解纳米科技的基本原理是什么,它如何影响我们的生活。
本文将对纳米科技的基本原理进行解析,并探讨其在各个领域中的潜在应用。
一、纳米科技的定义:纳米科技是研究和应用物质的特性和行为在纳米尺度范围内的科学与技术。
纳米尺度通常被定义为1到100纳米之间,即百万分之一至十六分之一的直径。
二、纳米科技的基本原理:纳米科技的基本原理主要涉及纳米材料和纳米结构。
纳米材料在纳米尺度下具备独特的物理、化学和生物学性质,相较于宏观材料具有许多优势。
1. 尺度效应:尺度效应是纳米科技的核心原理之一。
纳米材料的尺寸在原子和分子的尺度上,因此其性质与宏观材料存在明显差异。
纳米颗粒具有更大的比表面积,可提供更多的活性位点,从而在催化、吸附等方面表现出卓越性能。
2. 表面效应:相较于宏观材料,纳米材料的表面积更大,因此有更多的原子或分子暴露在表面。
纳米粒子的表面存在着更多的能级,使得其在催化、光催化、传感等应用中表现出更高的活性。
3. 量子效应:在纳米尺度下,物质的电子和光学性质会受到量子效应的影响。
量子效应使得纳米材料在光电、光学、磁性等方面表现出独特的特性。
例如,纳米晶体的量子点可发光颜色取决于颗粒的尺寸。
三、纳米科技的应用领域:纳米科技的应用潜力广泛,涵盖了许多领域,包括医疗、能源、材料、电子、环境等。
1. 医疗应用:纳米技术在医疗领域中有着巨大潜力。
纳米粒子可以作为载体,用于传递药物、基因,以及在肿瘤治疗中的靶向治疗。
纳米传感器可以用于检测和监测生物分子,以提高疾病的早期诊断和治疗效果。
2. 能源应用:纳米材料在能源领域中有广泛的应用前景。
纳米材料的电子、光学和磁性性质特殊,适用于太阳能电池、电池、液流电池以及催化剂等能源转换和储存设备中。
3. 材料应用:纳米材料在材料领域中应用广泛,可以用于制备高强度、高韧性、高导电导热等新型材料。
纳米技术的基础知识

纳米技术的基础知识纳米技术概述纳米技术是一种以纳米尺度为特征的科学、技术和工程领域。
纳米技术涉及到处理和制造材料、设备和系统,其尺寸通常在1到100纳米之间。
在纳米尺度上,物质的性质和行为与宏观尺度上有着显著的不同,这使得纳米技术成为许多领域的研究热点和创新方向。
追溯纳米技术的起源,可以回溯到20世纪80年代。
然而,纳米技术的进一步发展和应用则是在1990年代末和21世纪初被广泛认识和关注的。
纳米技术的应用领域包括材料科学、生物医学、电子学、能源、化学和环境等,对于科学研究、技术革新和产业发展都具有重要意义。
纳米技术的基本原理是通过控制和操纵材料的结构和性质,实现对其性能和功能的改善和提升。
在纳米尺度下,物质的性质会发生显著的变化,例如导电性、光学性质、磁性等都会发生变化。
通过利用纳米技术,可以制备出具有特殊性能和功能的纳米材料、纳米器件和纳米结构,从而推动科学研究和工程应用的进步。
纳米材料与纳米结构纳米材料是指在纳米尺度下具有特殊性质和性能的材料。
纳米材料可以是纳米颗粒、纳米晶体、纳米管、纳米线、纳米薄膜等。
纳米材料的尺寸通常在1到100纳米之间,具有高比表面积、强化的力学性能、改变的光学和电磁性质等特点。
纳米材料广泛应用于材料科学、电子学、能源学、生物医学等领域。
纳米结构是指在纳米尺度下具有特殊结构和形态的材料。
纳米结构可以是纳米线阵列、纳米孔洞、纳米孪晶、纳米层状结构等。
纳米结构的形成受到物理、化学和生物因素的影响,具有与尺寸相似的特殊性质和应用潜力。
纳米结构在材料科学、化学和生物医学等领域显示出了独特的优势和应用前景。
纳米技术的制备方法纳米技术的制备方法包括自下而上和自上而下两种主要方法。
自下而上的制备方法是通过原子、分子或聚合物等基本单元的自组装或聚集,逐步构建出纳米材料和纳米结构。
自下而上的方法包括溶液法、气相法、凝胶法、磁控溅射等。
这些方法能够实现针对性地合成具有特定性质和功能的纳米材料和结构。
生命科学中的纳米技术

生命科学中的纳米技术纳米技术是现代科学技术中一个深受关注的领域,它是指通过控制物质的结构和组成,使其具有预定的纳米级尺度和性质,将纳米级物质制备出来的技术。
近年来,生命科学中的纳米技术获得了越来越多的关注,其在生命科学中的应用已经变得越来越广泛。
生命科学中的纳米技术主要分为两个部分:纳米医学和纳米生物学。
纳米医学主要是通过纳米技术制备纳米药物来治疗疾病。
而纳米生物学则主要是通过纳米技术研究生物系统的结构与功能,从而揭示其内部机制和生命现象的规律。
在纳米医学方面,纳米技术主要应用于制备纳米药物。
与普通药物相比,纳米药物拥有更小的粒径和更大的比表面积,因此在体内的分布和代谢过程中表现出更好的生物利用度和药效。
同时,纳米药物还可以通过控制粒子尺寸和形状等参数来调节其性质和功能,从而实现有针对性地治疗疾病。
例如,侵袭性黑色素瘤(melanoma)是一种常见的皮肤癌型,传统药物治疗虽然较为有效,但常常存在副作用较大的问题。
近年来,利用纳米技术研制的纳米药物被应用于黑色素瘤的治疗。
通过控制粒子尺寸和形状等参数,制备出具有广谱抗肿瘤活性、可控缓释性和针对性等优点的纳米药物。
实验结果表明,纳米药物在治疗黑色素瘤方面具有很好的作用。
在纳米生物学方面,纳米技术主要应用于研究生物系统的结构和功能。
通过利用纳米级精度的探测技术,可以观察到更细小的生物分子和生命现象,并揭示其内部机制和规律。
同时,纳米技术还可以通过制备纳米生物传感器和器件等工具来对生物分子和生命现象进行监测和测量。
例如,在癌症的研究中,纳米技术可以制备出非常小的纳米探针来观察肿瘤细胞的活动。
这样一来,传统的光学显微镜只能观察到肿瘤细胞表面的现象被大大拓宽,对肿瘤的治疗和预测起到了很好的辅助作用。
纳米技术在生命科学中的应用不仅存在着诸多优点,也存在着一些挑战。
例如,纳米药物的规模较小,易受到各种环境因素的影响,在运输和贮存过程中需要进行一系列的优化。
同时,纳米技术在生物学中的应用需要注意其对生物系统的安全性和生态环境的影响等问题。
纳米科学与技术第一章

• 纳米科技研究涉及一系列快速发展的设备和工 业流程, 业流程 , 要求对单一的原子或分子簇进行加工 处理, 这些材料通常只有1纳米到 纳米到100纳米大小 。 纳米大小。 处理 , 这些材料通常只有 纳米到 纳米大小 • 在纳米级别,一些传统材料可以表现出其有价 值的特性,如不同寻常的强度、电导性或者通 过肉眼无法察觉的某些性质,可以通过对不同 纳米级材料间的重新组合制造出新的药物、新 的食品和设备,将对全球经济产生巨大的影响。
• 绪论 (Introduction)
• 美国卢克斯研究公司 美国卢克斯研究公司2005调查报告 调查报告: 调查报告
• 2004年美国联邦政府在纳米技术领域投入了 年美国联邦政府在纳米技术领域投入了10 年美国联邦政府在纳米技术领域投入了 亿美元,各州又另外投入了4亿美元 亿美元。 亿美元,各州又另外投入了 亿美元。 • 迄今只有很少一些纳米技术产品走向市场,也 迄今只有很少一些纳米技术产品走向市场, 几乎没有盈利,但对纳米技术的前景保持乐观。 几乎没有盈利,但对纳米技术的前景保持乐观。 • 1997年各国政府对纳米技术的投入总计不到 年各国政府对纳米技术的投入总计不到5 年各国政府对纳米技术的投入总计不到 亿美元, 年就增长到35亿美元 亿美元,到2003年就增长到 亿美元。 年就增长到 亿美元。 • (摘自:科技日报 2005-01-27) 摘自: 摘自
• 2008年美国《探索》杂志列举的9大最佳纳米产品: • 1、纳米啤酒瓶 纳米复合材料 、纳米啤酒瓶—纳米复合材料 • 米勒醇酒公司采用黏土纳米材料 黏土纳米材料制造塑料啤酒瓶, 黏土纳米材料 可保留二氧化碳,不让氧气轻易进入,避免啤酒 变质,而且不易碎裂。但一些消费者关注纳米材 料用于食物包装是否安全 食物包装是否安全,是否它们会像灰尘一 食物包装是否安全 样对人体无害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 介观领域:
• 在宏观领域和微观领域之间,存在着一块近年 来才引起人们极大兴趣和有待开拓的“处女 地”。三维尺寸都很细小,出现了许多奇异的 崭新的物理性能。
• 1959 年,著名理论物理学家、诺贝尔奖获得者费曼曾 预言:“毫无疑问,当我们得以对纳微尺度的事物加 以操纵的话,将大大的扩充我们可能获得物性的范 围”。
• 这个领域包括了从微米、亚微米,纳米到团簇 尺寸(从几个到几百个原子以上尺寸)的范围。
• 介观领域中产生以相干量子输运现象为主的介 观物理,成为当今凝聚态物理学的热点。(导 体与绝缘体的转变,磁性变化、纳米碳管导电 性等)。
• 从广义上来说,凡是出现量子相干现象的体系 统称为介观体系,包括团簇、纳米体系和亚微 米体系。 • 纳米体系和团簇就从这种介观范围独立出来, 形成一个单独的领域(狭义的介观领域)。
纳米材料技术简介
• 一 纳米科学技术概述 • 二 纳米科学的历史及现状 • 三 纳米科学的基本理论 • 四 纳米材料的制备方法 • 五 纳米材料的检测分析技术 • 六 未来纳米科技展望
一 纳米科学技术概述 Nanoscale science & technology
• 人类对客观世界的认识分为两个层次: • 一是宏观领域,二是微观领域。 • 宏观领域是指以人的肉眼可见的物体为最小物体 开始为下限,上至无限大的宇宙天体; • 微观领域是以分子原子为最大起点,下限是无限 的领域。 • 基本粒子:电子、质子、中子等;亚粒子:夸克。
• 1993年,国际纳米科技指导委员会将纳米技术 划分为6个分支学科 • (1)纳米电子学、 • (2)纳米物理学、 • (3)纳米化学、 • (4)纳米生物学、 • (5)纳米加工学、 • (6)纳米计量学。 • 其中,纳米物理学和纳米化学是纳米技术的理 论基础,而纳米电子学是纳米技术最重要的内 容。
• 3.纳米材料(nanomaterials纳米以 下的具有特殊功能的材料称为纳米材料。即三 维空间中至少有一维尺寸小于100 nm的材料或 由它们作为基本单元构成的具有特殊功能的材 料。 “功能”概念,即“量子尺寸效应”。
• 常规纳米材料中的基本颗粒直径不到100 nm,包含的原子不到几万个。 • 一个直径为3 nm的原子团包含大约900个 原子,几乎是英文里一个句点的百万分 之一,这个比例相当于一条300多米长的 帆船跟整个地球的比例。
• 1. 纳米科学技术(Nano-ST): • 20世纪80年代末期刚刚诞生并正在崛起的新科 技,是研究在千万分之一米 (10–7) 到十亿分之 一米(10–9米)内,原子、分子和其它类型物质的 运动和变化的科学;同时在这一尺度范围内对 原子、分子等进行操纵和加工的技术,又称为 纳米技术。 • 纳米(nanometer)是一个长度单位,简写为nm。 1 nm=10-9 m。 • 2. 纳米科技的主要研究内容: • 创造和制备优异性能的纳米材料、制备各种纳 米器件和装置、探测和分析纳米区域的性质和 现象。
一、纳米科学技术的基本概念和内涵
• 头发直径:50-100 m, 1 nm相当于头发的1/50000。 • 氢原子的直径为 1埃,所以1 纳米等于 10 个氢原子 一个一个排起来的长度。 • Nanotechnology is the term used to cover the design, construction and utilization of functional structures with at least one characteristic dimension measured in nanometers.
• 量子相干性,或者说“态之间的关联性”。其其一是爱因 斯坦和其合作者在1935年根据假想实验作出的一个预言。 这个假想实验时这样的:高能加速器中,由能量生成的一 个电子和一个正电子朝着相反的方向飞行,在没有人观测 时,两者都处于向右和向左自旋的叠加态而进行观测时, 如果观测到电子处于向右自旋的状态,那么正电子就一定 处于向左自旋的状态。这是因为,正电子和电子本是通过 能量无中生有而来,必须遵守守恒定律。这也就是说, “电子向右自旋”和“正电子向左自旋”的状态是相关联 的,称作“量子相干性”。这种相干性只有用量子理论才 能说明。