大物刚体转动作业答案
刚体定轴转动 大学物理习题答案

薄圆盘对过球心轴的转动惯量为 d J 1 r 2 d m 1 R5 cos 5 d
2
2
J 2
/2 1 r2 dm
/2
R5 cos 5d
8
R 5
8
m R5 2 mR 2
02
0
15
15 4 R 3
5
3
由平行轴定理, J J mR 2 2 mR 2 mR 2 7 mR 2
5
5
悬垂。现有质量 m=8g 的子弹,以 v=200m/s 的速率从 A 点射入棒中,假定 A 点与 O 点的距离为 3 l , 4
如图 4-11 所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。
解:(1) 子弹射入前后系统对 O 点的角动量守恒
mv 3 l J , J 1 Ml 2 m ( 3 l)2 1 1 0.42 0.008 9 0.42 0.054 kg m2
计小球大小)
A
解:M (3m m)g l cos l mg cos ,J 3m( l )2 1 ml2 m( l )2 1 ml 2
4
2
4 12
43
l/4 O
l
图 4-5
13
大学物理练习册—刚体定轴转动
M
l mg cos 2
3g
cos
J
1 ml 2
2l
3
4-6 一均匀圆盘,质量为 m,半径为 R,可绕通过盘中心的光滑竖直轴在水平桌面上转动,如图 4-6 所示。 圆盘与桌面间的动摩擦因数为 ,若用外力推动使其角速度达到 0 时,撤去外力,求(1)转动过程 中,圆盘受到的摩擦力矩;(2)撤去外力后,圆盘还能转动多少时间?
dt d 0
0
大学物理题库-第4章-刚体的转动习题(含答案解析)

刚体习题一、选择题 1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]2、关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]3、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]4、如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小 (A) 为 41mg cos θ. (B)为21mg tg θ. (C) 为 mg sin θ.(D) 不能唯一确定. [ ]5、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]6、关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量.(2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的.(C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ]7、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]8、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针.(D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针.[ ]9、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变.(C) 减小. (D) 不能确定 [ ]10、(0405)人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]11、一个圆盘在水平面内绕一竖直固定轴转动的转动惯量为J ,初始角速度为ω 0,后来变为021ω.在上述过程中,阻力矩所作的功为: (A) 2041ωJ . (B) 2081ωJ -. (C) 2041ωJ - (D) 2083ωJ -. [ ] 12、一均匀细杆可绕垂直它而离其一端l / 4 (l 为杆长)的水平固定轴O 在竖直平面内转动.杆 m m的质量为m ,当杆自由悬挂时,给它一个起始角速度ω 0,如杆恰能持续转动而不作往复摆动(一切摩擦不计)则需要 (A) ω 0≥l g 7/34. (B) ω 0≥l g /4.(C) ω 0≥()l g /3/4. (D) ω 0≥l g /12.[已知细杆绕轴O 的转动惯量J =(7/48)ml 2] [ ]13、假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C) 角动量不守恒,动能守恒.(D) 角动量不守恒,动量也不守恒.(E) 角动量守恒,动量也守恒. [ ]14、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. [ ]15、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题1、如图4-23所示,质量为m 和m 2的两个质点A 和B ,用一长为l 的轻质细杆相连,系统绕通过杆上o 点且与杆垂直的轴转动。
大学物理五第三章习题答案

第三章 刚体的转动习题答案1、对于定轴转动刚体上不同的点来说:线速度、法向加速度、切向加速度具有不同的值,角位移、角速度、角加速度具有相同的值。
2、由sin M r F Fr θ=⨯=可知,(1)0,0F M ≠=,当0r =或者sin 0θ=,即力通过转轴或者力与转轴平行; (2)0,0F M =≠,这种情况不存在; (3)0,0F M ==,这种情况任何时候都存在。
3、根据均匀圆盘对中心轴的转动惯量:221122I mr vr ρ==可知,对于相同几何形状的铁盘和铝盘,密度大的转动惯量大。
通常我们取铁的密度为37.9/g cm ,铝的密度32.7/g cm ,因此铁盘对中心轴的转动惯量大;根据刚体动能定理:21222111d 22A M I I θθθωω==-⎰,可知对铁盘的外力矩要做更多的功。
4、轮A 的转动惯量212I mr =,轮B 的转动惯量2I mr =,根据刚体的转动定律M I β=,因为两者所受的阻力矩相等,可知轮A 的转动角加速度大于轮B 的转动角加速度,故轮A 先停止。
5、舞蹈演员在旋转过程中,可以近似地认为角动量守恒,当其把双手靠近身体时,转动惯量减小,故角速度增大;当其把双手伸开,转动惯量增大,故角速度减小。
6、解:2334d a bt ct dtθω==+-, 2612d b t c t dtωβ==-。
7、解:11200240/60rad s πωπ⨯==,22700290/60rad s πωπ⨯==, 2215025/126rad s t ωωππβ-===∆, 2117803902t t n θωβπ=+==。
8、解:根据均匀球体对直径轴的转动惯量225I mr =,得到地球对自转轴的转动惯量3729.810I kg m =⨯⋅,地球自转角速度2/246060rad s πω=⨯⨯,转动动能22813102k E I J ω==⨯。
9、解:已知030/rad s ωπ=,切断电源后的角位移752150θππ=⨯=,根据匀减速运动规律2220023/2rad s ωωβθβπθ=⇒==,由于电扇是匀减速,可知阻力矩为常量,因此根据刚体转动动能定理22101144.422M I I J θωω=-=-, 可得到转动惯量2244.420.01I kg m ω⨯==⋅,以及阻力矩44.40.1150M N m π=≈⋅。
大物刚体转动作业答案

l 11 2 2 mg ml 2 23
3g l
o
3. 刚体由长为l,质量为m匀质细棒和质量也为 m小球牢固地连结在杆一端而成,绕过杆的另一 端O的水平轴转动,在忽略轴处摩擦情况下,杆 由水平位置由静止状态自由转下,试求: (1)杆与水平线成θ 角时,刚体角加速度; (2)竖直位置时刚体角速度,小球线速度。
0 0 t
1 2 2 M mR FR 2 3
r
dr
0 3mR 0 t 4 F
5. 一半径为R=0.5m、质量m=4kg均质分布的 圆盘,受到作用在轻绳一端的力F=2tN的作用, 从静止开始绕过O点的水平轴转动,设摩擦阻力 忽略不计,轻绳与圆盘之间不发生相对滑动, 如图所示。试求: m (1)t=2s时,圆盘的角加速度 (2)t=2s时,圆盘的角速度; R (3)t=2s时,力矩的瞬时功率; (4)在头2s内力矩对圆盘所做的功。 1 2 F 解: (1) FR mR
2 0
J 0 C. 2 mR
D.Байду номын сангаас0
二、填空题
1. 半径为0.2m,质量为1kg的匀质圆盘,可绕过 圆心且垂直于盘的轴转动。现有一变力F=0.1t (F以牛顿计,t以秒计)沿切线方向作用在圆 盘边缘上。如果圆盘最初处于静止状态,那么 它在第3秒末的角加速度β= 3rad s ,角速度 ω= 4.5rad s 。
B. 只有动量守恒; C. 只有对转轴O的角动量守恒; D. 机械能、动量和角动量均守恒。
o
8.绕固定水平轴O匀速转动转盘,沿如图所示 的直线从相反方向射入两颗质量相同、速率相等 子弹,留在盘中,子弹射入后转盘的角速度应为 A.增大 B. 减小 C.不变 D.无法确定 9.质量相等,半径相同的一金属环A和同一种金 属的圆盘B,对于垂直于圆面的中心转轴,它两 的转动惯量有: A.IA=IB B.IA<IB
大学物理习题册及解答_第二版_第四章_刚体的定轴转动

3. 一根绳子绕在半径为30 cm的轮子上.当轮子由初速度2.0 rad/s 匀减速到静止,绳子在轮上的长度为25 m.轮子的加速度和轮子 转过的周数为
2 (A) - 0.942rad/s ,13.3 2 (B) - 0.884rad/s ,13.3 2 (D) - 0.884rad/s ,2.67 2
1 (A) 3
0
( B)
1 3
0
(C)
3
0
(D) 3
0
8.光滑的水平桌面上,有一长为2l、质量为m的匀质细杆,可绕过 其中点且垂直于杆的竖直光滑固定轴O自由转动,其转动惯量为 ml2/3,起初杆静止.桌面上有两个质量均为m的小球各自在垂直于 杆的方向上正对着杆的一端,以相同速率v相向运动,当两小球同 时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动, v 则这一系统碰撞后的转动角速度应为
M r F. 2.力矩的定义式为_________
变角动量 在力矩作用下,一个绕轴转动的物体作______ _运动. 角动量 若系统所受的合外力矩为零,则系统的____________ 守恒. 3 质量为20 kg、边长为1.0 m的均匀立方物体,放在水平地面 上.有一拉力F作用在该物体一顶边的中点,且与包含该顶边的 物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若 要使该立方体翻转90°,则拉力F不能小于___ 解:要使该立方体翻转90o,则拉力F对转轴的力矩 不能小于重力对转轴的力矩,即:
pB 2 ( A) pA 2
pB 3 (B) pA 4
pB 2 (C) pA 4
pB 1 ( D) pA 2
分析:细杆在下落过程中只有重力做功,系统机械 能守恒,以地面为重力势能0点,则有:
大学物理刚体的转动知识点及试题带答案

刚体的转动一、基本要求:1、理解刚体的概念;了解刚体的平动和转动;掌握转动惯量的物理意义;掌握力矩的物理意义及其计算。
2、理解转动惯量的物理意义及其计算;掌握刚体定轴转动的转动定律及计算。
3、理解质点和刚体的角动量;掌握角动量守恒定律的适用条件及应用;掌握刚体转动动能的概念及计算。
二、主要内容: 1、刚体:是在外力作用下形状和大小保持不变的物体称为刚体。
是一个理想化的力学模型,它是指各部分的相对位置在运动中(无论有无外力作用)均保持不变的物体。
即运动过程中没有形变的物体。
2、平动:当刚体中所有点的运动轨迹都保持完全相同时,或者说刚体内任意两点间的连线总是平行于它们的初始位置间的连线时,刚体的运动叫作平动。
3.转动:刚体中所有的点都绕同一条直线作圆周运动,这种运动称为转动。
这条直线叫作转轴。
4、描述刚体转动的物理量引入:刚体作定轴转动时,刚体上的各点都绕定轴作圆周运动。
刚体上各点的速度和加速度都是不同的,用线量描述不太方便。
但是由于刚体上各个质点之间的相对位置不变,因而绕定轴转动的刚体上所有点在同一时间内都具有相同的角位移,在同一时刻都具有相同的角速度和角加速度,故采用角量描述比较方便。
为此引入角量:角位置、角位移、角速度、角加速度。
5、角量与线量的关系半径R ,角位移θ∆ 弧长 θ∆⋅=∆R s 线速度v: ωθR t R t s v t t =∆∆=∆∆=→∆→∆lim lim法向加速度: 222)(ωωr RR R v a n === 切向加速度: αωωτ⋅=⋅===R dtd R R dt d dt dv a )( 结论:刚体作定轴转动时,在某一时刻刚体上所有各点的角位移、角速度和角加速度都是相同的;而各点的线位移、线速度和线加速度均与r 成正比。
6转动定律:刚体在合外力矩的作用下,刚体所获得的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
● 合外力矩和转动惯量都是相对于同一转轴而言的; ● 转动定律是解决刚体定轴转动的基本定律,它的地位与质点动力学中牛顿第二定律相当。
《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。
2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。
4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。
因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。
5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。
6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。
刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。
大学物理第四章习题及答案

第四章 刚体的转动4-1 一汽车发动机曲轴的转速在12s 内由3102.1⨯r.min -1增加到3107.2⨯r.min -1。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转? 解:曲轴做匀变速转动。
(1)角速度n πω2=,根据角速度的定义dtd ωα=,则有:()=-=-=tn n t002πωωα13.1rad.s -2 (2)发动机曲轴转过的角度为t t t 221020ωωαωθ+=+=()t n n 0+=π在12秒内曲轴转过的圈数为 N 390220=+==t n n πθ圈。
4-2 一半径为0.25米的砂轮在电动机驱动下,以每分钟1800转的转速绕定轴作逆时针转动,现关闭电源,砂轮均匀地减速,15秒钟后停止转动.求(1)砂轮的角加速度;(2)关闭电源后10=t s 时砂轮的角速度,以及此时砂轮边缘上一点的速度和加速度大小.解:(1)4.1886060180020==⨯=ππω rad.s 1- 57.12415600=-=-=πα rad.s 2- (2)7.621057.124.1880=⨯-=+=t αωω rad.s 1-7.1525.07.62=⨯==r v ω m.s 1-14.3-==αr a t m.s 2- , 9872==ωr a n m. s 2-98822=+=n t a a a m. s 2-.4-3如图,质量201=m kg 的实心圆柱体A 其半径为20=r cm ,可以绕其固定水平轴转动,阻力忽略不计,一条轻绳绕在圆柱体上,另一端系一个质量102=m kg 的物体B ,求:(1)物体B 下落的加速度;(2)绳的张力T F 。
解: (1) 对实心圆柱体A ,利用转动定律αα2121r m J r F T == ——①对物体B ,利用牛顿定律a m F g m T 22=- ——② 有角量与线量之间的关系 αr a = 解得:9.422212=+=m m g m a m ·s -2(2)由②得 492)(2121=+=-=g m m m m a g m F T N4—3题图4-4如图,一定滑轮两端分别悬挂质量都是m 的物块A 和B ,图中R 和r ,已知滑轮的转动惯量为J ,求A 、B 两物体的加速度及滑轮的角加速度(列出方程即可)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 只有机械能守恒;
o
B. 只有动量守恒;
C. 只有对转轴O的角动量守恒;
D. 机械能、动量和角动量均守恒。
5
8.绕固定水平轴O匀速转动转盘,沿如图所示 的直线从相反方向射入两颗质量相同、速率相等 子弹,留在盘中,子弹射入后转盘的角速度应为
bsint 0 mabk
a sint b cost 0
12
7.一刚体绕定轴转动,初角速度 8rad s1
现在大小为 8N m
0
恒力矩作用下,刚体转动的
角速度在2s内均匀减速至 4rad s,1 则刚体
在此恒力矩的作用下的角加速度 -2 rad·s-2
刚体对此轴的转动惯量 I
4 kg·m2
相同力矩作用下,它们角加速度一定相等2
4.一力矩M作用于飞轮上,使该轮得到角加速度
1,如撤去这一力矩,此轮的角加速度为2 , 则
该轮的转动惯量为
A. M
1
B. M C. M
D. M
2
1 2
1 2
5.一根长为l,质量为m的均匀细直棒在地上竖立
着。如果让竖立着的棒,以下端与地面接触处 为轴倒下,当上端达地面时速率应为
8. 一刚体对某定轴的转动惯量为 I 10kg m2
在恒力矩作用下由静止开始做角加速度 2rad s2
定轴转动。在5s末的转动动能 E 500 J K
该恒力矩 M 20 N·m ,该恒力矩在0~5s这段
时间内所作的功 A 500 J , 刚体转动的角度
25 rad
13
9. 质量分别为 m 和 2m两物体(视为质点),用长为
人站在转台中心,随后人沿半径向外跑去,当
人到达转台边缘时,转台的角速度为
A. J
J mR2 0
B.
J
(J m)R2 0
C.
J
mR2 0
D.ω0
7
二、填空题
1. 半径为0.2m,质量为1kg的匀质圆盘,可绕过
圆心且垂直于盘的轴转动。现有一变力F=0.1t (F以牛顿计,t以秒计)沿切线方向作用在圆盘
dt
0
3
0
d 2
k I
t
0
dt
t
11
6. 一质量为m的质点沿着一条空间曲线运动,该 曲线在直角坐标系下的定义式为
r acos( t) i bsin( t) j
式中a、b、ω都是常数,
则此质点所受的对原点
力矩 M=
M
M
r
0Fr;m角ra动m量aL=Lmrm2mrarb。k0
i
jk
L
rHale Waihona Puke mma cost
l 的轻质刚性细杆相连,系统绕通过杆且与杆
垂直的竖直固定轴O转动,已知O 轴离质量为2m
的质点的距离为 l / 3 ,质量为m 质点的线速度为
且与杆垂直,则该系统对转轴的动量矩
L ___m____l_____。 m
O
2m
m 作圆周运动 2 L , 3
系统动量矩大小为
3
2L
l/3
l
m
2
2
L
转动的角速度 与套管轴的距离x的函数关系为
70l 2
(杆对OO′轴转动惯量为
1 3
m) l
2
4(l 2 3x2 ) 。
O
0
1 [ 3
ml
2
m(
l 2
)2
]0
[
1 3
ml
2
mx
2
]
l
1l m m
2
O
10
4.质量m、长l均匀细杆,在水平桌面上绕通过
其一端竖直固定轴转动,细杆与桌面的滑动摩
擦系数为μ,则杆转动时受摩擦力矩的大小
A.增大 B. 减小 C.不变 D.无法确定
9.质量相等,半径相同的一金属环A和同一种金
属的圆盘B,对于垂直于圆面的中心转轴,它两
的转动惯量有:
A.IA=IB
B.IA<IB
C.IA>IB
D.不能判断 6
10.有一半径为R的水平圆转台,可绕通过其中 的竖直固定光滑轴转动,转动惯量为J,开始时 转台以匀角速度ω0转动,此时有一质量为m的
边缘上。如果圆盘最初处于静止状态,那么
它在第3秒末的角加速度β= 3rad s,2 角速度 ω= 4.5rad s1。
8
2.一飞轮直径为D,质量为m(可视为圆盘),边缘
绕有绳子,现用恒力拉绳子一端,使其由静止
开始均匀地加速,经过时间t,角速度增加为
ω,则飞轮的角加速度为 / ,t 这段时间内飞轮转过 N t / 4 转, 拉力做的功为 A 1 mD 2 2。
16
9
3. 在一水平放置的质量为m、长度为l的均匀细杆
上,套着一个质量为m套管B(可看作质点),套管
用 细 线 拉 住 , 它 到 竖 直 光 滑 固 定 轴 OO′ 距 离
为l / 2,杆和套管组成系统以角速度 0绕OO′轴
转动,如图所示。若在转动过程中细线被拉断,
套管将沿着杆滑动。在套管滑动过程中,该系统
刚体定轴转动作业答案
一、选择题
1. 1. 力学体系由两个质点组成,它们之间只有引 力作用。若两质点所受的外力的矢量和为零, 则此系统
A. 动量、机械能以及角动量都守恒 B. 动量、机械能守恒,但角动量是否守恒 还
不能确定 C. 动量守恒,但机械能和角动量是否守恒 还
不能确定 D. 动量和角动量守恒,但机械能是否守恒1
A. 6gl B. 3gl C. 2gl D. 3g
2l
3
6.一均匀细棒由水平位置绕一端固定轴能自由转 动,今从水平静止状态释放落至竖直位置的过程
中,则棒的角速度ω和角加速度β将
A.ω↗β↗
B.ω↗β↘
C.ω↘β↘
D.ω↘β↗
4
7.如图示,一均匀细杆可绕通过上端与杆垂直的
水平光滑固定轴O旋转,初始状态为静止悬挂。
2.一刚体绕定轴转动,若它的角速度很大,则
A.作用在刚体上的合外力一定很大 B.作用在刚体上的合外力一定为零 C.作用在刚体上的合外力矩一定很大 D.以上说法都不对
3.关于力矩有以下几种说法,其中正确的是
A.内力矩会改变刚体对某个定轴的角动量 B.作用力和反作用力对同一轴力矩之和必为零 C.角速度的方向一定与外力矩的方向相同 D.质量相同、形状和大小不同的两个刚体,在
2m
1
2
L
mL
3
3
14
1.半径为r的圆盘是从半径为R的均质圆盘上切割 出来的,如图所示。圆孔中心到原来圆盘中心的 距离是R/2,求原来圆盘剩余部分的质心位置。 解: 根据质心概念,质心坐标为
为 1 mgl 。
2
Mf
m
rgdm
L
0
xmgdx
5.转动飞轮转动惯量为I,在t =0时角速度为ω0,
飞轮经历制动过程,阻力矩M大小与角速度ω平方
成正比,比例系数为k(k为大于0常数)。
当ω= ω130时,飞轮的角加速度β=
k
2 0
/,9I
从开始制动到ω= ω130经过时间t = 2I / k。0
1) M k2 I 2) M k 2 I d