八年级数学上册 一次函数知识点总结

合集下载

八年级上册数学第十四章知识点总结

八年级上册数学第十四章知识点总结

八年级上册数学第十四章知识点总结第十四章一次函数一、知识点1. 函数:在某一变化过程中,有两个变量x和y,对于x的每一个取值,y都有唯一确定的值与之对应,那么就说y是x的函数,x叫做自变量。

2. 一次函数:一般地,如果y与x之间的函数关系式为y=kx+b(k≠0,k,b是常数),那么y随x增大而增大,我们就称它为一次函数。

3. 正比例函数:对于两个相关联的变量x,y,如果它们的函数关系式中,k,b为常数且k≠0,那么就称y按照关于x的一次函数关系随x变化。

4. 正比例函数图象:一般地,当我们把形如y=kx(k≠0)的函数的图象画在同一个直角坐标系中时,正比例函数的图象是经过原点的一条直线。

二、理解与应用1. 理解一次函数的概念:我们需要关注函数的表达方式和形式(即定义),了解常数k的几何意义,并理解b的含义。

2. 应用一次函数解决实际问题:我们要能够将实际问题转化为数学问题,通过运用一次函数的性质来求解。

例如,我们可以利用一次函数的增减性来解决问题,根据实际情况做出选择。

3. 注意在解题过程中运用画图辅助的方法:利用图象可以直观地看出两个变量之间的变化关系,有助于我们更好地理解问题,找到解题的关键点。

三、例题解析【例】已知正比例函数y=kx的图象经过点(2,4),求k的值并画出这个函数的图象。

【解析】根据题目中的条件,我们可以直接将点(2,4)代入函数表达式中求得k的值。

根据所求得的k值,我们可以画出这个函数的图象。

通过观察图象,我们可以更好地理解一次函数与自变量之间的关系。

解:将点(2,4)代入函数表达式中,可得k=2×4=8。

画出这个函数的图象如下:这个图象是一条经过原点和点(2,4)的直线。

通过观察图象,我们可以发现当x>0时,y随x的增大而增大。

这对于我们解决实际问题非常有帮助。

四、练习题请完成以下练习题,尝试运用一次函数的知识来解决实际问题。

1. 已知正比例函数y=kx的图象经过点(3,2),求k的值并画出这个函数的图象。

八年级数学《一次函数》知识点总结

八年级数学《一次函数》知识点总结

八年级数学《一次函数》知识点总结一.常量、变量:在一个改变过程中,数值发生改变的量叫做变量;数值始终不变的量叫做常量。

二、函数的概念:函数的定义:一般的,在一个改变过程中,假如有两个变量*与,并且对于*的每一个确定的值,都有唯一确定的值与其对应,那么我们就说*是自变量,是*的函数.三、函数中自变量取值范围的求法:〔1〕用整式表示的函数,自变量的取值范围是全体实数。

〔2〕用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

〔3〕用寄次根式表示的函数,自变量的取值范围是全体实数。

用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

〔4〕假设解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

〔5〕对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、函数图象的定义:一般的,对于一个函数,假如把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的.图象.五、用描点法画函数的图象的一般步骤1、列表〔表中给出一些自变量的值及其对应的函数值。

〕留意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:〔在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:〔根据横坐标由小到大的顺次把所描的各点用平滑的曲线连接起来〕。

六、函数有三种表示形式:〔1〕列表法〔2〕图像法〔3〕解析式法七、正比例函数与一次函数的概念:一般地,形如=*(为常数,且≠0)的函数叫做正比例函数.其中叫做比例系数。

一般地,形如=*+b (,b为常数,且≠0)的函数叫做一次函数.当b =0 时,=*+b 即为 =*,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:〔1)图象:正比例函数= * ( 是常数,≠0)) 的图象是经过原点的一条直线,我们称它为直线= * 。

八年级数学上册第12章一次函数知识点总结沪科版

八年级数学上册第12章一次函数知识点总结沪科版

八年级数学上册第12章一次函数知识点总结新版沪科版第十二章一次函数一、确定函数自变量的取值范围1、自变量以整式形式出现,自变量的取值范围是全体实数;2、自变量以分式形式出现,自变量的取值范围是使分母不为0的数;3、自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数;自变量以奇次方根形式出现,自变量的取值范围是全体实数。

4、自变量出现在零次幂或负整数次幂的底数中,自变量的取值范围是使底数不为0的数。

(说明:(1)当一个函数解析式含有几种代数式时,自变量的取值范围是各个代数式中自变量取值范围的公共部分;(2)当函数解析式表示具有实际意义的函数时,自变量取值范围除应使函数解析式有意义外,还必须符合实际意义.)二、一次函数1、一般形式:y=k x+b(k、b为常数,k≠0),当b=0时,y=k x (k≠0),此时y是x的正比例函数。

2、一次函数的图像与性质3、确定一次函数图像与坐标轴的交点(1)与x 轴交点:)0,(kb,求法:令y=0,求x ;(2)与y 轴交点:(0,b ),求法:令x=04、确定一次函数解析式—-—待定系数法确定一次函数解析式,只需x 和y 的两对对应值即可求解。

具体求法为:(1)设函数关系式为:y=k x +b ;(2)代入x 和y 的两对对应值,得关于k 、b 的方程组; (3)解方程组,求出k 和b.5、k 和b 的意义(1)∣k ∣决定直线的“平陡”。

∣k ∣越大,直线越陡(或越靠近y 轴);∣k ∣越小,直线越平(或越远离y 轴);(2)b 表示在y 轴上的截距。

(截距与正负之分)6、由一次函数图像确定k 、b 的符号 (1)直线上升,k>0;直线下降,k 〈0;(2)直线与y 轴正半轴相交,b 〉0;直线与y 轴负半轴相交,b<07、两条直线的位置关系222111b x k y l b x k y l +=+=:和直线:直线{{有无数交点)与重合(与)(没有交点)与平行(与)(有且只有一个交点)与相交(与)(2121212121212121212121321l l l l l l l l l l l l k k k k b b k k b b ⇔⇔⇔≠===≠8、x=a 和y=b 的图象x=a 的图象是经过点(a,0)且垂直于x 轴的一条直线; y=b 的图象是经过点(0 ,b )且垂直于y 轴的一条直线。

初二一次函数知识点总结

初二一次函数知识点总结

一次函数知识点总结(一)函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(二)一次函数1、一次函数的定义一般地,形如y=kxF(k , b是常数,且k=0)的函数,叫做一次函数,其中x是自变量。

当b=0时,一次函数y 二心,又叫做正比例函数。

八年级数学上册一次函数知识点梳理与易错题解析

八年级数学上册一次函数知识点梳理与易错题解析

八年级数学上册一次函数知识点梳理与易错题解析知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k ≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b ……①和 y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

八年级上册数学书一次函数知识点优选篇

八年级上册数学书一次函数知识点优选篇

八年级上册数学书一次函数知识点优选篇八年级上册数学书一次函数知识点 1一般地,形如y=kx+b(k、b是常数,k≠0)函数,叫做一次函数。

当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数。

一次函数的图象及性质一次函数y=kx+b的图象是经过(0,b)和(―b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到。

(当b0时,向上平移;当b0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k≠0)(2)必过点:(0,b)和(―b/k,0)(3)走向:k0,图象经过第一、三象限;k0,图象经过第二、四象限b0,图象经过第一、二象限;b0,图象经过第三、四象限k0,b0;=直线经过第一、二、三象限k0,b0;=直线经过第一、三、四象限K0,b0;=直线经过第一、二、四象限K0,b0;=直线经过第二、三、四象限(4)增减性:k0,y随x的增大而增大;k0,y随x增大而减小。

(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴。

(6)图像的平移:当b0时,将直线y=kx的图象向上平移b个单位;当b0时,将直线y=kx的图象向下平移b个单位。

直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1≠b2(2)两直线相交:k1≠k2(3)两直线重合:k1=k2且b1=b2确定一次函数解析式的方法(1)根据已知条件写出含有待定系数的函数解析式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数解析式中得出结果。

函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题。

建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题。

新人教八年级数学(上册)一次函数知识点总结

新人教八年级数学(上册)一次函数知识点总结

一、常量与变量在一个变化过程中,数值保持不变的量叫常量,数值发生改变的量叫变量。

实际上,常量就是具体的数,变量就是表示数的字母。

(注意“π”是常量)二、自变量与函数在一个变化过程中,有两个变量x和y,如果x每取一个值,y都有唯一确定....的值与它对应,那么,把x叫自变量,y叫x的函数。

判断两个变量是否有函数关系就是“看对于自变量的每一个确定的值,函数值是否有惟一确定的值和它对应。

”三、函数值如果x=a时,y=b,那么把“y=b叫做x=a 时的函数值”。

四、表示函数的方法方法(一)解析式法。

方法(二)列表法方法(三)图像法五、自变量的取值范围在一个变化过程中,自变量允许取值的区域,叫自变量的取值范围。

六、自变量取值范围的求法(一)对于解析式1、解析式是整式。

自变量取一切实数。

2、自变量在分母。

取使分母不等于0的实数。

3、自变量在根号内(1)在内。

自变量取一切实数。

(2)在内。

取使根号内的值为非负数的实数。

(二)对于实际问题自变量的取值要符合实际意义。

在一个函数解析式中,同时有几种代数式时,函数的自变量的取值范围应是各种代数式中自变量的取值范围的公共部分例:求函数中自变量x的取值范围。

解:要使有意义,必须且即,。

所以中自变量x 的取值范围是。

说明:求使函数有意义的自变量的值,就是求函数自变量的取值范围。

七、函数图象的画法步骤把每个点描在平面直角坐标系中。

(三)连线。

把描出的点按照自变量由小到大的顺序,用平滑的线....连结起来。

八、正比例函数1、定义:形如(k是常数,)的函数叫做正比例函数。

2、图象:是经过(0,0)与(1,k)的直线。

3、性质:(1)(2)九、一次函数(一)定义:形如b的函数叫做一次函数。

因为当b=0时,y=kx,所以“正比例函数是特殊的一次函数”。

(二)图象:是经过(,0)与(0,b)两点的直线。

因此一次函数y=kx+b的图象也称为直线y=kx+b.其中,(,0)是直线与x轴的交点坐标,(0,b)是直线与y轴的交点坐标。

八年级数学《一次函数》知识点归纳与例题

八年级数学《一次函数》知识点归纳与例题

八年级数学《一次函数》知识点归纳与例题一、知识点总结1、一次函数与正比例函数的定义:例如:y =kx +b (k ,b 是常数,k ≠0)那么y 叫做x 的一次函数,特别地当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0)这时,y 叫做x 的正比例函数。

2、一次函数的图象与性质(形状、位置、特殊点、增减性)①、形状:一次函数的图象是一条 ;画法:确定两个点就可以画一次函数图象。

②、位置:直线的位置是由k 、b 当k 0时,图象经过一、三象限; 当k 0时,图象经过二、四象限。

当b 0时,图象与y 轴相交于正半轴; 当b 0时,图象与y 轴相交于负半轴; 当b 0时,图象经过坐标原点。

x 轴和y 轴交点分别是④、性质:一次函数)0(≠+=k b kx y ,当k 0y 的值随x 值的增大而增大;当k 0y 的值随x 值的增大而减小。

3、待定系数法求函数解析式在一次函数y =kx +b (k ≠0)中有两个未知数k 和b ,所以,要确定其关系式,一般需要两个条件,常见的是已知两点坐标P 1(a 1,b 1),P 2(a 2,b 2)代入得⎩⎨⎧b 1=a 1k +b ,b 2=a 2k +b ,求出k ,b 的值即可,这种方法叫做__________.4、一次函数与方程、方程组及不等式的关系 ①、y =kx +b 与kx +b =0直线y =kx +b 与x 轴交点的横坐标是方程kx +b =0的解,方程kx +b =0的解是直线y =kx +b 与x 轴交点的横坐标. ②、y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围. ③、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【知识拓展】1、两条直线的位置关系设直线 1和 2的解析式为y =k 1x +b 1和y 2=k 2x +b 2则它们的位置关系由系数关系确定:① k 1≠k 2⇔ 1与 2相交;② k 1=k 2,b 1≠b 2⇔ 1与 2平行;+b一次函数)0(≠+=k b kx y 的图象 如图,判断k 、b 符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数知识点及第一课时(一)贾雁麟2014年2月日基本概念1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式中, 表示速度, 表示时间, 表示在时间内所走的路程,则变量是________,常量是_______。

在圆的周长公式C=2πr中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应例题:下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x2-1中,是一次函数的有(C )(A)4个(B)3个(C)2个(D)1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法①列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

②解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

③图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

9、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx (k不为零) ①k不为零②x指数为1③b取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1) 解析式:y=kx(k是常数,k≠0)(2) 必过点:(0,0)、(1,k)(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴10、一次函数及性质一般地,形如y=kx+b (k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b (k不为零) ①k不为零②x指数为1 ③b取任意实数一次函数y=kx+b的图象是经过(0,b)和(- ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k 0)(2)必过点:(0,b)和(- ,0)(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b<0时,将直线y=kx的图象向下平移b个单位.例题:若关于x的函数是一次函数,则m= ,n . .函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线. 若直线和直线的交点坐标为( ),则____________. 已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1 B.3m C.m D.3m-111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点. b>0 b<0 b=0 k>0 经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x 的增大而增大k<0 经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小若m<0, n>0, 则一次函数y=mx+n的图象不经过()A.第一象限B. 第二象限C.第三象限D.第四象限12、正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).13、直线y=k1x+b1与y=k2x+b2的位置关系(1)两直线平行:k1=k2且b1 b2(2)两直线相交:k1 k2(3)两直线重合:k1=k2且b1=b214、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.15、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.16、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.17、一次函数与二元一次方程组(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y= 的图象相同.(2)二元一次方程组的解可以看作是两个一次函数y= 和y= 的图象交点.第一课时(学案)八年级数学上册<变量与函数>教案§14.1 变量与函数(一)【第一、二课】学习目标1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.学习过程Ⅰ.提出问题,创设情境情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.Array1.请你根据题意填写右表:2.在以上这个过程中,变化的量是___.不变化的量是__________.3.试用含t的式子表示s.新课从题意中可以知道汽车是匀速行驶,行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60•千米/小时是不变的量.发现规律:反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,[师生讨论活动一]1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.•怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?通过合理、正确的思维方法探索出变化规律.结论:1.早场电影票房收入:150×10=1500(元);日场电影票房收入:205×10=2050(元)晚场电影票房收入:310×10=3100(元);关系式:y=10x2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)挂2kg重物时弹簧长度:2×0.5+10=11(cm);挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)关系式:L=0.5m+10我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,•弹簧长度L都是变量.而票价10元,弹簧原长10cm……都是常量. [师生讨论活动二]1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?2.用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.•记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S?结论:1.要求已知面积的圆的半径,可利用圆的面积公式经过变形求出S= r2⇒面积为10cm2的圆半径≈1.78(cm);面积为20cm2的圆半径≈2.52(cm)关系式:r2.因矩形两组对边相等,所以它一条长与一条宽的和应是周长10cm的一半,即5cm.若长为1cm,则宽为5-1=4(cm)据矩形面积公式:S=1×4=4(cm2)若长为2cm,则宽为5-2=3(cm)面积S=2×(5-2)=6(cm2)……若长为xcm,则宽为5-x(cm)面积 S=x·(5-x)=5x-x2(cm2)从以上两个题中可以看出,在探索变量间变化规律时,可利用以前学过的一些有关知识公式进行分析寻找,以便尽快找出之间关系,确定关系式..随堂练习1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,•指出其中的常量与变量,并写出关系式.2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h•变化关系式,并指出其中常量与变量.解:1.买1支铅笔价值 1×0.2=0.2(元)买2支铅笔价值 2×0.2=0.4(元)……买x支铅笔价值 x×0.2=0.2x(元)所以 y=0.2x其中单价0.2元/支是常量,总价y元与支数x是变量.2.根据三角形面积公式可知:×5×1=2.5cm2当高h为1cm时,面积S=12当高h为2cm时,面积S=1×5×2=5cm22……×5×h=2.5hcm2当高为hcm,面积S=12其中底边长为5cm是常量,面积S与高h是变量.Ⅳ理解含义:1.若球体体积为V,半径为R,则V=4R3.其中变量是_______、3•_______,常量是________.2.夏季高山上温度从山脚起每升高100米降低0.7℃,已知山脚下温度是23℃,则温度y与上升高度x之间关系式为__________.3.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,•则油箱内余油量Q升与行驶时间t小时的关系是_________.贾雁麟函数(第二、三课时)变量与函数(二)学习目标1.经过回顾思考认识变量中的自变量与函数.2.进一步理解掌握确定函数关系式.3.会确定自变量取值范围.学习过程Ⅰ.提出问题我们来回顾一下上节课所研究的每个问题中是否各有两个变化?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?新课再来回顾活动二中的两个问题.看看它们中的变量又怎样呢?问题(1)中,很容易算出,当S=10cm2时,r=1.78cm;当S=20cm2时,r=2.52cm.•每当S取定一个值时,r随之确定一个值,它们的关系为问题(2)中,我们可以根据题意,每确定一个矩形的一边长,•即可得出另一边长,再计算出矩形的面积.如:当x=1cm时,则S=1×(5-1)=4cm2,当x=2cm时,则S=2×(5-2)=6cm2……它们之间存在关系S=x(5-x)=5x-x2.因此可知,•每当矩形长度x取定一个值时,面积S就随之确定一个值.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?【师生活动一]1.在计算器上按照下面的程序进行操作:填表:显示的数y 是输入的数x 的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x 与y 是输入的5个数与相应的计算结果:所按的第三、四两个键是哪两个键?y 是x 的函数吗?如果是,写出它的表达式(用含有x 的式子表示y ). 活动结论:1.从计算结果完全可以看出,每输入一个x 的值,操作后都有一个唯五的y 值与其对应,所以在这两个变量中,x 是自变量、y 是x 的函数. 2.从表中两行数据中不难看出第三、四按键是1 这两个键,且每个x•的值都有唯一一个y 值与其对应,所以在这两个变量中,x 是自变量,y 是x 的函数.关系式是:y=2x+1[师生活动二]例1 一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?关于函数自变量的取值范围1.实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。

相关文档
最新文档