数列求和第一课时公开课
高中数学数列求和优秀课件

小结与反思:
1.这节课中我们重点复习了数列求和 的哪两种方法? 2.应用方法需要注意哪些问题? 3.研究了哪一类问题?从中你获取的 数学经验是什么?
课后延展:
(2014·新课标全国卷Ⅱ)
已知数列{an}满足 a1=1,an+1=3an+1.
(1)证明:an
+
1
2
是等比数列,并求{an}的通项公式;
+
+
(n
1 + 1)2
<
1
关键环节:
将 (n
1 1)2
放大为
(n
1 1)
2
-1
n
1 (n
2)
变式 5:(2014 年广东高考改编)证明:对一切正整数 n,有:
1+ 1 + 1 ++
1
<1
2×3 4×5 6×7
2n×(2n + 1) 3
提示:当 n≥2 时, 2n21n+1<2n-112n+1=122n1-1-2n1+1,
(2)错位相减以后,要特别注意成等比数列的项的 首项a1是谁,并推敲成等比数列的项数是n还是n1,另外要特别小心错出去的两项相减后的正负;
(3)养成检验的习惯;
(4)最终答案仅有两项。
问题3:什么情况下可用裂项相消法? 试举出一个简单的例子来说明
变式
1:求和 Sn
=
1 1×3
+
1 2×4
+
1 3×5
问题2.以下两个数列各用什么方法求其前n项和?
(1)
11 ,3 2
1,5 4
1 8
,7 1 , 16
,(2n
等比数列求和的公开课教案

等比数列的求和公式一、教学重点、难点本节课的重点是公式的推导、错位相减法的推广使用;难点是公式的推导方法的应用。
二、教学目标:1.知识与技能目标:理解并掌握等比数列前n 项和公式的推导过程、公式的特点,在此基础上能初步应用推导方法解决与之有关的问题.2.过程与方法目标:通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.3.情感、态度与价值观:通过对公式推导方法的探索与发现,优化学生的思维品质。
三、教学过程1、创设情境,提出问题引入:在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。
西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。
国王令宫廷数学家计算,结果出来后,国王大吃一惊 。
为什么?你能算出麦粒的总数吗?设问:同学们,你们知道国王给出多少小麦吗?引导学生写出麦粒总数为:?2 (22)216332=+++++2、师生互动,探究问题探讨1: 发明者要求的麦粒总数是? 生:可能会直接利用公式qq a S n n --=1)1(1)1(≠q 求出答案126464-=S (1964108.112⨯≈-,以小麦千粒重为40克计算,麦子质量超过7000亿吨!2010年世界粮食总产量约为22.8亿吨,全世界人民不吃粮食也得300多年才能够生产7000亿吨。
)探讨2:上述的公式qq a S n n --=1)1(1)1(≠q 是怎么产生的? 生:可能会说到错位相减法,但没有具体书写。
师:要求学生回忆教材,具体写出公式的推导方法。
设n n n a a a a a S +++++=-1321 ①乘以公比q ,n n n n qa a a a a qS +++++=-132 ②①-②:()n n qa a S q -=-11,当1≠q 时:()q q a q aq a q qa a S nn n n --=--=--=1111111 探讨3:还有别的推导方法吗?师:通过学生回忆数列的性质以及等比定理、乘法公式。
数列求和(错位相减法-公开课)

32 3n 3 3 2 (2n 1) 3 n1 6 (2 2n) 3n1 1 3
故Sn 3 (1 n) 3n1
课堂总结
数列求和的新方法:错位相减法
1、什么数列可以用错位相减法来求和?
通项公式是“等差×等比”型的数列
2、错位相减法的步骤是什么?
Sn a1 a2 a3 an1 an
后一项都比前 一项多乘个q
Sn a1 a1q a1q a1q
2
2 3
n 2
a1q
n1
n1
n
①
②
qSn a1q a1q a1q a1q
①—② ,得
a1q
错 位 相 n 减 a1 an q 法 a1 a1q q 1时 : S n 错位相减法:来自展开,乘公比,错位,相减
即S n 1 2 2 2 2 (n 1) 2 n 1 n 2 n
2Sn 1 2 2 2 2 3 (n - 1) 2 n n 2 n1 ①-②得 Sn 1 2 1 2 2 1 23 1 2 n n 2 n1
公式法
(3)求数列{a n bn }的前n项和
分组求和法
新问题: 求数列{a n bn } 的前n项和
?
情景重现:
银行贷款问题
N年后,如果你自己开了公司,当了 老板,但是由于资金短缺,需向银行贷款 1000万。银行向你推荐了一个新的贷款 方案:
银行一次性借给你1000万元,你可以分30个月 偿还,第一个月还2元,第二个月还4元,第三个月 还8元,第四个月还10元,以此类推,每个月的还 款数是前一个月的两倍。 你能接受这个方案吗?
数列求和(公开课)

4.裂项相消法:把数列的通项拆成两项之 差,即数列的每一项都可按此法拆成两 项之差,在求和时一些正负项相互抵消, 于是前n项的和变成首尾若干少数项之和, 这一求和方法称 为裂项相消法.
5.倒序相加法:如果一个数列 an ,与首末 两项等距的两项之和等于首末两项之和, 可采用把正着写与倒着写的两个和式相加, 有公因式可提,并且剩余的项的和可求出来, 这一求和的方法称为倒序相加法。
课堂诊断
1 1 1 1 . 数 列 , , , „ , 2· 5 5· 8 8· 11 1 ,„的前 n 项和为( B ) (3n-1)· (3n+2) n n A. B. 3n+2 6n+4 n+1 3n C. D. 6n+4 n+2
2 -1 2.已知数列{an}的通项公式是 an= n , 2 321 其前 n 项和 Sn= ,则项数 n 等于( D ) 64 A.13 B.10 C.9 D.6
1 2 n 变式、求和: S n 2 n a a a
【解析】 (1)a=1 时,Sn=1+2+„+n= n(n+1) ; 2 1 2 3 n (2)a≠1 时,Sn= + 2+ 3+„+ n① a a a a n-1 1 1 2 n S n + n+1② n= 2+ 3+„+ a a a a a 由①-②得
1 1 1- n 2 2 1 =2 n- =2n-1- + 1 2n 1-2 1 =2n-2+ n-1. 2
思维升华:要求和,先弄清通项(长什么 样用什么样的方法)!
错位相减法
例3、数列 {an }中a1 3,已知点(an , an 1)在 直线y x 2上, ( 1 )求数列 {an }的通项公式; (2)若bn an 3 , 求数列 {bn }的前n项的和Tn .
数列求和公开课教案(1)

数列求和公开课教案(1)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《数列求和复习》教学设计开课时间:2016/12/22 开课人:洪来春一、学情分析:学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。
本节课作为一节复习课,将会根据已知数列的特点选择适当的方法求出数列的前n项和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。
二、教法设计:本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。
采用以具体题目为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。
先引出相应的知识点,然后剖析需要解决的问题,在例题中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。
在教学过程中采取如下方法:(1)诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性;(2)讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
三、教学设计:1、教材的地位与作用:对数列求和的考查是近几年高考的热点内容之一,属于高考命题中常考的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。
化归与转化思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。
2、教学重点、难点:教学重点:根据数列通项求数列的前n项,本节课重点复习分组求和与裂项法求和。
教学难点:解题过程中方法的正确选择。
3、教学目标:(1)知识与技能:会根据通项公式选择求和的方法,并能运用分组求和与裂项法求数列的前n项。
数列求和【公开课教学PPT课件】

1 2
Tn
1 2
3 22
5 23
2n 3 2n 1
2n1
2n
(1
1 2
)Tn
2
1 2
1 22
1 23
Tn
6
2n 3 2n1
1 2n2
2n 1 2n
3
2n 3 2n
高考数学第一轮复习 第六章 数列 第4节 数列求和
已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
(2)Sn
a1(1 qn ) 1 q
2n 1, bn
an1 Sn Sn1
Sn1 Sn Sn Sn1
1 Sn
1 Sn1
Tn b1 b2 b3 bn
( 1 1 )( 1 1 ) ( 1 1 )
S1 S2
S2 S3
Sn
1 S1
高考数学第一轮复习 第六章 数列 第4节 数列求和
考点二 分组、并项求和法
例2. 设等比数列{an}的通项公式为an=3n ,等差数列{bn}的通项 公式为bn=2n+1.
(1)记cn=an+bn,求数列{cn}的前n项和Sn. (2)记dn=(-1)nbn ,求数列{dn}的前n项和Tn.
解:(1)
cn an bn,an,bn分别为等差、等比数列。
高考数学第一轮复习 第六章 数列 第4节 数列求和
考点一 倒序相加法
例1. 若数列{an}是首项为1,公差为2的等差数列.求
S Cn0a1 Cn1a2 Cn2a3 + Cnnan1
第讲数列的求和精选课件

【互动探究】 1.(2019 年陕西)已知{an}是公差不为零的等差数列,a1=1,
且 a1,a3,a9 成等比数列. (1)求数列{an}的通项公式; (2)求数列{2 a n}的前 n 项和 Sn.
4.数列 112,214,318,…,n+21n,…的前 n 项和 Sn=______ __12_n_(n_+__1_)_+__1_-__21_n___.
5.数列{an}的通项公式 an=
1 n+
n+1,若前
n
项的和为
10,
则项数 n=___1_2_0___.
考点1 利用公式或分组法求和
例1:(2011 年重庆)设{an}是公比为正数的等比数列,a1=2, a3=a2+4.
数列求和常用的方法
1.公式法 (1)等差数列{an}的前
n
项和公式:Sn=nnaa1+ 12+nann2-,1d.
(2)等比数列{an}的前n项和Sn:①当q=1时,Sn=__n_a_1_;
a11-qn
a1-anq
②当 q≠1 时,Sn=____1_-__q___=____1_-__q__.
2.分组求和法 把一个数列分成几个可以直接求和的数列. 3.错位相减法 适用于一个等差数列和等比数列对应项相乘构成的数列求 和. 4.裂项相消法 有时把一个数列的通项公式分成两项差的形式,相加过程消 去中间项,只剩有限项再求和.
解析:(1)P1(-1,0),an=n-2,bn=2n-2. (2)f(n)=n2- n-2, 2,n为 n为奇偶数数,. 假设存在符合条件. ①若 k 为偶数,则 k+5 为奇数. 有 f(k+5)=k+3,f(k)=2k-2. 如果 f(k+5)=2f(k)-2,则 k+3=4k-6⇒k=3 与 k 为偶数矛 盾.故不符(舍去). ②若 k 为奇数,则 k+5 为偶数, 有 f(k+5)=2k+8,f(k)=k-2. ∴2k+8=2(k-2)-2 这样的 k 也不存在. 综上所述:不存在符合条件的 k.
高中阶段最全的数列求和(10种)省公开课获奖课件说课比赛一等奖课件

4.处理非等差、等比数列旳求和,主要有两种思绪
(1)转化旳思想,即将一般数列设法转化为等差或等比 数列,这一思想措施往往经过通项分解或错位相减来完 毕.
(2)不能转化为等差或等比数列旳数列,往往经过裂项 相消法、错位相减法、倒序相加法等来求和.
5.“错位相减”、“裂项相消”等是数列求和最主要 旳措施.是高考要点考察旳内容,应熟练掌握.
(其中d=an+1-an).
常见旳拆项公式有:
1. 1 1 1 n(n 1) n n 1
2. 1 1 ( 1 1 ) n(n k) k n n k
3.
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
4. 1 1 ( a b) a b ab
5.
1
1[ 1
1
]
即数列an的周期是 4,
a4=-1 又 a3 2 ,
故 a1+a2 +a3 +a4 =2 , a2009 a45021 a1 ,
a1+a2 +a3 +a4 +.......+a2009 502(a1+a2 +a3 +a4 ) a2009 1003
练习:
已知在数列 an
中,
a1
2
,
an1
(3)求数列1,3+4,5+6+7,7+8+9+10, …,前n项和Sn.
例1:求和:
1. 4 6 8 ……+(2n+2)
2.
11 1 1 2 22 23
1 2n
3. x x2 xn
10看通项,是什么数列,用哪个公式; 20注意项数
例2、已知lg(xy) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1) 4
(1 4
1) 5
(1 1 ) n
2 n 2 2(n 2)
(
n
1 1
n
1
2
)
变式1
求11121213121341231n,(nN*)。
解:由题知
··· ···
··· 2[ 1 1 1 1 ]
1 2 2 3 3 4 n(n 1) ···
2n n 1
变式2:已知 an
Sn
na1
2
an
na1
nn 1
2
d
2.等比数列前n项和:
na1
q 1
Sn
a1
1
qn
q 1
1 q
基础训练
1. S n 为数列an 的前n项和an n(n 1),则
S5 _______
2. 2 4 6 ... 2n _________
11 1
3.
1 ... _________
1 n n1
,若 an 前n项和
为10,则项数n为____1_2_0____.
即时小结
在什么情况下,用裂项求和?
点评:如果数列的通项公式可转化为 f n 1 f (n) 形式,常采用裂项求和的方法.特别地,
当数列形如
an
1 an
1
,其中
a
n
是等差数列,可尝试采用此法.
小结:
1.公式法:直接利用等差等比数列的求和公式
2.倒序相加法:如果一个数列{an},与首末两项等距的两项之和等于首末两项 之和,可采用把正着写与倒着写的两个和式相加,有公因式可提,并且剩余的 项的和可求出来,这一求和的方法称为倒序相加法
3.错位相减法:如果一个数列的各项是由一个等差数列与一个 等比数列对应项乘积组成,此时求和可采用错位相减法.
4.分组转化法:有一类数列,既不是等差数列,也不是等比数列,若将这 类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和, 再将其合并即可.
5.裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此 法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首 尾若干少数项之和,这一求和方法称 为裂项相消法.
巩固练习
1、求和:1 1 2 1 3 1 [n (1)n ]
2 48
2
1 2
n(n 1)
1 2n
1
1 2、求和:1 3
基础训练:
1. S n 为数列an 的前n项和an n(n 1),则
S5 __7__0___
2. 2 4 6 ... 2n __n__2___n__
11
1
2 1
3. 1 2 4 ... 2n ______2_n__
复习:
数列{a }的前n项和 n
S n
a1
a2
an
1.等差数列前n项和:
化简数列 an
f (0)
f (1) n
f (2) n
f (n 1) n
f (1)
分析:
数列特点:与首末等距离的两项之和等于首末两项之和。 根据数列的特点,将其倒写后与原数列相加,以达到求和 的目的。(联系:等差数列的前n项和推导过程以及高斯小
时候巧解算术题)。
倒序相加法
(2)求数列前n项的和2 224 Nhomakorabea2n
公式求和
变式1
···
=(2+4+···+2n)
··· ···
变式2:求和 ···
解:由题知
···
···
(2 1) (22 1) (2n 1)
···
想一想
···
分组求和
❖ 即时总结: 求前n项和关键的第一步:
例1
(1) 函数 f (x) 对任意 x R 都有 f (x) f (1 x) 1 2
1 3
5
(2n
1 1)(2n
1)
n 2n 1
3. f (x) 1 ,则 f (5) f (4) f (0) f (6) 3 2
2x 2
4.502 492 482 472 ... 22 12 _1__2__7__5
设 Sn
2 4 2 22
6 23
2n 2n
①
1
246
2n
2 Sn
22
23
24
2 n1
②(设制错位)
①-②得(1
1 2
)S
n
2 2
2 22
2 23
2 24
2 2n
22nn(1 错位相减)
∴
1
2n
2
n2
2 n1
2 n1
Sn 4 2n1
例2
裂项相
消
求和
Sn
1 23
1 3 4
1 45
,
4 22
,
6 23
, ,
2n 2n
,
分析
如果一个数列的各项是由一个等差数列与一个等比数列 对应项乘积组成,此时求和可采用错位相减法.
错位相减法
求数列前n项的和.
2, 2
4 22
,
6 23
, ,
2n 2n
,
解:由题可知,{
2n
}的通项是等差数列{2n}的通项与等比数列{
1
}的通项之积
2n
2n
(n
1 1)(n
2)
分析:此 数列为特殊数列,其 通项的 分母是两个因式之积,且两数 相差1
若把通项作适当变形为 1 1 1 ,
(n 1)(n 2) n 1 n 2
求和
Sn
1 23
1 3 4
1 45
(n
1 1)(n
2)
解:
1
11
an
(n
1)(n
2)
n
1
n
2
Sn
(
1 2
1) 3
(1 3