高等数学经济数学习题集含答案

合集下载

大一经济数学试题及答案

大一经济数学试题及答案

大一经济数学试题及答案一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2在区间[0,1]上的定积分是:A. 1/3B. 1/2C. 1D. 22. 微分方程y'=2y的通解是:A. y=e^xB. y=e^(2x)C. y=2e^xD. y=2e^(2x)3. 函数f(x)=x^3-3x+2的导数是:A. 3x^2-3B. x^2-3C. 3x^2-6xD. x^3-3x4. 利用洛必达法则求极限lim(x→0) (sin(x)/x)的结果是:A. 0B. 1C. -1D. 无法确定5. 函数f(x)=x^2+2x+1的极值点是:A. x=-1C. x=-2D. 无极值点6. 曲线y=x^3在点(1,1)处的切线斜率是:A. 1B. 3C. 0D. -17. 函数f(x)=ln(x)的不定积分是:A. xln(x)+1B. xln(x)-1C. xln(x)D. xlnx+18. 函数f(x)=x^2-4x+4的最小值是:A. 0B. 4C. -4D. 19. 函数f(x)=x^3的二阶导数是:A. 3x^2B. 6xC. 9x^2D. 18x10. 利用定积分的几何意义,计算∫₀¹x²dx的结果是:A. 1/3B. 1/2D. 2二、填空题(每题2分,共20分)1. 函数f(x)=x^2+3x+2的导数是______。

2. 微分方程y'+2y=0的通解是______。

3. 函数f(x)=x^3-6x^2+11x-6的极值点是______。

4. 利用洛必达法则求极限lim(x→∞) (x²/e^x)的结果是______。

5. 曲线y=ln(x)在点(1,0)处的切线斜率是______。

6. 函数f(x)=e^x的不定积分是______。

7. 函数f(x)=x^2-4x+4的顶点坐标是______。

8. 函数f(x)=x^3的三阶导数是______。

经济数学试题及答案大全

经济数学试题及答案大全

经济数学试题及答案大全一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3的零点个数为()。

A. 0B. 1C. 2D. 3答案:C2. 极限lim(x→0) (sin x)/x的值为()。

A. 1B. 0C. -1D. 2答案:A3. 以下哪个函数是奇函数()。

A. y = x^2B. y = x^3C. y = x^4D. y = ln(x)答案:B4. 以下哪个选项是二阶导数()。

A. f'(x)B. f''(x)C. f'''(x)D. f(x)答案:B5. 以下哪个选项是定积分的基本性质()。

A. ∫[a,b] f(x)dx = ∫[a,c] f(x)dx + ∫[c,b] f(x)dxB. ∫[a,b] f(x)dx = ∫[b,a] f(x)dxC. ∫[a,b] f(x)dx = -∫[b,a] f(x)dxD. ∫[a,b] f(x)dx = ∫[a,b] f(-x)dx答案:A6. 以下哪个选项是多元函数的偏导数()。

A. ∂f/∂xB. ∂f/∂yC. ∂f/∂zD. ∂f/∂t答案:A7. 以下哪个选项是线性代数中的矩阵运算()。

A. 矩阵加法B. 矩阵乘法C. 矩阵转置D. 矩阵求逆答案:B8. 以下哪个选项是概率论中的随机变量()。

A. X = 5B. X = {1, 2, 3}C. X = [0, 1]D. X = {x | x ∈ R}答案:B9. 以下哪个选项是统计学中的参数估计()。

A. 点估计B. 区间估计C. 假设检验D. 方差分析答案:A10. 以下哪个选项是计量经济学中的回归分析()。

A. 简单线性回归B. 多元线性回归C. 时间序列分析D. 面板数据分析答案:A二、填空题(每题2分,共20分)11. 函数f(x)=x^3-3x的导数为_________。

答案:f'(x) = 3x^2 - 312. 极限lim(x→∞) (x^2 - 3x + 2)/(x^2 + 4x + 3)的值为_________。

经济数学试题及答案

经济数学试题及答案

经济数学试题及答案一、选择题1. 假设市场需求曲线为Qd=100-2P,市场供给曲线为Qs=-20+4P,求平衡价格和平衡数量。

答案:平衡价格为20,平衡数量为40。

2. 若某商品的需求弹性为-2,需求量为10时,价格为20,求需求量变化1%时的价格变化百分比。

答案:需求量变化1%时,价格变化百分比为2%。

3. 某企业生产一种商品,已知其总生产成本函数为C(Q)=100+2Q+0.5Q^2,求当产量为10时,平均成本和边际成本。

答案:当产量为10时,平均成本为25,边际成本为13。

二、计算题1. 已知一家工厂的生产函数为Q=10L^0.5K^0.5,其中L为劳动力投入,K为资本投入。

若工厂每年投入的劳动力为100人,资本为400万元,劳动力每人每年工作2000小时,资本的年利率为10%,求工厂的年产量和总成本。

答案:工厂的年产量为2万单位,总成本为500万元。

2. 假设某商品的总收益函数为R(Q)=500Q-0.5Q^2,总成本函数为C(Q)=100+40Q,求当产量为20时,利润最大化的产量和利润。

答案:当产量为20时,利润最大化的产量为10,利润为250。

三、证明题1. 某商品的边际收益递减法则是指随着生产规模的扩大,每增加一单位产量所带来的边际收益递减。

证明边际收益递减法则成立。

证明:当企业的产品产量增加时,企业需要增加投入以提高产量,但边际收益会递减。

假设某企业当前产量为Q,边际收益为MR,增加一单位产量后,产量为Q+1,边际收益为MR+ΔMR。

由于边际收益递减,ΔMR<0。

所以,边际收益递减法则成立。

四、应用题某公司生产A、B两种产品,已知产品A每单位成本为10元,产品B每单位成本为20元。

市场上A、B产品的需求量分别为1000和500,价格分别为15和25。

若公司希望通过调整价格来提高总利润,应如何调整?答案:根据产品的成本和需求量,计算可得产品A的利润为5000元((15-10)*1000),产品B的利润为2500元((25-20)*500)。

高等数学(经济类)课后习题及答案第九章多元函数微分

高等数学(经济类)课后习题及答案第九章多元函数微分

习题9-1(A )1.求下列各函数的表达式: (1)设函数22),(y x y x f -=,求(,)f y x --,),(x x f -.解:(,)f y x --22)()(x y -+-=22x y -=,0)(),(22=--=-x x x x f .(2)设函数)1(3-+=x f y z ,已知1=y 时,x z =,求)(x f 及z 的表达式.解:由1=y 时,x z =,有)1(13-+=x f x ,即,所以1)1()(3-+=x x f ;而1)1(3-+=-+=x y x f y z .(3)设函数y y x y x f +-=1)1(),(2,求),(xy y x f +.解:2222))(()()(/1)/1()(),(y x y x y x yx y x y x x y x y y x x y y x f -=-+=+-+=+-+=+. (4)设函数xy y x y x f =+-),(,求),(y x f 的表达式. 解:(方法1)因为4)()(4)2(244),(222222y x y x y xy x y xy x xy y x y x f --+=+--++==+-,所以),(y x f 422x y -=.(方法2)令v y x u y x =+=-、,则22uv y v u x -=+=、,于是 422),()(22u v u v u v xy y x y x f v u f -=-+==+-=,,所以),(y x f 422x y -=.2.求下列各函数的定义域,并作定义域草图: (1))ln(x y z -=; (2)221arcsin xy y z -+=;(3)221arcsin yx x x y z --+=; (4)41)16ln(2222-++--=y x y x z .1]1)1[(1)1(333-+-=-=-x x x f解:(1)由0>-x y 且0≥x ,得定义域}0,),{(≥>=x x y y x D .(2)由022>-x y 及1≤y ,有1≤<y x ,得定义域}1),{(≤<=y x y x D .(3)由0100122>--≥≠≤y x x x xy、、、,有0122>≤<+x x y y x 、、,得定义域}0,,1),{(22≠≤<+=x x y y x y x D .(4)由040162222≥-+>--y x y x 、,有16422<+≤y x ,或4222<+≤y x ,得定义域}42),{(22<+≤=y x y x D .3.求下列极限:(1)(,)(1,1)2lim2x y x yx y →-+; (2)xxy a y x sin lim ),0(),(→;(3)22)0,0(),(1sinlim y x x y x +→; (4)2)1,0(),(2tan limxy xyy x →;(5)22(,)(1,1)sin()lim x y x y x y →--; (6)231lim )1,1(),(-+-→xy xy y x .解:(1)(,)(1,1)2121lim2213x y x y x y →--==-++.(2)(,)(0,)(,)(0,)sin limlim x y a x y a xy xya x x →→==.(3)因为221sinyx +有界,而0lim )0,0(),(=→x y x ,所以=+→22)0,0(),(1sinlim yx x y x 0.(4)2111211lim tan lim 212tan lim)1,0(),()1,0(),(2)1,0(),(=⨯⨯==→→→y xy xy xy xy y x y x y x .(5)222222(,)(1,1)(,)(1,1)sin()()sin()limlim 21 2.x y x y x y x y x y x y x y →→-+-==⨯=-- (6)=++=-++-=-+-→→→)23(lim 1)23)(1(lim231lim)1,1(),()1,1(),()1,1(),(xy xy xy xy xy xy y x y x y x 4.4.证明下列极限不存在:(1)(,)(0,0)lim x y x yx y →-+; (2)242)0,0(),(lim y x y x y x +→.证明:(1)沿)1(-≠=k kx y 取极限,则k kkx x kx x y x y x x x kx y +-=+-=+-→→=11lim lim00,当k 取不同值时,该极限值不同,所以极限(,)(0,0)limx y x yx y →-+不存在.(2)沿0=y 取极限,00lim lim 024200==+→→=x x y y x yx ; 沿2x y =取极限,212lim lim 44024202==+→→=x x y x y x x x x y . 由于2420242002lim lim y x y x y x y x x x y x y +≠+→=→=,所以极限242)0,0(),(lim y x yx y x +→不存在.习题9-1(B )1.某厂家生产的一种产品在甲、乙两个市场销售,销售价格分别为y x 、(单位:元),两个市场的销售量21Q Q 、各自是销售价格的均匀递减函数,当售价为10元时,销售量分别为2400、850件,当售价为12元时,销售量分别为2000、700件.如果生产该产品的成本函数是(2012000+=C )21Q Q +,试用y x 、表示该厂生产此产品的利润L . 解:根据已知,设y a b Q x a b Q 222111-=-=、,由10=x 时,24001=Q ;12=x 时,20001=Q ,有⎩⎨⎧=-=-,,2000122400101111a b a b 得、2001=a44001=b ,于是x Q 20044001-=.由10=y 时,8502=Q ;12=y 时,7002=Q ,有⎩⎨⎧=-=-,,70012850102222a b a b 得、752=a16002=b ,于是y Q 7516002-=.两个市场销售该产品的收入为22217516002004400y y x x yQ xQ R -+-=+=, 该产品的成本(2012000+=C y x Q Q 15003200040008800012000)21-+-+=+y x 15004000132000--=. 根据利润等于收入减去成本,得)15004000132000(751600200440022y x y y x x L ----+-= 132000752003100840022---+=y x y x .2.求下列极限:(1)y y x xy )11(lim ),2(),(++∞→; (2)22)0,0(),(1e lim 22yx y x y x +-+→; (3)4422),(),(lim y x y x y x ++∞∞→; (4)(,)lim x y →解:(1)==+=++∞→+∞→211),2(),(),2(),(e ])11[(lim )11(lim x xy y x y y x xyxy e . (2)法1: 令t y x =+22,则当)00()(,,→y x 时,+→0t ,所以 =-=+-+→+→t y x t t y x y x 1e lim 1e lim 022)0,0(),(221. 法2:因为)00()(,,→y x 时,1e 22-+y x 与22y x +是等价无穷小,所以1lim 1e lim 2222)0,0(),(22)0,0(),(22=++=+-→+→y x y x y x y x y x y x . (3)因为224424424422110yx y x y y x x y x y x +≤+++=++≤, 而00lim ),(),(=∞∞→y x , 0)11(lim 22),(),(=+∞∞→y x y x ,根据“夹逼准则”得0lim 4422),(),(=++∞∞→yx y x y x . (4)令θρθρsin cos ==y x 、,则当)00()(,,→y x 时,0→ρ(其中θ在区间)20[π,内任意变化),所以==+<≤→→θθρπθρsin cos lim lim20022)0,0(),(yx xy y x 0.3.证明极限22222)0,0(),()(lim x y y x y x y x -+→不存在.证明:沿0=y 取极限,00lim )(lim 202222200==-+→→=x x y y x y x x x y ;沿x y =取极限,11lim )(lim 0222220==-+→→=x x x y x y y x y x .因此,极限22222)0,0(),()(lim x y y x y x y x -+→不存在.4.讨论函数⎪⎩⎪⎨⎧=+≠++=0002)(222222y x y x yx xy y x f ,,,,在点),(00处的连续性. 解:沿x y =取极限,由)00(11lim 2lim)(lim 0220,,f yx xyy x f x x x y x x y ≠==+=→→=→=,有 )00()(lim )0,0(),(,,f y x f y x ≠→,所以函数)(y x f ,在点),(00处不连续.习题9-2(A )1. 求下列函数的偏导数:(1)2z xy =; (2)2cos sin()z xy x y =++;(3)z = (4)2ln(ln )z x y =+;(5)yz x=(0>x ); (6)z = (7)22y x xyz +=; (8)arctanx yz x y+=-; (9)yx z u =; (10)zy x u )tan(22-=.解:(1)2z y x ∂=+∂2z xy y ∂=∂. (2)2sin cos cos()sin 2cos()zxy xy y x y y xy x y x∂=-⋅++=-++∂, 2sin cos cos()sin 2cos()zxy xy x x y x xy x y y∂=-⋅++=-++∂. (3)12z x x y ∂==∂+ 122z y x y ∂=⋅=∂+. (4)22122ln ln z x x x x y x y ∂=⋅=∂++,22111ln (ln )z y y x y y x y ∂=⋅=∂++. (5)x yxy xyx y xy x y xy x y xy y x z sin cos 21)(sin cos 2332+=-⋅-=∂∂, xyx y x yy x x x y xy x y xy x y z sin cos 211sin cos 2-=⋅-=∂∂. (6))1(212)1(11xy xy yxy y xy x z --=--⋅--=∂∂,)1(212)1(11xy xy x xy x xy y z --=--⋅--=∂∂. (7)2/3223222222)(y x y y x y x x xy y x y xz+=++⋅-+=∂∂, 由变量y x 、的对称性,得2/3223)(y x x y z +==∂∂. (8)222211()1()()1()z x y x y yx y x x y x yx y∂⋅--⋅+-==+∂-++-, ()22221()1()1()1()x y x y z xx y y x y x y x y⋅---⋅+∂==+∂-++-. (9)z z yy z z x u y x y x ln 11ln =⋅=∂∂,z z y x y x z z y u y xy x ln )(ln 22-=-⋅=∂∂, yyx y xz yxz y x z u --==∂∂1.(10)zy x x z x y x x u )(sec 22)(sec 222222-=⋅-=∂∂, z y x y z y y x y u )(sec 2)2()(sec 222222--=-⋅-=∂∂,222)tan(z y x z u --=∂∂. 2. 求曲线⎪⎩⎪⎨⎧=+++=1,2122x y x z 在点)3,1,1(M 处的切线与x 轴正向的夹角.解:z x ∂=∂,111112x x y y z x ====∂==∂, 用α表示曲线⎪⎩⎪⎨⎧=+++=1,2122x y x z 在点)3,1,1(M 处的切线与y 轴正向的夹角,则21tan =α,所以432621arctan '≈=α. 3. 设xy x y x z xsec)1(e 2-++=,求)0,1(x z 及)0,1(y z .解:因为1e )0(-+=x x z x ,,所以=11d (1,0)(e 1)(e 1)d xx x x x z x x-=+-=+=e 1+,因为e )1(+=y y z ,,所以1)e (d d)0,1(0=+==y y y yz .4. 求下列函数的高阶导数:(1)设13323+--=xy xy y x z ,求22223223,,,,z z z z zy x x y x y x∂∂∂∂∂∂∂∂∂∂∂∂.解:xz ∂∂ ,33322y y y x --= y z ∂∂ ;9223x xy y x --=22x z ∂∂ ,62xy = 33xz ∂∂ ,62y = 22y z ∂∂ ;1823xy x -= y x z ∂∂∂2 ,19622--=y y x xy z ∂∂∂2 .19622--=y y x (2)设xy x z ln =,求22x z ∂∂,22y z ∂∂和23yx z ∂∂∂; 解:1ln ln +=⋅+=∂∂xy xy y x xy x z ,yxxy x x y z =⋅=∂∂, x xy y x z 122==∂∂,222y x y z -=∂∂,y xy x y x z 12==∂∂∂,2231yy x z -=∂∂∂. 5. 验证:(1)设函数x yz u arctan =,证明0222222=∂∂+∂∂+∂∂zu y u x u .证:因为2222)()/(1y x yzx y x y z x u +-=-⋅+=∂∂,22222)(y x xyz x u +=∂∂, 2221)/(1y x xzx x y z y u +=⋅+=∂∂,22222)(y x xyz y u +-=∂∂,x y z u arctan =∂∂,022=∂∂zu, 所以,00)()(222222222222=++-+=∂∂+∂∂+∂∂y x xyzy x xyz z u y u x u . (2)设y x z =)1,0(≠>x x ,求证z yzx x z y x 2ln 1=∂∂+∂∂.证明:=∂∂xz ,1-y yx =∂∂y z ,ln x x yy z x x z y x ∂∂+∂∂ln 1 x x xyx y x yy ln ln 11+=-y y x x += .2z =原结论成立.习题9-2(B )1.设一种商品的需求量Q 是其价格1p 及某相关商品价格2p 的函数,如果该函数存在偏导数,称Q p p Q E 111∂∂-=为需求对价格1p 的弹性、Qp p Q E 222∂∂-=为需求对价格2p 的交叉弹性.如果某种数码相机的销售量Q 与其价格1p 及彩色喷墨打印机的价格2p 有关,为 222110250120p p p Q --+=, 当501=p ,52=p 时,求需求对价格1p 的弹性、需求对价格2p 的交叉弹性. 解:由211250p p Q -=∂∂,22210p p Q--=∂∂, 有1111250Qp Q p p Q E =∂∂-=,Qp p Q p p Q E 222222210+=∂∂-=,当501=p ,52=p 时,50255050250120=--+=Q 需求对价格1p 的弹性:1.0250505015501121======Q p p p Qp E 、、,需求对价格2p 的交叉弹性:=+=====5052225502221210Q p p p Qp p E 、、2.2. 设22arcsiny x x z +=,求x z ∂∂,yz ∂∂.解: =∂∂xz '⎪⎪⎭⎫⎝⎛+⋅+-xy x x y x x 2222211322222)(||y x y y y x +⋅+=.||22y x y += =∂∂yz'⎪⎪⎭⎫⎝⎛+⋅+-yy x x y x x 2222211=y y x x 1sgn 22+-=. 3. 设函数⎪⎩⎪⎨⎧=≠-+=,,,,,x y x y y x yx y x f 0)(证明在)00(,点处),(y x f 的两个偏导数都不存在.证:因为极限x xf x f x x ∆=∆-∆→∆→∆1lim )00()0(lim00,,不存在,极限yf y f y ∆-∆→∆)00()0(lim0,,xx ∆-=→∆1lim0不存在,所以在)00(,点处),(y x f 的两个偏导数都不存在. 4. 设y x yx z -+=arctan ,求22x z ∂∂,22y z ∂∂和y x z ∂∂∂2.解:2222)()()()(11y x yy x y x y x y x y x xz+-=-+---++=∂∂,22222)(2y x xy x z +=∂∂, 2222)()()()(11y x xy x y x y x yx y x yz +=-++--++=∂∂,22222)(2y x xy y z +-=∂∂, 22222222222(2)()()z x y y y y x x y x y x y ∂+--=-=∂∂++.5. 设函数222ln z y x u ++=,证明2222222221z y x z u y u x u ++=∂∂+∂∂+∂∂.证明:将函数改写为)ln(21222z y x u ++=,则 222z y x xx u ++=∂∂,2222222222222222)()(2z y x x z y z y x x x z y x x u ++-+=++⋅-++=∂∂, 由变量的对称性,有222222222)(z y x y z x y u ++-+=∂∂,222222222)(z y x z y x z u ++-+=∂∂,所以2222222222222222222)()()()(z y x z y x y z x x z y z u y u x u ++-++-++-+=∂∂+∂∂+∂∂ 22222222221)(zy x z y x z y x ++=++++=. 习题9-3(A )1.求下列函数的全微分:(1)1sin()z x y=+; (2)22z x y =+; (3)xyz e =; (4)yxz tanln =; (5)22y x z u +=; (6)ln(32)u x y z =-+.解:(1)因为1cos()z x x y ∂=+∂,221111cos()()cos()z x x y y y y y ∂=+⋅-=-+∂,所以2211111d cos()d cos()d cos()(d d )z x x x y x x y y y y y y=+-+=+⋅-.(2)因为2z xyx ∂=+∂,2z x y ∂=+∂22(dz xydx x dy =++. (3)因为x yx yx z e 2-=∂∂,x yxy z e 1=∂∂,所以 )d d (e 1d e 1d e d 22x y y x xy x x x y z x yx yx y-=+-=.(4)因为2122cot sec cs c z x x x x y y y y y ∂=⋅=∂,22222cot sec ()csc z x x x x x y y y y y y ∂=⋅-=-∂, 所以)d d (2csc 2d 2csc 2d 2csc 2d 22y x x y y xyy y x y x x y x y z -⋅=-=(5)因为z xz x u y x ln 222+=∂∂,z yz y u y x ln 222+=∂∂,12222)(-++=∂∂y x z y x zu ,所以z z y x y z yz x z xz u y xy xy xd )(d ln 2d ln 2d 122222222-+++++⋅+⋅=]d )d d (ln 2[2222z zy x y y x x z zy x +++⋅=+.(6)因为132u x x y z ∂=∂-+,332u y x y z ∂-=∂-+,232u z x y z∂=∂-+,所以 d 3d 2d d 3d 2d d 32323232x y z x y zu x y z x y z x y z x y z--+=++=-+-+-+-+.2.求函数zxyu )(=在点)1,2,1(-处的全微分.解:).ln()( ,1)( ),()(121x y x y y u x x y z y u xy x y z x u z z z ⋅=∂∂⋅=∂∂-⋅=∂∂-- 在点)1,2,1(-处,分别有.2ln 21,41 ,21)1,2,1()1,2,1()1,2,1(=∂∂-=∂∂=∂∂---zuyu xu因此,我们有.2ln 21d 41 21dz y dx dz +-=3.求函数)41ln(22y x z -+=当1=x ,2=y 时的全微分.解 因为22418y x x x z -+=∂∂,22412y x yy z -+-=∂∂,821=∂∂==y x xz ,421-=∂∂==y x yz ,所以y x z d 4d 8d )2,1(-=,4.求函数xy e z =在点()2,1处当2.0,1.0=∆=∆y x 时的全微分.解 由于,2,,,212212e yz e xz xe y z ye x z y x y x xy xy =∂∂=∂∂=∂∂=∂∂====所以,当2.0,1.0=∆=∆y x 时,函数xye z =在点(2,1)处的全微分为.5.02.021.0222e e e dz =⋅+⋅=习题9-3(B )1. 计算()2.021.04的近似值.解: 设函数(,)yz f x y x ==.显然,要计算的值是函数在 1.04, 2.02x y ==时的函数值()1.04,2.02.f取1,2,0.04,0.02.x y x y ==∆=∆=因为 ,),(1-=y x yx y x f ,ln ),(x x y x f y y =(1,2)1,f =(1,2)2,x f =(1,2)0,y f =所以 由公式得 2.02(1.04)120.0400.02 1.08≈+⨯+⨯=. 2.计算3397.102.1+的近似值. 解:考虑函数33y x z +=,取03.002.02100-=∆=∆==y x y x 、、、,而33223yx x z x +=',33223yx y z y +=',3)21(=,z 、2/1)21(=',x z 、2)21(=',y z ,则)(97.102.10033y y x x z ∆+∆+=+,y y x z x y x z y x z y x ∆'+∆'+≈)()()(000000,,,95.206.001.03)03.0(202.05.03=-+=-⨯+⨯+=.3. 设函数⎪⎩⎪⎨⎧=+≠++=,0,0,0,),(2222222y x y x y x y x y x f 在点)0,0(O 点处讨论偏导数的存在性、偏导数的连续性以及函数),(y x f 的可微性.解:因为00lim )00()0(lim==∆-∆→∆→∆x x xf x f ,,,00lim )00()0(lim==∆-∆→∆→∆x y yf y f ,,,所以在)0,0(O 点处函数)(y x f ,的两个偏导数都存在,且0)10(0)00(==,、,y x f f .再讨论可微性,函数在)0,0(O 处的全增量用z ∆表示,则222)()()()00()00(y x yx z y f x f z y x ∆+∆∆⋅∆=∆=∆-∆-∆,,,记22)()(y x ∆+∆=ρ,则2/3222)0,0(),(0])()[()(lim )00()00(limy x yx yf x f z y x y x ∆+∆∆∆=∆-∆-∆→∆∆→ρρ,,不存在(沿0=∆x 取极限,其值为0;沿x y ∆=∆取极限,其值为22/1),所以函数)(y x f ,在)0,0(O 点处不可微.进而得偏导(函)数在)0,0(O 点处不连续(若偏导(函)数在)0,0(O 点处连续,根据可微的充分条件,则函数在点)0,0(O 可微,与函数不可微矛盾).习题9-4(A )1.求下列函数的全导数: (1)设函数 32,sin ,t v t u ez vu ===-,求dtdz ; (2)设函数t uv z sin +=,而t e u =,t v cos =,求全导数dtdz ; (3)设函数y x z cos 2=而)(x y y =是x 的可微函数,求xzd d . 解:(1)dtdv v z dt du u z dt dz ∂∂+∂∂==)6(cos 3)2(cos 22sin 2223t t e t e t e t t v u vu -=⋅-+---. (2)tzdt dv v z dt du u z dt dz ∂∂+⋅∂∂+⋅∂∂=t t u ve t cos sin +-= t t e t e t t cos sin cos +-=.cos )sin (cos t t t e t+-= (3)=⋅-=∂∂+∂∂=xy y x y x x y y z x z x z d d sin cos 2d d d d 222cos sin ().x y x y y x '-⋅ 2.求下列函数的一阶偏导数:(1)设函数v uz e =,而y x u +=,y x v -=,求x z ∂∂和yz∂∂; (2)设函数122)(++=xy y x z ,求x z ∂∂和yz ∂∂. 解:(1)1e 1e 12⋅-⋅=∂∂∂∂+∂∂∂∂=∂∂v uv uvu v x v v z x u u z x z =-=v uv u v e 2yx yx y x y -+--e )(22, 21e 1e (1)u uv vz z u z v u y u y v y vv ∂∂∂∂∂=+=⋅-⋅-∂∂∂∂∂2+e u v v u v ==22e ()x yx y x x y +--, (2)这是幂指函数求导,为方便求导,将它写作复合函数,为此令122+=+=xy v y x u 、,则vu z ==⋅+=∂∂∂∂+∂∂∂∂=∂∂-y u u x vu xv v z x u u z x z v v ln 21)]ln()1(2[)(2222122y x y y x xy x y x xy ++++++,=⋅+=∂∂∂∂+∂∂∂∂=∂∂-x u u y vu y v v z y u u z y z v v ln 21)]ln()1(2[)(2222122y x x yx xy y y x xy ++++++. 3. 求下列函数的一阶偏导数(其中函数f 具有一阶连续的偏导数或导数):(1)(e )xyx z f y=,; (2))(22y x xy f z -=,;(3))(22y x xf z +=; (4)(,,)u f x xy xyz =. 解:(1)121e xy z f f y x y ∂''=⋅+⋅=∂121e xyf y f y''+, 122()e xy z x f f x y y ∂''=⋅-+⋅=∂122e xy xf x f y''-+. (2)212122f x f y x f y f xz '+'=⋅'+⋅'=∂∂,21212)2(f y f x y f x f y z'-'=-⋅'+⋅'=∂∂.(3)=+⋅'+=∂∂2222yx xf x f x z f y x x f '++222,12y z xf y ⨯∂'==∂f yx xy '+22.(4)1231231uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂, 123230uf f x f xz xf xzf y∂'''''=⋅+⋅+⋅=+∂, 123300uf f f xy xyf z∂''''=⋅+⋅+⋅=∂. 4. 设函数)(22y x f y z -=,其中)(u f 是可微函数,证明211y zy z y x z x =∂∂+∂∂. 证:因为)()(22)()(2222222222y x f y x f xy x y x f y x f y x z --'-=⋅--'-=∂∂, )()(2)(1)()2()()(222222222222222y x f y x f y y x f y x f y y x f y y x f y z --'+-=--⋅-'--=∂∂, 所以222222222222112()12().()()()z z yf x y yf x y x x y y f x y yf x y f x y ''∂∂--+=-++∂∂---2222)(yzy x f y y =-=. 5.设函数)(x y xyf z =,其中)(u f 是可微函数,证明z yz y x z x2=∂∂+∂∂. 证:因为)()()()()(22x yf x y x y yf xy x y f xy x y yf x z '-=-⋅'+=∂∂,)()(1)()(xyf y x y xf x x y f xy x y xf y z '+=⋅'+=∂∂,所以 z xy xyf x y f y x y xyf x y f y x y xyf y z y x z x2)(2)()()()(22=='++'-=∂∂+∂∂. 6.利用全微分形式的不变性求函数)cos(222z y x eu zy +++=+ 的全微分.解 令=+=w z y v ,222z y x ++,由一阶全微分形式的不变性,我们有dw w dv e dw wudv v u du v )sin (-+=∂∂+∂∂=, 注意到w v ,又都是z y x ,,的函数,并且,v vdv dy dz dy dz y z∂∂=+=+∂∂ 222.w w w dw dx dy dz xdx ydy zdz x y z∂∂∂=++=++∂∂∂ 将它们带入上式,得.)]sin(2[ )]sin(2[)sin(2 )(2)sin()( )sin (222222222222dz z y x z e dyz y x y edx z y x x zdz ydy xdx z y x dz dy e dww dv e du z y zy z y v ++-+++-+++-=++⋅++-+=-+=+++习题9-4(B )1.求下列函数的二阶偏导数(其中函数f 具有二阶连续偏导数): (1)),(y x xy f z +=; (2))(22y x x f z +=,;解:(1)21f f y xz '+'=∂∂,21f f x y z'+'=∂∂,221211222211211222)()(f f y f y f f y f f y y xz ''+''+''=''+''+''+''=∂∂, 221211222211211222)()(f f x f x f f x f f x x yz''+''+''=''+''+''+''=∂∂, 221211122211211122)()()(f f y x f xy f f f x f f x y f xy zy x z ''+''++''+'=''+''+''+''+'=∂∂∂=∂∂∂. (2)212f x f xz '+'=∂∂,221220f y f y f y z'='+⋅'=∂∂,2221211222212121122442)2(22)2(f x f x f f f x f x f f x f xz''+''+''+'=''+''+'+''+''=∂∂, 2222222122242)20(22f y f f y f y f yz''+'=''+⋅''+'=∂∂, 221222212242)2(2f xy f y f x f y xy zy x z ''+''=''+''=∂∂∂=∂∂∂. 2. 设函数)(3x yxy f x z ,=,其中函数)(v u f ,有二阶连续偏导数,求yx z y z y z ∂∂∂∂∂∂∂222、、.解:2214213)1(f x f x f xf x x y z '+'='+'=∂∂, 24253111221*********11()()2z x xf f x xf f x f x f xf y x x∂''''''''''''''=+++=++∂, )(2)(422221221221141322f x yf y x f x f x y f y x f x x y z y x z ''-''+'+''-''+'=∂∂∂=∂∂∂ 2211421324f y f y x f x f x ''-''+'+'=. 3.设),(y x f z =有连续的一阶偏导数,且θθsin ,cos r y r x ==.求θ∂∂∂∂zr z ,,并证明 .)()()(1)(22222y z x z z r r z ∂∂+∂∂=∂∂+∂∂θ解 由链式法则,得cos sin ,sin cos .z z x z y z z r x r y r x yz z x z y z z r r x y x yθθθθθθθ∂∂∂∂∂∂∂=+=⋅+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂∂=+=-⋅+⋅∂∂∂∂∂∂∂于是有222)(1)(θ∂∂+∂∂z r r z 222)cos sin (1)sin (cos y zr x z r r y z x z ∂∂⋅+∂∂⋅-+∂∂⋅+∂∂⋅=θθθθ.)()(22yz x z ∂∂+∂∂=习题9-5(A )1.若函数)(x y y =分别由下列方程确定,分别求xy d d : (1)1cos y x y =+; (2)yx y e 2+=; (3)xyy x arctan ln22=+;解 (1)法1:设()1cos F x y y x y =--,,则cos 1sin x y F y F x y =-=+、, 所以d cos .d 1sin x y F y y x F x y=-=+ 法2:方程1cos y x y =+两边同时对x 求导,有d d cos sin d d y yy x y x x=-,解得d cos d 1sin y yx x y=+. (2)方程yx y e 2+=两边同时对x 求导,有xy x y yy d d e 1d d 2+=,解得yy x y e 21d d -=. (3)令()221(,)arctanln arctan ,2y yF x y x y x x==+- 则 ,),(22y x y x y x F x ++=,),(22yx xy y x F y +-= y x F F dx dy -= .xy yx -+-= 2. 设()y y x =由方程 1yy xe =+所确定的隐函数,求 202.x d ydx=解 令 (.)1; 1yyy dy e F x y xe y dx xe =+-=--, 当0x =时01y =+,此时x dy e dx==,所以222(1)()(1)yy y y y y dy dy e xe e e xe d ydx dx dx xe --+=--,222022(01)(0)2(01)x d y e e e e dx =--+=-=-. 3.设函数y x z =,而函数)(x y y =由方程yy x e +=确定,求全导数xz d d . 解:方程yy x e +=两边同时对x 求导,有x y x y y d d e d d 1+=,得yx y e 11d d +=, =+=∂∂+∂∂=-x y x x yx x y y z x z x z yy d d ln d d d d 1y y y x x yx e1ln 1++-. 4. 若函数),(y x z z =分别由下列方程确定,求x z ∂∂及yz∂∂. (1)21z y xz -=; (2)xyz z y x 2222=-+; (3)22)sin(xyz xyz =; (4)yz z x ln =. 解:(1)法1:设1)(2--=xz y z z y x F ,,,则x yz F z F z F z y x -==-=22、、,所以xyz z F F y z x yz z F F x z z y z x --=-=∂∂-=-=∂∂222,. 法2:方程21z y xz -=两边对x 求导,有20z zyzz x x x∂∂--=∂∂,得x yz z x z -=∂∂2, 方程21z y xz -=两边对y 求导,有022=∂∂-+∂∂y z x z y z yz ,得xyz z y z --=∂∂22.(以下都按方法2作)(2)方程xyz z y x 2222=-+两边同时对x 求导,有xzxy yz x z zx ∂∂+=∂∂-2222,得 xyz yzx x z +-=∂∂, 方程xyz z y x 2222=-+两边同时对y 求导,有yzxy xz y z zy ∂∂+=∂∂-2222,得 xy z xz y y z +-=∂∂(或由变量y x 、的对称性,得xyz xzy y z +-=∂∂).(3)方程22)sin(xyz xyz =两边对x 求导,有xz xyz yz x z xyz yz xyz ∂∂+=∂∂+⋅2)2()cos(222, 即0)2](1)[cos(22=∂∂+-x z xyzyz xyz ,而01)cos(2≠-xyz ,所以022=∂∂+xzxyz yz ,得x z xyz yz x z 222-=-=∂∂,由变量y x 、对称性有yzy z 2-=∂∂. (4)方程yzz x ln =改写为)ln (ln y z z x -=, 方程)ln (ln y z z x -=两边对x 求导,有x zz x x z z z y z x z ∂∂+=∂∂+∂∂=)1(1ln 1,得zx z x z +=∂∂,方程)ln (ln y z z x -=两边对y 求导,有)11(ln 0y y z z z y z y z -∂∂+∂∂=,得)(2z x y z y z +=∂∂. 5.设04222=-++z z y x ,求22xz∂∂.解: 令,4),,(222z z y x z y x F -++=则 ,2x F x = ,42-=z F z,2zx F F x z z x -=-=∂∂222(2)(2)z z xz x x z ∂-+∂∂=∂- 2)2(2)2(z z xx z --⋅+-=.)2()2(322z x z -+-=6.若函数),(z y x x =,),(z x y y =,),(y x z z =都是由方程0),,(=z y x F 确定的隐函数,其中),,(z y x F 有一阶连续非零的偏导数,证明1-=∂∂⋅∂∂⋅∂∂xzz y y x . 证:因为zx y z x y F F x zF F z y F F y x -=∂∂-=∂∂-=∂∂、、,所以1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7.若z 是,x y 的函数,并由 222()zx y z yf y ++=确定,求,z z x y∂∂∂∂.解:令 222(,,)()z F x y z x y z yf y =++-22()+()12()2()x y z F x z z zF y f f y y y z zF z yf z f y y y='=-''=-=-,,,因此,2212()()2x zF z x x z z x F z yf f zy y y∂=-=-=∂''-⋅-,2()()()2()().1()()2y zz z z z z zy f yf y f f F z y y y y y y z z y F z yf f zy y y ''----+∂=-=-=∂''-22-习题9-5(B )1.设函数xyz u e =,而函数)(x y y =、)(x z z =分别由方程xyy e =及z xz e =确定,求全导数xud d . 解:方程xyy e =两边同时对x 求导,有)d d ()d d (e d d xy x y y x y x y x y xy+=+=,得xy y x y -=1d d 2, 方程z xz e =两边同时对x 求导,有x z xz x z x z xz z d d d d e d d ==+,得xxz zx z -=d d ,所以 xxz z xy xy y xz yz x z z u x y y u x u x u xyz xyzxyz -+-+=∂∂+∂∂+∂∂=e 1e e d d d d d d 2 )11(e2-+-+=z yzxy z xy yz xyz.2.设函数32yz x u =,而),(y x z z =由方程xyz z y x 3222=++确定,求)1,1,1(xu ∂∂.解:方程xyz z y x 3222=++两边同时对x 求导,有)(322xzxy yz x z zx ∂∂+=∂∂+,用1=x 、11==z y 、代入,有 (1,1,1)(1,1,1)223(1)zz xx∂∂+=+∂∂,得1)1,1,1(-=∂∂xz .于是x z yz x xyz x u ∂∂+=∂∂22232,所以13232)1,1,1()1,1,1(-=-=∂∂+=∂∂xzxu .3.设),(xyz z y x f z ++=,求x z ∂∂,y x ∂∂,zy ∂∂. 解: 令,z y x u ++= ,xyz v = 则 ),,(v u f z = 把z 看成y x ,的函数对x 求偏导数得xz∂∂ )1(x z f u ∂∂+⋅= ),(x z xy yz f v ∂∂+⋅+整理得xz ∂∂ ,1v u vu xyf f yzf f --+=把x 看成y z ,的函数对y 求偏导数得)1(0+∂∂⋅=yx f u ),(y xyz xz f v ∂∂+⋅+整理得yx ∂∂ ,v u vuyzf f xzf f ++-= 把y 看成z x ,的函数对z 求偏导数得)1(1+∂∂⋅=z y f u ),(zyxz xy f v ∂∂+⋅+ 整理得zy ∂∂ .1v u vu xzf f xyf f +--=4.若函数),(y x z z =由方程133=-xyz z 确定,求yx z∂∂∂2.解:方程133=-xyz z 两边对x 求导,有0)(332=∂∂+-∂∂xz xy yz x z z,得xy z yz x z -=∂∂2,由变量y x 、的对称性,得xyz xzy z -=∂∂2.法1:等式0)(2=∂∂+-∂∂xzxy yz x z z两边同时对y 求导,有 0)(2222=∂∂∂+∂∂+∂∂+-∂∂∂+∂∂∂∂yx z xy x z x y z y z y x z z x z y z z, 即2222242222222)()2()(2)(xy z y x xyz z z xy z xyz z xy z yz x xy z xz y z y x z xy z ---=---+-+=∂∂∂- 所以=∂∂∂y x z 2322224)()2(xy z y x xyz z z ---. 法2:)(22xyz yz y y x z -∂∂=∂∂∂ 322224222)()2()()2())((xy z y x xyz z z xy z x yz z yz xy z y z y z ---=--∂∂--∂∂+=.5.设 (,)F u v 具有连续的偏导数,方程 [(),()]0F a x z b y z --=(其中,a b 是非零常数)确定z 是,x y 的隐函数,且0aFu bFv +≠,求z zx y∂∂+∂∂. 解:令 (),()u a x z v b y z =-=-因此,x u u z u v u vF aF aF zx F aF bF aF bF ∂=-=-=∂--+y v v z u v u vF bF bF zy F aF bF aF bF ∂=-=-=∂--+,1u v u v u vaF bF z z x y aF bF aF bF ∂∂+=+=∂∂++. 6. 求由下列方程组所确定函数的导数或偏导数: (1)⎩⎨⎧=++=++,,41222z y x z y x 求x y d d 和xzd d . (2)⎩⎨⎧-=+=,,v u y v u x uu cos e sin e 求x v y u x u ∂∂∂∂∂∂、、及y v∂∂.解:(1)方程组⎩⎨⎧=++=++41222z y x z y x ,两边同时对x 求导,有⎪⎩⎪⎨⎧=++=++,,0d d 2d d 220d d d d 1x z z x y y x x zx y 消去xz d d ,有0)d d 1(d d =+-+x y z x y y x ,得z y x z x y --=d d ,而z y yx x y x z --=--=d d 1d d .(2)方程组⎩⎨⎧-=+=vu y v u x uu cos e sin e ,两边同时对x 求导, 有⎪⎩⎪⎨⎧∂∂+∂∂-∂∂=∂∂+∂∂+∂∂=)2(.sin cos e 0)1(cos sin e 1x vv u v x u x u x v v u v x u x u u u ,(1)sin v ⨯-(2)cos v ⨯,有xux u v v v u∂∂+∂∂-=)cos (sin e sin , 得)cos (sin e 1sin v v vx u u -+=∂∂,再代入到(2)之中得)]cos (sin e 1[e cos v v u v x v uu -+-=∂∂. 方程组⎩⎨⎧-=+=v u y v u x u u cos e sin e ,两边同时对y 求导,有⎪⎪⎩⎪⎪⎨⎧∂∂+∂∂-∂∂=∂∂+∂∂+∂∂=.sin cos e 1cos sin e 0y vv u v y u y u y v v u v y u y u u u , 与前面解法类似,得)cos (sin e 1cos v v vy u u -+-=∂∂,)]cos (sin e 1[e in v v u v s y v u u -++=∂∂.习题9-6(A )1.求下列函数的极值:(1)222),(y x x y x f --=; (2)x y x y x y x f 936),(2233+++-=; (3))2(e ),(2y y x y x f x++=; (4)2/322)(1),(y x y x f +-=.解:(1)定义域为全平面,并且函数处处可微.由⎩⎨⎧=-==-=,,,,02)(022)(y y x f x y x f y x 得唯一驻点)01(,.2)01(0)01(02)01(-====<-==,、,、,yy xy xx f C f B f A ,042>=-B AC ,根据二元函数极值的充分条件,点)01(,是函数的极大值点,极大值为1)0,1(=f ,该函数无极小值.(2)定义域为全平面,并且函数处处可微.由⎪⎩⎪⎨⎧=+-==++=,,,,063)(09123)(22y y y x f x x y x f y x 即⎩⎨⎧=-=++,,0)2(0)3)(1(y y x x 得函数的所有驻点是)23()03()21()01(4321,、,、,、,----P P P P . 66)(0)(126)(+-====+==y y x f C y x f B x y x f A yy xy xx ,、,、,,对上述诸点列表判定:所以函数的极大值为4)2,3(=-f ,极小值为4)0,1(-=-f .(3)定义域为全平面,并且函数处处可微.由⎪⎩⎪⎨⎧=+==+++=,,,,0)22(e )(0)21(e )(2y y x f y y x y x f xyx x 得唯一驻点(01)-,.x yy x xy x xx y x f y y x f y y x y x f e 2)()22(e )()22(e )(2=+=+++=,、,、,, 01>=A 、0=B 、2=C ,022>=-B AC ,根据二元函数极值的充分条件,点)10(-,是函数的极小值点,极小值1)1,0(-=-f ,该函数无极大值.(4)定义域为全平面,函数处处可微.由⎪⎩⎪⎨⎧=+-==+-=,,,,03)(03)(2222y x y y x f y x x y x f y x 得唯一驻点)00(,.由于在)00(,点处函数的二阶偏导数不存在,不能用定理8.2判定,为此根据极值的定义,当022≠+y x (即非)00(,点)时)00(1)(1),(2/322,f y x y x f =<+-=,所以点)00(,是该函数的极大值点,极大值为1)0,0(=f ,该函数无极小值. 2.求函数 5020(0,0)z xy x y x y=++>> 的极值. 解: 由 22500200z y xx z x yy ∂⎧=-=⎪∂⎪⎨∂⎪=-=∂⎪⎩,解出 52.x y ⎧⎨=⎩=,222232310040, 1, z z z x y x x y y∂∂∂===∂∂∂∂ 在点(5,2)处,233100404130, 0552AC B A -=⋅-=>=>所以函数在(5,2)处由极小值 (5.2)30z=.3.求曲面 21 (0)z xy z -=>上到原点距离最近的点.解:设 222F,,,(1)x y z x y z z xy λλ+++--2()=,则 2202022010Fx y x F y x y F z z z z xy λλλ∂⎧=-=⎪∂⎪∂⎪=-=⎪∂⎨⎪∂=+=⎪∂⎪⎪--=⎩,解出 0011.x y z λ=⎧⎪=⎪⎨=⎪⎪=-⎩,,, 因为(0,0,1)是 2222d x y z =++在0z >时的唯一驻点,由题意可知在0z >的曲面上存在与原点距离最小的点,所以(0,0,1)即为所求的点. 4. 将正数12分成三个正数z y x ,,之和 使得z y x u 23=为最大. 解 令 )12(),,(23-+++=z y x z y x z y x F λ,则223323020012x y z F x y z F x yz F x y x y z λλλ'⎧=+=⎪'=+=⎪⎨'=+=⎪⎪++=⎩,,,,解得唯一驻点)2,4,6(, 故最大值为.691224623max =⋅⋅=u5. 用面积为12(m 2)铁板做一个长方体无盖水箱,问如何设计容积最大?解 设水箱的长、宽、高分别为z y x 、、,体积为V ,则目标函数为xyz V =(,0>x ,0>y 0>z ),附加条件是1222=++yz xz xy . 设)1222()(-+++=yz xz xy xyz z y x L λ,,(000>>>z y x ,,),由(2)0(2)02()02212x yz L yz y z L xz x z L xy x y xy xz yz λλλ=++=⎧⎪=++=⎪⎨=++=⎪⎪++=⎩,,,,得唯一可能极值点12===z y x 、, 根据实际意义,当长方体表面积一定是其体积有最大值,所以当长、宽都为2(m ),高为1(m )时无盖长方体水箱容积最大(此时体积为4(m 3)). 6.在斜边长为l 的直角三角形中,求周长最大的三角形及其周长.解:设两直角边长分别为y x 、,三角形周长为L ,则目标函数是l y x L ++=(00>>y x ,),附加条件为222l y x =+.设)()(222l y x l y x y x F -++++=λ,,由⎪⎩⎪⎨⎧=+=+==+=,,,222021021l y x y F x F y x λλ在00>>y x ,时得唯一可能极值点2l y x ==,由实际意义,斜边长为一定的直角三角形中,周长有最大值,所以当两直角边长都为2l (即等腰直角三角形)时,其周长最大,且最大周长为l )21(+.7.有一宽为24cm 的长方形铁板,把它折起来做成一断面为等腰梯形的水槽.问怎么折才能使断面的面积最大.解 设折起来的边长为xcm ,倾角为α(图8-17),那么梯形的下底长为242x -,上底长为2422cos x x α-+,高为sin x α,所以断面的面积为1[(2422cos )242]sin 2=-++-⋅A x x x x αα,即2224sin 2sin cos sin (012,0)2A x x x x πααααα=-+<<<≤.为求其最大值,我们先来解方程组222224sin 4sin 2sin cos 0,24cos 2cos +(sin cos )0.x A x x A x x x ααααααααα=-+=⎧⎨=--=⎩ 由于sin 0,0x α≠≠,将上述方程组两边约分,得122cos 0,24cos 2cos cos 20.=-+=⎧⎨=-+=⎩x A x x A x x ααααα 解这个方程组,得,8().3x cm πα==根据题意,断面面积的最大值一定存在,又由A 的定义,0,12;0.x α≠≠因此最大值点只可能在区域的内部或开边界2πα=上取到.但当2πα=时,2242A x x =-的最大值为72.因此,该函数的最大值只能在区域的内点处取得,而它只有一个稳定点,因此可以断定(8,)=483723A π>是其最大值.即将铁板折起8cm ,并使其与水平线成3π角时所得断面面积最大.24242x-ax a。

大学经济数学试题及答案

大学经济数学试题及答案

大学经济数学试题及答案一、选择题(每题5分,共20分)1. 以下哪一项不是边际效用递减原理的表现形式?A. 随着消费量的增加,消费者对额外一单位商品的满足感逐渐减少B. 随着消费量的增加,消费者对额外一单位商品的满足感逐渐增加C. 消费者在消费过程中,对商品的边际效用会逐渐降低D. 消费者在消费过程中,对商品的边际效用保持不变答案:B2. 在完全竞争市场中,企业是价格的接受者,这意味着:A. 企业可以自由设定价格B. 企业必须接受市场价格C. 企业可以影响市场价格D. 企业可以改变市场价格答案:B3. 以下哪一项是微观经济学研究的核心?A. 宏观经济政策B. 市场结构和企业行为C. 货币供应和需求D. 国际贸易和汇率答案:B4. 根据洛伦兹曲线,以下哪一项描述是正确的?A. 洛伦兹曲线越接近对角线,收入分配越不平等B. 洛伦兹曲线越远离对角线,收入分配越不平等C. 洛伦兹曲线越接近对角线,收入分配越平等D. 洛伦兹曲线越远离对角线,收入分配越平等答案:C二、填空题(每题5分,共20分)1. 在经济学中,________是指在其他条件不变的情况下,一种商品的需求量对价格变化的敏感程度。

答案:需求弹性2. 经济利润是指企业的总收入减去________。

答案:经济成本3. 在长期均衡中,完全竞争市场中的企业会获得________。

答案:正常利润4. 根据凯恩斯理论,总需求的减少会导致________,进而导致经济衰退。

答案:总产出下降三、简答题(每题10分,共30分)1. 简述市场失灵的原因及其对经济的影响。

答案:市场失灵是指市场机制无法有效分配资源的情况。

原因包括外部性、公共物品、信息不对称和垄断等。

市场失灵会导致资源配置效率低下,价格信号失真,从而影响经济的稳定和发展。

2. 描述完全竞争市场的特征。

答案:完全竞争市场的特征包括:市场上有大量的买家和卖家,产品是同质化的,买卖双方都有完全的信息,没有交易成本,且没有进入和退出市场的障碍。

高等数学(经济类)课后习题及答案第十二章 微分方程答案

高等数学(经济类)课后习题及答案第十二章 微分方程答案

习题12—1(A )1. 指出下列各微分方程的阶数:(1)y y x 3='; (2)0d 2d )(3=--y x x x y ; (3)y y x y x '='+''+2)2(; (4)22()yy y y ''''''=-;(5)(5)(3)242cos y yy y x ''+-+=; (6)232d d 2d d P P tt t t+=; (7)0222)4(=+'-''+'''-y y y y y;答案:(1)一阶;(2)一阶;(3)二阶;(4)三阶;(5)五阶;(6)二阶;(7)四阶. 2. 验证下列各函数是否为所给微分方程的解. 如果是解,请指出是通解,还是特解?(1)函数3y x =,微分方程y y x 3=';(2)函数sin 3y C x =,微分方程90y y ''+=;(3)由C x y xy =++22确定的函数)(x y y =,微分方程(1)()0y dx x y dy +++=; (4)函数xy λe =(其中λ是给定的实数),微分方程0=+'''y y .解:(1)因为23y x '=,左式233=xy x x y '==⋅=右式,所以函数3y x =是微分方程y y x 3='解.又因为函数3y x =不包含任意常数,所以是特解.(2)因为9sin39y C x y ''=-=-,即90y y ''+=,所以函数sin 3y C x =是微分方程90y y ''+=解,但是由于sin 3y C x =中只有一个任意常数,又因为微分方程是二阶的,所以sin 3y C x =既不是微分方程90y y ''+=的通解,也不是特解,只是解.(3)等式C x y xy =++22两边同时对x 求导,有d d 10d d y y y x y x x+++=,整理得(1)()0y dx x y dy +++=,所以由C x y xy =++22确定的函数)(x y y =是(1)()0y dx x y dy +++=的解,又C x y xy =++22中含有一个任意常数,而(1)()0y dx x y dy +++=是一阶微分方程,所以Cx y xy =++22是(1)()0y dx x y dy +++=通解.(4)因为x y λe =,则有3e xy λλ'''=,所以33ee (1)e xx x y y λλλλλ'''+=+=+.当1λ=-时,3(1)e 0x y y λλ'''+=+=,则x y λe =是微分方程0=+'''y y 的解,并且是特解;当1λ≠-时,3(1)e0xy y λλ'''+=+≠,则x y λe =不是微分方程0=+'''y y 的解.3. 若函数e xy α=是微分方程0y y ''''-=的解,求的α值.解:由e x y α=得,e x y αα'=,3e xy αα'''=,将它们代入微分方程0y y ''''-=,得32e e (1)=0x x x y y e ααααααα''''-=-=-,所以1α=-,0或1.4.验证下列所给的各函数是微分方程的通解,并求满足初始条件的特解.(1)函数21y Cx =+,微分方程22xy y '=-,初始条件(1)2y =; (2)函数22x y C +=,微分方程0yy x '+=,初始条件1)1(=y ;(3)函数12()xy C C x e =+,微分方程20y y y '''-+=,初始条件(0)0y =,(0)1y '=.解:(1)因为2y Cx '=,所以222(1)222xy x Cx Cx y '=⋅=+-=-.又2Cx y =中含有一个任意常数,22xy y '=-是一阶微分方程,所以函数21y Cx =+是微分方程22xy y '=-的通解.由(1)2y =,可得1C =,所以微分方程22xy y '=-满足初始条件(1)2y =的特解是2+1y x =.(2)对隐函数22x y C +=的两边求关于x 的导数,得220x yy '+=,即0yy x '+=.又22x y C +=中含有一个任意常数,0yy x '+=是一阶微分方程,所以隐函数22x y C +=是微分方程0yy x '+=的通解.由1)1(=y ,可得2C =,所以微分方程0yy x '+=满足初始条件1)1(=y 的特解是222x y +=.(3)因为212()e x y C C C x '=++,212(2)e xy C C C x ''=++,所以2y y y '''-+21221212(2222)e 0x C C C x C C C x C C x =++---++=.又因为函数12()x y C C x e =+中含有两个独立的任意常数,而20y y y '''-+=是二阶微分方程,所以12()xy C C x e =+是微分方程20y y y '''-+=的通解.由初始条件(0)0y =,(0)1y '=,有12101C C C =⎧⎨+=⎩,,得01=C ,12=C ,所以微分方程20y y y '''-+=满足初始条件(0)0y =,(0)1y '=的特解是e xy x =.习题12—1(B )1.给定微分方程21y x '=+, (1)求过点(1,3)的积分曲线方程;(2)求出与直线13+=x y 相切的积分曲线方程.解:易验证2y x x C =++是微分方程21y x '=+的通解.(1)由曲线2y x x C =++过点(1,3),有311C =++,得1C =,所求积分曲线为21y x x =++.(2)若曲线2y x x C =++与直线13+=x y 相切,则有213x +=(斜率相等),得1x =. 当1=x 时,4=y ,所以切点为(1,4),将其代入2y x x C =++,有411C =++,得2C =,所求曲线为22y x x =++.2.将积分方程2()()sin cos xf t dt xf x x x x π=--⎰(其中)(x f 是连续函数)转化为微分方程,给出初始条件,并求函数)(x f . 解:将2()()sin cos xf t dt xf x x x x π=--⎰两边同时对x 求导,有()()()sin cos sin f x f x xf x x x x x '=+--+, 即()cos f x x '=,这就是所求的微分方程,容易得到其通解为()cos sin f x xdx x C ==+⎰.将2x π=代入到原方程2()()sin cos x f t dt xf x x x x π=--⎰中,有0()12f π=-,得初始条件为()12f π=,所以有11C =+,得0C =,所求函数为()sin f x x =.习题12—2(A )1. 求下列可分离变量的微分方程的通解:(1)32yy x '=; (2)e yy x -'=;(3)y '=; (4)2(3)0ydx x x dy +-=.解:(1)分离变量32d 4d y y x x =,两边积分32d 4d y y x x =⎰⎰,整理得通解为24y x C =+.(2)分离变量e d d yy x x =,两边积分e d d y y x x =⎰⎰,整理得通解为21e 2y x C =+,或写作2ln()2x y C =+.(3)分离变量d y y =,两边积分d y y =⎰,整理得通解为1ln y C =,进而原方程通解为:y Ce =(4)分离变量有2d d 3y x y x x =--,整理得d 111()d 33y x y x x=---,两边积分d 111()d 33y x y x x ==---⎰⎰,整理得通解为11ln (ln 3ln )d 3y x x x C =---+,进而原方程通解为:3(3)x y Cx -=.2. 求下列齐次方程的通解:(1)2xy x y '=+; (2)(2)x y y y '-=;(3)22()d d 0x y x xy y -+=; (4)d (1ln)d 0yx y y x x-+=. 解:(1)将方程改写为2y y x '=+,令u xy=,则x u x u x y y d d d d +==',于是原方程化为d 2d u u xu x +=+,即2d d x u x =,积分得2ln ln u x C =+,即2ln yCx x=,所以原方程通解为2ln y x Cx =.(2)将方程改写为2d d -=y x y x ,令v yx =则y vy v y x d d d d +=,于是原方程化为2d d -=+v y v yv ,即y y v d 2d -=,积分得C y v ln ln 2+-=,即2ln yCy x =,所以原方程通解为2lny Cy x =.(3)将方程改写为d d y y x x x y =-,令u xy=,则x u x u x y d d d d +=,于是原方程化为d 1d u u x u x u +=-,即d d xu u x=-,积分得2ln 22u C x =-+,即222ln y C x x =-,所以原方程通解为2y 2x =2(ln )C x -.(4)将方程改写为(1ln )dy y y dx x x =+,令y u x =,则xu x u x y y d d d d +==',于是原方程化为(1ln )du u xu u dx +=+,即ln du dxu u x=,积分得1ln ln ln u x C =+,即ln u Cx =(其中1)C C e =±,所以原方程通解为lnyCx x=,或写作e Cx y x =. 3. 求下列一阶线性微分方程的通解:(1)2y xy x '-=; (2)d 2e d x yy x+=; (3)sin cos e x y y x -'+=; (4)2(2cos )d (+1)d 0xy x x x y -+=.解:(1)法一:相应齐次方程为0y xy '-=,即d d y x x y =,积分得211ln 2y x C =+,即22e x y C =(其中1)C C e =±.令22()ex y u x =,代入原方程,有222222ee e2x x x u xu xu x '+-=,即222ex u x -'=,得2222()2ed 2e x x u x x x C --==-+⎰,所以原方程通解为222222(2e )e e 2x x x y C C -=-+=-.法二:()P x x =-、()2Q x x =,方程通解为 ()d ()d [()e d ]e P x xP x x y Q x x C -⎰⎰=+⎰d d (2e d )e x x x xx x C -⎰⎰=+⎰2222(2ed )e x x x x C -=+⎰2222(2e)e x x C -=-+22e 2x C =-.(2)()1P x =、()2e xQ x =,方程通解为 ()d ()d d d [()e d ]e (2e e d )e P x xP x x x xx y Q x x C x C --⎰⎰⎰⎰=+=+⎰⎰22(2e d )e (e )e e e x x x x x x x C C C ---=+=+=+⎰.(3)()cos P x x =、sin ()exQ x -=,方程通解为()d ()d cos d cos d sin [()e d ]e (e e d )e P x xP x x x x x x x y Q x x C x C ---⎰⎰⎰⎰=+=+⎰⎰sin sin (d )e ()e x x x C x C --=+=+⎰.(4)方程化为222cos 11x x y y x x '+=++,则有22()1x P x x =+、2cos ()1xQ x x =+,方程通解为 2222d d ()d ()d 112cos [()e d ]e (e d )e 1xxxx P x xP x xx x x y Q x x C x C x --++⎰⎰⎰⎰=+=++⎰⎰221sin (cos d )+1+1x Cx x C x x +=+=⎰. 4.求下微分方程满足所给初始条件的特解: (1)d 1d 2y x x y -=,(3)1y =; (2)sec y xy x y x '+=,2)1(π=y ; (3)2e xy y x '-=,(0)2y =; (4)ln ln xy x y x '+=,(e)1y =.解:(1)这是可分离变量方程,分离变量为2d (1)d y y x x =-,积分得22(1)2x y C -=-+,即方程通解为22(1)2x y C -+=.由(3)1y =,有3C =,方程特解为22(1)32x y -+=. (2)这是齐次方程secy y y x x '+=,令u xy=,则x u xu x y d d d d +=,于是原方程化为d sec d u u xu u x ++=,即d cos d xu u x=-,积分得1sin ln u x C =-+,即方程的通解为sin eyxx C =(其中1)C C e =±.由2)1(π=y ,可得1C e=,所以方程特解为sin 1e yx x -=.(3)这是一阶线性方程,2()1()e xP x Q x x =-=、,因此,方程通解为d d 2(e e d )e (e d )e [(1)e )]e x xx x x x x y x x C x x C x C -⎰⎰=+=+=-+⎰⎰. 由(0)2y =,有21C =-+,得3=C ,方程特解为xx x y 2e )1(2e 3-+=.(4)原方程可化为11ln y y x x x '+=,这是一阶线性方程,1()ln P x x x =、1()Q x x=,方程通解为11d d 2ln ln 1111[e d ]e (ln )ln 2ln 2ln x x x x x xC y x C x C x x x x-⎰⎰=+=+=+⎰.由(e)1y =,有1121C =+,得12C =,所以方程特解为11(ln )2ln y x x =+.习题12—2(B )1.求下列伯努利微分方程的通解: (1)yx xy y =-'; (2)2xy y y =-'. 解:(1)1-=n ,令21y y z n==-(21=-n ),则原方程化为x n xz n x z )1()1(d d -=--,即x xz xz22d d =-,该方程通解为 222222d 2d (2e d )e (2e d )e (e )e e 1x x x xx x x x x z x x C x x C C C ---⎰⎰=+=+=-=-⎰⎰.所以,原方程通解为1e 22-=x C y . (2)2=n ,令yyz n11==-(11-=-n ), 则原方程化为x n z n x z )1()1(d d -=--,即x z xz-=+d d ,该方程通解为 1e e )e e (e )d e (e )d e (d d +-=+-=-=⎰+⎰-=----⎰⎰x C x C x x C C x x z x x x x x x xx .所以,原方程通解为1e 1+-=-x C yx . 2.用适当的变量代换求下列微分方程的通解: (1)22x y x y +=+'; (2)1+-='y x y ;(3))ln (ln y x y y y x +=+'; (4)xy x y y xy 22tan 2+='.解:(1)令u x y =+2,则x u x x y d d 2d d =+,于是u x u=d d ,分离变量有x uu d d =,积分得C x u +=2,原方程通解为C x x y +=+22. (2)令1x y u -+=,则x u x y d d d d 1=-,于是u x u =-d d 1,即u xu-=1d d ,分离变量得x u u u u d )1(d -=-,或x u u d d )111(2-=-+,积分得x C u u -=-+)1ln (2,所以原方程通解为x C y x y x -=+--++-)11ln 1(2.(3)令u xy =,则x u x y xy d d d d =+,于是u x u x u ln d d =,分离变量得xxu u u d ln d =,积分得Cx u ln ln ln =,即Cx u e =,所以原方程通解为Cxxy e 1=.(4)u x y =2,即xu y =2,则x u x u y y d d 2+=',原方程化为u x xu xu x xu tan d d 2+=+,分离变量有xxu u d d cot =,该方程通解为Cx u ln sin ln =,即Cx u =sin ,所以原方程通解为Cx xy =2sin .3.求微分方程(0(0)ydx x dy y -=>的通解.解:将方程改写为222)(1d d yxy x y y x x y x ++=++=这是以)(y x x =为未知函数的齐次方程,为此令yv x =,则y v y v y x d d d d +=,于是方程化为21d d v yvy +=,分离变量有yyv v d 1d 2=+,积分得C y v v ln ln )1ln(2+=++,即Cy v v =++21,进而原方程通解为Cx Cy 211+=. 4.求微分方程2d d yx yx y +=的通解. 解:方程改写为y y x y x +=d d ,即y yxy x =-d d ,这是一阶线性微分方程,通解为 2d d )d ()d e(ey Cy y C y y y C x yy yy+=+=⎰+⎰=⎰⎰-.5.设函数)(x f 连续,且不恒为零,若⎰⎰+=120d )(2d )()(t t tf t t f x f x ,求函数)(x f .解:方程两边同时对x 求导,有)()(x f x f =',分离变量有x ffd d =,得通解为x C x fe )(=.记a t t tf =⎰12d )(,则a t t f x f x2d )()(0+=⎰,令0=x ,得初始条件a f 2)0(=.用0=x 代入到x C x f e )(=之中,有a C 2=,所以x a x f e 2)(=.由)e 21e (2)d e e(2d e 4d )(102221021221022102t t t t a t t a t t at t tf a -=-===⎰⎰⎰)1e ()e 21e (22210222+=-=a a t , 得1e 12+=a ,所以1e e 2)(2+=x x f .6.设连续函数)(x f 满足1)(d )()(12-=+⎰x f t tt f t f x ,求函数)(x f . 解:方程1)(d )()(12-=+⎰x f t t t f t f x 两边同时对x 求导,有)()()(2x f xx f x f '=+,令)(x f y =,则方程可以改写为y x y y x +=2d d ,即y yxy x =-d d ,这是一阶线性微分方程,通解为 )()d ()d e(ed d y C y y C y y y C x yy yy+=+=⎰+⎰=⎰⎰-.用1=x 代入到方程1)(d )()(12-=+⎰x f t tt f t f x 之中,得初始条件1)1(=f ,于是11+=C ,故0=C ,于是2y x =,即所以函数为x x f =)((注:根据初始条件1)1(=f ,所以不能取x x f -=)().习题12—3(A )1. 求下列各微分方程的通解:(1)2+1y x ''=; (2)2cos e x y x '''=+; (3)20y xy '''-=; (4)2e xy y '''-=;(5)201y y y'''+=-. 解:(1)2311(1)3y x dx x x C '=+=++⎰, 342112111()d 3122y x x C x x x C x C =++=+++⎰.(2)2211(cos e )d sin e 22x xy x x x C ''=+=++⎰, 2211211(sin e 2)d cos e 224x x y x C x x C x C '=++=-+++⎰, 2121(cos e 2)d 4x y x C x C x =-+++⎰221231sin e 8x x C x C x C =-++++. (3)方程不显含y ,令)(x p y =',则p y '='',于是d 20d pxp x-=,分离变量为d 2d p x x p =,积分得2ln p x C =+,即213p C x =(其中13)C C e =±,于是原方程降阶为213y C x '=,原方程通解为23121d 3C x C x x C y +==⎰.(4)方程不显含y ,令)(x p y =',则p y '='',于是2e xp p '-=,这是一阶线性微分方程,其通解为d d 2111(e e d )e (e d )e (e )e x x x x x x xp x C x C C -⎰⎰=+=+=+⎰⎰,于是原方程降阶为21e e x x y C '=+,所以原方程的通解为221121(e e )d e e 2x x xx y C x C C =+=++⎰. (5)方程不显含x ,令()y q y '=,则y qq '''=,于是2d 0d 1q q q y y +=-,即d 0d 1q q y y+=-,这是可分离变量的方程,先分离变量d d 1q y q y=--,再两边积分,并整理可得1(1)q C y =-.所以1d (1)d yC y x=-,解得12e 1C x y C =+,这就是原方程的通解. 2. 求下列各微分方程满足初始条件的特解: (1)311y x '''=+,(1)1y =,(1)1y '=,1(1)2y ''=;(2)2y y x '''-=,(0)1y =,(0)0y '=; (3)2eyy ''=,(0)0y =,(0)1y '=.解:(1)13211(1)d 2y x x C x x ''=+=-++⎰,由1(1)2y ''=,得10C =,所以212y x x''=-+; 222111()d 222y x x x C x x '=-+=++⎰,由(1)1y '=,得02=C ,所以21122y x x '=+; 2331111()d ln 2226y x x x x C x =+=++⎰,由1)1(=y ,得356C =,所以方程满足初始条件的特解为3115ln 266y x x =++. (2)方程不显含y ,令)(x p y =',则p y '='',原方程化为2p p x '-=,此方程通解为d d 1111(2e d )e (2e d )e (2e 2e )e e 22x xx x x x x x p x x C x x C C x C x ----⎰⎰=+=+=--=--⎰⎰,即1e 22xy C x '=--,由(0)0y '=,得12C =,从而2(e 1)x y x '=--,此方程通解为222(e 1)d 2e 2x x y x x x x C =--=--+⎰,由(0)1y =,得21C =-,所以方程满足初始条件的特解为22e 21x y x x =---.(3)方程不显含x ,令()y q y '=,则y qq '''=,于是2e y qq '=,分离变量有2d e d yq q y =,积分得221e yp C =+,即y '=由1)0(='y ,可知道0>'y ,所以y '=再由(0)0y =,(0)1y '=,得01=C ,所以e y y '=.分离变量有e d d yy x -=,积分得2e y x C --=+,由0)0(=y ,得21C =-,于是e 1y x --=-,化简为ln (1)y x =--,这就是方程满足初始条件的特解.习题12—3(B )1. 求下列各微分方程的通解: (1)()e n ax b yx =+(a ,b 为常数); (2)0ln=''-''xy y y x ;(3)2)(y y '=''. 解:(1)由于1e d e axax x a =⎰,11d 1t t x x x t +=+⎰,故原方程的通解为 1121211e [()(1)(1)]axb n n n n n n y b n b n b x C x C x C x C a-+---=+++-++++++.(2)方程不显含y ,令)(x p y =',则p y '='',于是x p p p x ln=',即xpx p p ln =',这是齐次方程,令u x p =,则x u x u x p p d d d d +==',原方程化为u u xux u ln d d =+,分离变量有x x u u u d )1(ln d =-,积分得x C u 1ln )1ln(ln =-,即11e +==x C u xp ,原方程降阶为11e +='x C x y ,原方程通解为⎰⎰+++-==x x C x x y x C x C x C )d e e (1d e 11111112111)1(e 11C C x C x C +-=+. (3)方程既不显含y ,也不显含x .(方法1)令)(x p y =',则p y '='',则2p p =',分离变量有x ppd d 2=,积分得11C x p -=-,即xC p -=11,原方程降阶为x C y -='11,所以原方程的通解为)ln(d 121x C C x C xy --=-=⎰.(方法2)令()y q y '=,则y qq '''=,于是2d d q qq y =,分离变量有2d d q q q y=,积分得2ln q y C =-,即原方程降阶为2e d d C y xy-=,分离变量为x y y C d d e 2=-,积分得12e C x y C -=--,化简为)ln(12x C C y --=,这就是原方程的通解.2. 求下列各微分方程满足初始条件的特解: (1)2)(1y y '+='',(0)1y =,(0)0y '=;(2)3()y y y ''''=+,(0)0y =,(0)1y '=;(3))(22y y y y '-'='',(0)1y =,(0)2y '=.解:(1)按不显含y 的方程求解,(注:本题按不显含x 方程求解困难).令)(x p y =',则p y '='',于是21p p +=',分离变量有x ppd 1d 2=+,积分得1arctan C x p +=,即1arctan C x y +=',由(0)0y '=,得01=C ,于是x y tan =',积分得2tan d ln cos y x x C x ==-⎰,由(0)1y =,得12=C ,所以方程满足初始条件的特解为1ln cos y x =-.(2)令()y q y '=,则y qq '''=,得3d d qqq q y=+,因为0q =不满足初始条件(0)1y '=,所以0q ≠,分离变量有2d d 1qy q =+,积分得1arctan q y C =-,即1tan ()y q y C '==-. 由初始条件(0)0y =,(0)1y '=,有11tan (0C =+),得14C π=,故tan ()4y y π'=-. 分离变量d d tan ()4y x y π=-,积分并整理得2sin ()e 4xy C π-=.再由初始条件(0)0y =,得22C =-arcsin 24x y =+π. (3)这是不含x 的二阶可降阶微分方程,令()y q y '=,则y qq '''=,则方程化为22()yqq q q '=-.因为0q =不满足初始条件2)0(='y ,所以0q ≠,分离变量有d d 21q yq y=-,积分得21ln(1)ln q C y -=,解得211y q C y '==+.由初始条件(0)1y =,(0)2y '=,有121+=C ,得11=C ,故12+='y y ,分离变量有x y y d 1d 2=+,积分得1arctan C x y +=,再由初始条件1)0(=y ,得42π=C ,所以原方程满足初始条件的特解为4arctan π+=x y ,即xxx y tan 1tan 1)4tan(-+=+=π.习题12—4(A )1.指出下列各对函数在其定义区间内的线性相关性:(1)3x 与2x ; (2)e x 与e xx ; (3)e x-与2ex-; (4)x e 与5e x;(5)sin x 与x 2sin ; (6)x x cos sin 与x 2sin ; (7)e sec x x 与e tan xx ; (8)x ln 与ln x μ(0μ>).解:(1)因为233x xx =不恒为常数,所以3x 与2x 在区间)(∞+-∞,内线性无关. (2)因为e ex x x x =不恒为常数,所以e x与e x x 在区间)(∞+-∞,内线性无关. (3)因为2e e e x xx ---=不恒为常数,所以e x -与2e x -在区间)(∞+-∞,内线性无关. (4)因为5e 5ex x =恒为常数,所以xe 与5e x 在区间)(∞+-∞,内线性相关. (5)因为sin 22cos sin xx x=不恒为常数,所以sin x 与x 2sin 在区间)(∞+-∞,内线性无关. (6)因为sin 22sin cos xx x=恒为常数,所以x x cos sin 与x 2sin 在区间)(∞+-∞,内线性相关.(7)因为e tan sin e sec x x xx x=不恒为常数,所以e sec x x 与e tan x x 在区间)(∞+-∞,内线性无关.(8)因为ln 0ln x xμμ=>恒为常数,所以x ln 与ln x μ在区间)0(∞+,内线性相关. 2.验证函数21e x y =,22e xy x =是微分方程440y y y '''-+=的两个线性无关的解,并写出该方程的通解.解:因为21e xy =,所以22112e =4e x xy y '''=,,因此 222111444e 8e 4e 0xx x y y y '''-+=-+=,所以21e xy =是440y y y '''-+=的解;同理,22e xy x =是440y y y '''-+=的解.又因为2221e exx y x x y ==不恒为常数,所以函数21e x y =,22e x y x =是微分方程440y y y '''-+=的两个线性无关的解.因此二阶线性齐次微分方程440y y y '''-+=通解为2112212()e x y C y C y C C x =+=+.3.通过观察给出微分方程0y y ''+=的两个线性无关的特解,并写出该方程的通解. 解:0y y ''+=是二阶线性齐次微分方程,改写为y y ''=-,二阶导数与自身呈相反数的函数有1sin y x =,2cos y x =,它们是0y y ''+=的两个解,又21cos cot sin y x x y x==不恒为常数,于是1sin y x =,2cos y x =线性无关,所以方程0y y ''+=的通解为12sin cos y C x C x =+.4.写出下列各二阶常系数线性齐次微分方程的通解:(1)320y y y '''-+=; (2)10250y y y '''-+=;(3)2100y y y '''-+=; (4)02d d 22=-x tx.解:(1)特征方程为2320r r -+=,即(1)(2)0r r --=,特征根为11=r 、22r =(不相等实根),所以方程320y y y '''-+=的通解是212e e x x y C C =+.(2)特征方程为210250r r -+=,即2(5)0r -=,特征根为125r r ==(两个相等实根),所以方程10250y y y '''-+=的通解是512()e xy C C x =+.(3)特征方程为22100r r -+=,由二次代数方程求根公式,得特征根为21322b y i a -===±(一对共轭复根),所以方程2100y y y '''-+=的通解是12(cos3sin 3)e xy C x C x =+. (4)特征方程为022=-r ,特征根为21=r 、22-=r (不同实根),所以方程02d d 22=-x tx的通解是ttC C x 2221e e -+=(注意t 是自变量,x 是因变量).5.求下列各微分方程满足初始条件的特解:(1)22d d 340d d y yy t t+-=,(0)2y =,(0)3y '=-; (2)20y y y '''-+=,(0)1y =,(0)2y '=; (3)450y y y '''-+=,(0)1y =,(0)0y '=.解:(1)特征方程为2340r r +-=,即(1)(4)0r r -+=,特征根为11=r 、24r =-,所以方程22d d 340d d y yy t t +-=的通解是412e e t t y C C -=+,且412e 4e t t dy C C dt-=-. 由初始条件(0)2y =,(0)3y '=-,有1212243C C C C +=⎧⎨-=-⎩,,得1211C C =⎧⎨=⎩,,所以方程满足初始条件(0)2y =,(0)3y '=-的特解是4e e t ty -=+.(2)特征方程为2210r r -+=,即2(1)0r -=,特征根为121r r ==,所以方程20y y y '''-+=的通解是12()e x y C C x =+,且212()e x y C C C x '=++.由初始条件(0)1y =,(0)2y '=,有12112C C C =⎧⎨+=⎩,,得1211C C =⎧⎨=⎩,,所以方程满足初始条件(0)1y =,(0)1y '=-的特解是(1)e x y x =+.(3)特征方程为2450r r -+=,由二次代数方程求根公式,得特征根为2r i ==±,所以方程450y y y '''-+=的通解是212(cos sin )e x y C x C x =+,且21221[(2)cos (2)sin ]e xy C C x C C x '=++-.由初始条件(0)1y =,(0)0y '=,有112120C C C =⎧⎨+=⎩,,得1212C C =⎧⎨=-⎩,,所以方程满足初始条件(0)1y =,(0)0y '=的特解是2(cos 2sin )e xy x x =-. 6.求下列各二阶常系数线性非齐次微分方程的通解:(1)x y y +=+''1; (2)xy y y -=+'+''e 22; (3)223y y y x x '''+-=+-; (4)xx y y e 4=-''.解:(1)相应齐次方程为0=+''y y ,特征方程012=+r ,特征根为i r i r -==21、,相应齐次方程通解为x C x C Y sin cos 21+=.这里x x f +=1)(,01==λ、n 不是特征根,因此设b ax y +=*,将其代入到原方程之中,有x b ax +=+1,比较系数得11==b a 、,于是原方程的一个特解为x y +=1*.原方程的通解为x x C x C y Y y +++=+=1sin cos 21*.(2)相应齐次方程为02=+'+''y y y ,特征方程0122=++r r ,即0)1(2=+r ,特征根为121-==r r ,相应齐次方程通解为xx C C Y -+=e )(21.这里xx f -=e 2)(,10-==λ、n 是二重特征根,因此设x x ax a x y --=⋅=e e 22*,将其代入到原方程之中,化简有22=a ,得1=a ,于是原方程的一个特解为xx y -=e 2*,原方程的通解为212()exx y C C x x e --=++.(3)相应齐次方程为02=-'+''y y y ,特征方程0122=-+r r ,即0)1)(12(=+-r r ,特征根为2/1121=-=r r 、,相应齐次方程通解为2/21e e x x C C Y +=-.这里2()3f x x x =+-,02==λ、n 不是特征根,因此设c bx ax y ++=2*,代入到原方程之中,有224(2)()3a ax b ax bx c x x ++-++=+-,比较系数有12143a a b a b c -=-⎧⎪-=⎨⎪+-=⎩,,,得112a b c ===、、,于是原方程的一个特解为*22y x x =++.所以,原方程的通解为*/2212e e 2x x y Y y C C x x -=+=++++.(4)相应齐次方程为0=-''y y ,特征方程012=-r ,特征根为1121-==r r 、,相应齐次方程通解为xx C C Y -+=e e 21.这里xx x f e 4)(=,x x P n 4)(=,11==λ、n 是单重特征根,因此设x x bx ax b ax x y e )(e )(2*+=+=,将其代入到原方程之中,化简有x b ax a 4)2(22=++,比较系数得11-==b a 、,于是原方程的一个特解为x x x y e )(2*-=,所以原方程的通解为*y Y y +=x x x x x C C e )(e e 221-++=-.7.求下列各二阶常系数线性非齐次微分方程满足初始条件的特解: (1)261y y x '''-=-,(0)1y =,(0)3y '=;(2)xy y e 54=+'',(0)0y =,(0)1y '=;解:(1)相应齐次方程为20y y '''-=,特征方程220r r -=,特征根为10r =、22r =,相应齐次方程通解为212e xY C C =+.这里()61f x x =-,1n =、0λ=是单重特征根,因此设*2()y x ax b ax bx =+=+,代入到原方程之中,有42261ax a b x -+-=-,得32a =-,1b =-,于是原方程的一个特解为*232y x x =--. 所以,原方程的通解为*22123e 2x y Y y C C x x =+=+--. 222e 31x y C x '=--,由初始条件(0)1y =,(0)3y '=,有1221213C C C +=⎧⎨-=⎩,,得11C =-、22C =,所以方程261y y x '''-=-满足初始条件(0)1y =,(0)3y '=的特解为2232e 12x y x x =---.(2)相应齐次方程为04=+''y y ,特征方程042=+r ,特征根为i r i r 2221-==、,相应齐次方程通解为x C x C Y 2sin 2cos 21+=.这里x x f e 5)(=,10==λ、n 不是特征根,因此设xa y e *=,代入到原方程之中,有x x x a a e 5e 4e =+,得1=a 于是原方程的一个特解为xy e *=.所以,原方程的通解为xx C x C y Y y e 2sin 2cos 21*++=+=.122sin 22cos 2e x y C x C x '=-++,由初始条件(0)0y =,(0)1y '=,有1210211C C +=⎧⎨+=⎩,,得11C =-、20C =,所以方程xy y e 54=+''满足初始条件(0)0y =,(0)1y '=的特解为e cos x y x =-.8. 求常系数线性非齐次微分方程2e xy +y =x+'''的通解.解:相应齐次方程为0='+''y y ,特征方程02=+r r ,特征根为1021-==r r 、,相应齐次方程通解为x12Y C C e -=+.这里x x x f e 2)(+=,将其分为)()()(21x f x f x f +=,x x f 2)(1=、xx f e )(2=.对x y y 2='+'',这里01==λ、n 是单重特征根,因此设bx ax b ax x y +=+=2*1)(, 代入到x y y 2='+''之中,有x b ax a 2)2(2=++,比较系数得21-==b a 、,于是方程x y y 2='+''的一个特解为x x y 22*1-=;对xy y e ='+'',不难观察得一个特解2/e *2xy =.于是,原方程的一个特解为2/e 22*2*1*xx x y y y +-=+=.所以,原方程的通解为*y Y y +=2/e 2e221x xx x C C +-++=-..习题12—4(B )1.若)(1x y ϕ=,)(2x y ϕ=是二阶线性非齐次微分方程)()()(x f y x Q y x P y =+'+''的两个解,证明)()(12x x y ϕϕ-=是相应线性齐次微分方程0)()(=+'+''y x Q y x P y 的解. 证:因为)()(12x x y ϕϕ-=,所以212121()()[()()]()[()()]()[()()]y P x y Q x y x x P x x x Q x x x φφφφφφ'''++''''''=-+-+-)]()()()()([)]()()()()([111222x x Q x x P x x x Q x x P x ϕϕϕϕϕϕ+'+''-+'+''= ()()0f x f x =-=.所以)()(12x x y ϕϕ-=是相应线性齐次微分方程0)()(=+'+''y x Q y x P y 的解.2.已知函数x x x x y 21e e )(+=,x x x x y -+=e e )(2,xx x x x y -++=e e e )(23都是微分方程)()()(x f y x Q y x P y =+'+''的解,写出该方程的通解.解:)()()(x f y x Q y x P y =+'+''是二阶非齐次线性微分方程,由函数xx x x y 21e e )(+=,x x x x y -+=e e )(2,x x x x x y -++=e e e )(23都是它的解,根据上题,则x x y y y y 22313e e =-=--、是相应齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个解,而它们之比不恒等于常数,于是它们是线性无关的解,所以0)()(=+'+''y x Q y x P y 的通解为212x xY C e C e -=+,根据二阶非齐次线性微分方程解的结构,得方程)()()(x f y x Q y x P y =+'+''的通解是 22112C e e x x x x y Y y C e e x -=+=+++.3.若二阶常系数线性齐次微分方程的两个特解是2/21e ,e x x y y ==,写出该微分微分方程及其通解.解:由二阶常系数线性齐次微分方程的两个特解是2/21e ,e x x y y ==,则该二阶常系数线性齐次微分方程的特征根是21121==r r 、,于是特征方程是0)21)(1(=--r r ,即01322=+-r r ,所以微分方程为032=+'-''y y y ,通解为2/21e C e x x C y +=.4.若二阶常系数线性齐次微分方程有一个特解xx y 21e -=,写出该微分微分方程及其通解.解:由二阶常系数线性齐次微分方程有一个特解xx y 21e -=,则该二阶常系数线性齐次微分方程有一个特征根2-=r ,并且是二重根,于是特征方程是0)2(2=+r ,即0442=++r r , 所以微分方程为044=+'+''y y y ,通解为xx C y 221)e C (-+=.5.求下列各常系数线性非齐次微分方程的通解:(1)x x y y cos 4=+''; (2)xy y -=''+''e .解: (1)相应齐次方程为0=+''y y ,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为x C x C Y sin cos 21+=.这里x x x f cos 4)(=,最高多项式次数1=n ,i i =+βα是单重特征根,为此设*22[()cos +()sin ]=()cos +()sin y x ax b x cx d x ax bx x cx dx x =++++,代入到原方程之中,有x x x c b ax x d a cx cos 4sin )224(cos )224(=+--+++,比较系数有⎪⎪⎩⎪⎪⎨⎧=-=-=+=,,,,022*******b c a d a c 得,⎪⎪⎩⎪⎪⎨⎧====,,,,0110d c b a 于是原方程的一个特解为x x x x y sin cos 2*+=. 所以,原方程的通解是x x x x x C x C y sin cos sin cos 221+++=.(2) 相应齐次方程为0=''+'''y y ,特征方程为023=+r r ,特征根为、021==r r ,13-=r 应齐次方程通解为x C x C C Y -++=e 321.对原方程xy y -=''+''e ,这里10-==λ,n 是单重特征根,为此设xax y -=e *,代入到原方程之中,有x x x x a x a ---=-+-e e )2(e)3(,即x x a --=e e ,得1=a ,于是原方程x y y -=''+''e 的一个特解为x x y -=e *.所以,原方程的通解是*y Y y +=xx x C x C C --+++=e e 321.6.求下列各二阶常系数线性非齐次微分方程满足初始条件的特解: (1)x y y sin =+'',(0)1y =,(0)0y '=;(2)x y y xcos e 5='-'',(0)0y =,(0)2y '=.解:(1)相应齐次方程为0=+''y y ,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为x C x C Y sin cos 21+=.对原方程x y y sin =+'',这里多项式最高次数i i n =+=βα,0是单重特征根,为此设x bx x ax y sin cos *+=,代入到原方程之中,有x x b x a sin cos 2sin 2=+-,比较系数有0212==-b a 、,得021=-=b a 、,于是原方程的一个特解为x x y cos 2*-=.所以,原方程的通解是x xx C x C y Y y cos 2sin cos 21*-+=+=. x xx C x C y sin 2cos )21(sin 21+-+-=',由初始条件(0)1y =,(0)0y '=,得21121==C C 、,所以方程满足初始条件的特解为x x x y sin 21cos )21(+-=. (2)相应齐次方程为0='-''y y ,特征方程为02=-r r ,特征根为1021==r r 、,应齐次方程通解为xC C Y e 21+=.对原方程x y y xcos e 5='-'',这里多项式最高次数i i n +=+=10βα,不是特征根,为此设*(cos sin )x y e a x b x =+,代入到原方程之中,有]sin )2(cos )2[(e x b a x a b x--+-x x cos e 5=,比较系数有⎩⎨⎧=--=-,,0252b a a b 得⎩⎨⎧=-=,,21b a 于是原方程的一个特解为)cos sin 2(e *x x y x -=,原方程的通解是)cos sin 2(e e 21*x x C C y Y y x x -++=+=.)cos sin 3(e e 2x x C y xx++=',由初始条件(0)0y =,(0)2y '=,有⎩⎨⎧=+=-+,,2101221C C C 得1021==C C 、,所以原方程满足初始条件的特解是x x x y e )cos sin 21(-+=.7.若连续函数()y f x =满足0()e ()()d xxf x t x f t t =+-⎰,求()y f x =的表达式.解:0()e ()d ()d xx xf x tf t t x f t t =+-⎰⎰,0()e ()d xxf x f t t '=-⎰,()e ()x f x f x ''=-,于是函数()y f x =满足微分方程e x f f ''+=,初始条件是(0)(0)1f f '==.e xf f ''+=是二阶常系数线性非齐次微分方程,相应齐次方程是0f f ''+=,特征方程为012=+r ,特征根为i r i r -==21、,应齐次方程通解为12cos sin Y C x C x =+.对原方程e xf f ''+=,这里10==λ,n 不是特征根,为此设*e xf a =,代入到原方程之中,得21=a ,于是原方程的一个特解为*1e 2x f =. 所以,原方程的通解是*121()cos sin e 2xf x Y f C x C x =+=++. 因为121()sin cos e 2xf x C x C x '=-++,由初始条件(0)(0)1f f '==,有12112112C C ⎧+=⎪⎪⎨⎪+=⎪⎩,,得2121==C C ,所以所求函数是1()(cos sin e )2xf x x x =++.8. 证明:若()f x 满足方程()(1)f x f x '=-,则必满足方程()()0f x f x ''+=,并求方程()(1)f x f x '=-的解.解:先证()f x 必满足方程()()0f x f x ''+=.由于()(1)f x f x '=-,则求导可得()(1)(1)[1(1)]()f x f x f x f x '''=--=---=-, 故证明了()f x 必满足方程()()0f x f x ''+=. 下面求解方程()(1)f x f x '=-.由于方程()()0f x f x ''+=的通解为12()cos sin f x C x C x =+,且()(1)f x f x '=-, 所以1212sin cos cos(1)sin (1)C x C x C x C x -+=-+-,令0x =可得212cos1sin1C C C =+,则112cos1(1sin1)1sin1cos1C C C +==-,从而方程()(1)f x f x '=-的解为11sin1()(cos sin )cos1f x C x x +=+.习题12—5(A )1. 设在冷库中存储的某种新鲜水果500吨,放置一段时间之后开始腐烂,腐烂率是未腐烂数量的0.001倍,设腐烂的数量为y 吨,则显然它是时间t 的函数,求此函数的表达式. 解:由题意知0.001(500)dyy dt=⨯-, 分离变量得,0.001500dydt y=-,两边积分,并整理得0.001500e t y C -=-(C 为任意常数),再结合(0)0y =,容易求出500C =,所以水果腐烂数量与时间的函数关系式为0.001500(1e )t y -=-.2. 已知某商品的需求量Q (单位:kg )对价格P (单位:元)的弹性为ln 2EQP EP=-,且当0P =时,需求量600Q =Kg. (1)求该商品对价格的需求函数()Q P ;(2)求当价格1P =元时,市场对该商品的需求量; (3)当+P →∞时,需求量是否趋于稳定? 解:(1)由已知条件知,ln 2EQ P dQP EP Q dP=⋅=-, 分离变量得ln 2dQdP Q=-, 所以有()2P Q P C -=(C 为任意常数).再由(0)600Q =得,600C =,所以()6002P Q P -=⨯.(2)由(1)可知,当1P =元时,1(1)6002300Q -=⨯=(kg ).(3)由()6002PQ P -=⨯可知,当+P →∞时,0Q →,即随着商品价格的无限增大,。

经济数学函数试题及答案

经济数学函数试题及答案

经济数学函数试题及答案一、选择题(每题2分,共10分)1. 函数f(x) = 2x^2 - 3x + 5在x=1处的导数是:A. 1B. 4C. 7D. 9答案:B2. 若函数g(x) = sin(x) + cos(x),则g(π/4)的值等于:A. 1B. √2C. 2D. 0答案:B3. 微分方程dy/dx = x^2的通解是:A. y = x^3/3 + CB. y = x^3 + CC. y = x^3/3D. y = x^2 + C答案:A4. 经济学中的边际成本函数MC(x)表示的是:A. 总成本对产量的导数B. 平均成本对产量的导数C. 总成本对时间的导数D. 总产量对时间的导数答案:A5. 若需求函数为D(p) = a - bp,其中a和b为正常数,价格p上升时,需求量将:A. 增加B. 减少C. 保持不变D. 先增加后减少答案:B二、填空题(每题3分,共15分)6. 函数h(x) = √x的值域是_________。

答案:[0, +∞)7. 若成本函数C(x) = mx + b,其中m和b为常数,那么平均成本AC(x) = _________。

答案:m + b/x8. 边际收益递减原理表明,当产量增加到一定程度后,每增加一个单位的产量,所带来的收益增量将_________。

答案:减少9. 经济学中的无差异曲线表示消费者在不同商品组合之间_________。

答案:同等偏好10. 在完全竞争市场中,厂商的短期供给曲线位于_________的平均成本之上。

答案:平均变动成本三、解答题(共75分)11. (15分)设生产函数为Q = K^(1/2) * L^(1/3),其中K为资本,L为劳动。

(1)求劳动的平均产量和边际产量。

(2)若资本K=100,求劳动的平均产量和边际产量。

12. (20分)考虑一个市场,需求曲线为D(p) = 200 - 5p,供给曲线为S(p) = -10 + 2p。

《经济数学基础》习题答案及试卷(附答案)

《经济数学基础》习题答案及试卷(附答案)

习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学(经济数学1)》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《高等数学(经济数学1)》(编号为01014)共有单选题,填空题1,计算题等多种试题类型,其中,本习题集中有[]等试题类型未进入。

一、单选题1.幂函数、指数函数、对数函数、三角函数和反三角函数统称()A 、函数B 、初等函数C 、基本初等函数D 、复合函数2.设,0,0,)(⎩⎨⎧≥+<=x x a x e x f x 当a=()时,)(x f 在),(+∞∞-上连续A 、0B 、1C 、2D 、33.由函数2x u e y u ==,复合而成的函数为()A 、2x e y =B 、2xe x =C 、2x xe y =D 、x e y =4.函数f(x)的定义域为[1,3],则函数f(lnx)的定义域为()A 、],[3e eB 、]3,[eC 、[1,3]D 、],1[3e5.函数x y x y z 2222-+=的间断点是()A 、{}02),(2=-x y y x B 、21=x C 、0=x D 、2=y6.不等式15<-x 的区间表示法是()A 、(-4,6)B 、(4,6)C 、(5,6)D 、(-4,8)7.求323lim 3x x x →-=-()A 、3B 、2C 、5D 、-58.求=++→43lim 20x x x ()A 、1B 、2C 、3D 、49.若f(x)的定义域为[0,1],则)(2x f 的定义域为()A 、[-1,1]B 、(-1,1)C 、[0,1]D 、[-1,0]10.求=+-→t e t t 1lim2()A 、21(1)e -+B 、211(1)2e +C 、)11(212+-e D 、11(1)2e-+ 11.求0sin limx xxω→=()A 、0B 、1C 、2ωD 、ω12.求=-∞→x x x )11(lim ()A 、e1B 、1C 、0D 、e13.求=-+→x x x 11lim()A 、1 B 、12C 、13D 、1414.已知xxx f +-=11)(,求)0(f =()A 、1 B 、2C 、3D 、4 15.求29)(x x f -=的定义域()A 、[-1,1]B 、(-1,1)C 、[-3,3]D 、(-3,3)16.求函数y =的定义域()A 、[1,2]B 、(1,2)C 、[-1,2]D 、(-1,2) 17.判断函数53)(2+=x x f 的奇偶性()A 、奇函数B 、偶函数C 、奇偶函数D 、非奇非偶函数18.求13+=x y 的反函数()A 、113y x =+B 、113y x =-C 、13x y +=D 、31-=x y19.求极限lim )x x →+∞的结果是()A 、0B 、12C 、∞D 、不存在20.极限01lim 23x x →+的结果是()。

A 、0B 、不存在C 、15D 、1221.设x x y sin ⋅=,则y '=()A 、)cos 2sin (x x x x +B 、)sin 2cos (x x x x +C 、)cos 2sin (x x x x -D 、)sin 2cos (x xxx - 22.设4)52(+=x y ,则y '=()A 、34(25)x +B 、3)52(8+x C 、44(25)x +D 、48(25)x + 23.设t ety sin =则y ''=()A 、2sin t e t --B 、2sin t e t -C 、2cos t e t -D 、t e t cos 2-- 24.=--→11lim31x x x ()A 、1B 、2C 、3D 、425.设)()2)(1()(n x x x x x f ---=K ,则)()1(x f n +=()A 、)!1(+n B 、1n +C 、0D 、1 26.曲线x y sin 2+=π在0=x 处的切线轴与x 正向的夹角为:()A 、2πB 、3πC 、4πD 、5π27.设x e a y x x 23-+=,则dxdy =() A 、21ln 3x e a a x x ++B 、22ln x e a a x x ++C 、22ln 3xe a a x x -+D 、22ln 3x e a a x x ++ 28.如果函数)(xf 在区间I 上的导数(),那么)(x f 在区间I 上是一个常数.A 、恒为常数B 、可能为常数C 、恒为零D 、可能为常数29.设)13(2+-=x x e y x ,则=x dxdy=()A 、0B 、-1C 、-2D 、-330.设n n n n n a x a x a x a x x f +++++=---12211)(K (n a a a ,,,21K 都是常数),则)(n y =()A 、0B 、!nC 、n aD 、1a31.假定)(0x f '存在,按照导数的定义观察A hh x f h x f h =--+→)()(lim000极限,指出A =()A 、)(20x f 'B 、)(0x f 'C 、)(20x f '-D 、)(0x f '-32.已知物体的运动规律为2t s =(米),则该物体在2=t 秒时的速度为()A 、1B 、2C 、3D 、433.求函数21xy =的导数()A 、31x -B 、32xC 、32x -D 、31x34.求曲线x y =在点)1,1(处的切线方程()A 、20y x -=B 、20y x +=C 、210y x -+=D 、012=--x y35.求函数x x y e 2=的导数()A 、'e x y x =B 、'e (1)x y x x =+C 、)2(e 'x x y x +=D 、2'e x y x =36.求函数x y 3sin =的导数()A 、2'3sin cos y x x =B 、2'sin cos y x x =C 、2'3sin y x =D 、3'3sin cos y x x =37.求曲线1ln =+y xy 在点)1,1(M 处的切线方程()A 、20x y +=B 、032=-+y xC 、230x y ++=D 、220x y +-=38.求函数323210y x x =+-的二阶导数()A 、18y x ''=B 、64y x ''=+C 、418+=''x yD 、294y x x ''=+39.求函数x x y sin =的二阶导数()A 、''2cos sin y x x x =+B 、''cos sin y x x x =-C 、''cos sin y x x x =+D 、''2cos sin y x x x =-40.求函数x y 3=的n 阶导数()A 、()3n x y =B 、()3ln 3n x y =C 、()0n y =D 、n x n y )3(ln 3)(=41.若函数)(x f y =在0x x =可导,则它在点0x 处到得极值的必要条件为:()A 、0)(0='x fB 、0)(0≠'x fC 、0)(0>'x fD 、0)(0<'x f42.求=→xx x 1sinlim 20()A 、0B 、1C 、2D 、343.求35)3)(2)(1(lim nn n n n +++∞→的值为()A 、1B 、51C 、52D 、53 44.求xx x )1ln(lim 0+→的值为:()A 、1B 、2C 、3D 、445.求=→x x x 3sin 2sin lim0()A 、31B 、32C 、23D 、146.求=⎰→xdt t xx 020cos lim()A 、0B 、1C 、2D 、347.极值反映的是函数的()性质.A 、单调B 、一般C 、全部D 、局部48.罗尔定理与拉格朗日定理之间的关系是()A 、没有关系B 、前者与后者一样,只是表达形式不同C 、前者是后者的特殊情形,加)()(b f a f =即可D 、后者是前者的特殊情形 49.求xx x x --→201e lim ()A 、0B 、1C 、-1D 、250.求bx ax x sin sin lim0→()A 、0B 、b a C 、baD 、151.最值可()处取得。

A 、区间端点及极值点B 、区间端点C 、极值点D 、无法确定52.函数y 在[0,6]上的最大值为()A 、3B 、4C 、5D 、653.设)4)(3)(2)(1()(----=x x x x x f ,则方程0)(='x f 有()个根A 、1B 、2C 、3D 、4 54.在]3,1[-上,函数21)(x x f -=满足拉格朗日中值定理,则=ξ()A 、-1B 、0C 、1D 、255.求nx x xln lim +∞→()A 、0B 、1C 、n D 、不存在56.求5lim1x x x →∞++()。

A 、0B 、1C 、-1D 、不存在57.求xxx x sin e e lim 0-→-()。

A 、0B 、2C 、1D 、358.求23limx x ex ∞→()A 、0B 、1C 、2D 、359.如果函数)(x f 在区间I 上的导数恒为零,那么)(x f 在区间I 上是一个()。

A 、常数B 、恒为零C 、有理数D 、无理数60.求3(24)(5)(6)lim5n n n n n →∞+++的值为()A 、1B 、51C 、52D 、53 61.一个已知的函数,有()个原函数。

A 、无穷多B 、1C 、2D 、362.)(x f 的()称为)(x f 的不定积分。

A 、函数B 、全体原函数C 、原函数D 、基本函数 63.若)(x f 在某区间上(),则在该区间上)(x f 的原函数一定存在。

A 、可导B 、可微C 、连续D 、可积64.由)()('x f x F =可知,在积分曲线族C x F y +=)()(是任意常数C 上横坐标相同的点处作切线,这些切线彼此是()的。

A 、无规律B 、存在C 、相交D 、平行65.求dx xx ⎰+221() A 、arctan x x -B 、C x x +-arctan C 、arctan x x +D 、arctan x x C ++66.求3sin xdx ⎰()A 、31cos cos 3x x +B 、31cos cos 3x x c ++C 、31cos cos 3x x -D 、31cos cos 3x x c -+67.求⎰+dx x x 239() A 、C x x ++-)9ln(29222B 、229ln(9)22x x ++C 、229ln(9)22x x C +++D 、229ln(9)22x x -+ 68.求函数2x 的原函数为()A 、313x C +B 、3x C +C 、213x C +D 、323x C +69.求dx x ⎰sin =()A 、cos x -B 、cos x C 、cos x C +D 、cos x C -+70.求211dx x =+⎰()A 、arctan x B 、arctan x -C 、arctan x C +D 、arctan x C -+ 71.求dx x⎰21=()A 、1x C --+B 、1x --C 、1x C -+D 、1x -72.若⎰+-=C x e dx x f x sin 3)(,求)(x f =()A 、3cos x e x +B 、3cos x e x -C 、3cos x e x C -+D 、3cos x e x C ++73.求dx xx ⎰=()A 、122x B 、122x C +C 、122x C -+D 、122x - 74.求dx xe x ⎰22=()A 、2x e B 、2x e -C 、2x e C -+D 、2x e C + 75.求21cos dx x=⎰()A 、tan x B 、tan x C -+C 、tan x C +D 、tan x - 76.求x e dx =⎰()A 、x e B 、x e -C 、x e C -+D 、x e C +77.求xa dx =⎰()A 、ln x a aB 、ln x aC a +C 、xa C +D 、ln x a C a -+ 78.求=()A 、arcsin x C +B 、arcsin xC 、arcsin x -D 、arcsin x C -+79.求()dF x =⎰()A 、()F x C +B 、()F xC 、()'F x C +D 、()'F x80.求()dx x ⎰+75sin =()A 、cos(57)5x C ++B 、cos(57)5x C +-+C 、cos(57)x C -++D 、cos(57)x C ++ 81.如果[]b a x f ,)(在上的最大值与最小值分别为M 与m ,则⎰b adx x f )(有如下估计式:()A 、M dx x f m ba≤≤⎰)(B 、Mb dx x f ma ba≤≤⎰)(C 、)()()(a b M dx x f a b m ba-≤≤-⎰D 、b a a b M dx x f a b m ba<-≤≤-⎰,)()()(82.求⎰=xa dx x f dx d))((()A 、a x -B 、)()(a f x f -C 、x a -D 、)()(x f a f - 83.求⎰102dx x =()A 、0B 、1C 、13D 、1484.求()aaf x dx =⎰()A 、0B 、1C 、()f a D 、2()f a85.求⎰21xdx =()A 、0B 、1C 、12D 、3286.求⎰+10)1(dx x =()A 、0B 、1C 、12D 、3287.)(x f =⎰xatdt t 23sin ,求)(x f '=()A 、)(x f '=x x 23sinB 、)(x f '=223sin x xC 、)(x f '=22sin x xD 、)(x f '=32sin x x -88.求0lim→x 21cos 2x dt e xt ⎰-=()A 、0B 、1C 、1e D 、12e89.求⎰badx x f )(=()A 、)()(a F b F -B 、0C 、1D 、()()F a F b -90.求⎰badx 1=()A 、b a -B 、0C 、1D 、a b -91.求=+⎰94)1(dx x x ()A 、0B 、1C 、1456D 、145392.求⎰-x x d 11=()A 、0B 、1C 、12D 、1493.求='⎰)d sin (d d 1xt t t ()A 、0B 、1C 、sin t D 、sin t - 94.求=⎰ba x x f x d )(d d ()A 、0B 、1C 、()()fb f a -D 、()()f a f b -95.求=⎰xax t x d cos d d 2()A 、0B 、1C 、2cos x D 、2cos t96.求x tt x x πcos 1d πsin lim11+⎰→=()A 、0B 、1C 、1πD 、1π-97.求⎰10100d x x =()A 、0B 、1C 、1100D 、110198.求⎰1d e x x =()A 、0B 、1C 、1e -D 、e99.求x x x d e )15(45⎰+=()A 、2e B 、3e C 、4e D 、5e100.求⎰41d x x =()A 、23B 、43C 、83D 、143二、填空题1101.若2251t tt f +=⎪⎭⎫ ⎝⎛,则__________)(=t f 。

相关文档
最新文档