八年级数学上册 知识点总结
初二上册数学重点知识点归纳

初二上册数学重点知识点归纳初二,最容易被忽略的年级,却也是最重要的阶段。
那么如何正确利用初二这一年学习数学呢?以下是店铺分享给大家的初二上册数学重点知识点,希望可以帮到你!初二上册数学重点知识点一第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。
那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。
③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式初二上册数学重点知识点二第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
八年级数学上册知识要点总结

八年级数学上册知识要点总结八年级数学上册知识归纳一、算术平方根1.算术平方根:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作√a。
0的算术平方根为0;2.平方根:如果一个数x的平方等于a,即x2=a,那么数x就叫做a的平方根(或二次方根)。
3.开平方:求一个数a的平方根的运算(与平方互为逆运算)4.平方根性质:正数有2个平方根(一正一负),它们是互为相反数;负数没有平方根。
二、立方根1.立方根:如果一个数x的立方等于a,即x3=a,那么数x就叫做a的立方根(或三次方根)。
2.开立方:求一个数a的立方根的运算(与立方互为逆运算)。
3.立方根性质:正数的立方根是正数;负数的立方根是负数。
0的立方根是0;三、实数1.无理数:无限不循环小数。
如:π、√2、√32.实数:有理数和无理数统称实数。
实数都可以用数轴上的点表示。
八年级数学知识总结一、正方形定义:一个角是直角的菱形或邻边相等的矩形。
性质:1、四条边都相等;2、四个角都是直角;3、正方形既是矩形,又是菱形。
判定定理:1、邻边相等的矩形是正方形。
2、有一个角是直角的菱形是正方形。
二、梯形定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
1、直角梯形的定义:有一个角是直角的梯形2、等腰梯形的定义:两腰相等的'梯形。
等腰梯形的性质:1、同一底边上的两个角相等;2、两条对角线相等;3、两腰相等;4、对称性:轴对称图形。
等腰梯形判定定理:1、两腰相等的梯形是等腰梯形;2、同一底上两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形;八年级数学知识重点一、勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2b2c22、勾股定理的逆定理如果三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。
3、勾股数:满足a2b2c2的三个正整数,称为勾股数。
二、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长相等、面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。
1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。
第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
人教版八年级上数学知识点总结

人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。
八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结八年级上册数学知识点归纳总结如下:
1. 整式的加减
- 同类项的加减
- 整式的加减运算法则
- 括号的运算法则
- 移项与去括号
2. 一元二次方程
- 一元二次方程的定义
- 解二次方程的方法(因式分解法、配方法、求根公式)
- 判别式和根的情况
3. 提公因式与分式
- 提公因式的方法
- 分式的概念与基本性质
- 分式的基本运算(加减乘除)
4. 二次根式
- 二次根式的定义与概念
- 二次根式的化简
- 二次根式的运算(加减乘除)
5. 数据的收集整理与分析
- 数据的搜集和整理
- 统计图的绘制与分析
- 平均数、中位数、众数的计算
6. 几何图形的认识与性质
- 点、线、面的概念
- 直线、射线、线段的特点
- 同位角、对顶角、同旁内角的性质
7. 平面图形的性质与计算
- 三角形的分类
- 四边形的分类
- 平行四边形与矩形的性质
8. 角与等角(同位角、内错角、同旁内角的性质)
- 角的概念和性质
- 直角、钝角、锐角
- 利用角的性质解决问题
9. 周长和面积
- 二维图形的周长计算(长方形、正方形、三角形)
- 二维图形的面积计算(长方形、正方形、三角形、梯形)
这些是八年级上册数学的一些重要知识点,希望能对你有所帮助。
八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结一、有理数1. 有理数的概念有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、分数(正分数和负分数)。
2. 有理数的运算(1)加法和减法:同号相加减,异号相加减取相反数后加(2)乘法:同号得正,异号得负(3)除法:分子取商的符号,分母取绝对值后再除3. 有理数的比较在数轴上比较大小,可以通过绝对值和符号来确定大小关系4. 有理数的应用有理数在实际生活中的运用,如温度、扩大、缩小等二、代数1. 代数的基本概念(1)代数式:由运算符号和字母组成的表达式(2)项:代数式中的最小单位(3)系数:含有变量的项的常数因子(4)幂:同一个数的多次相乘2. 一元一次方程如ax+b=0(a≠0),其中a、b为已知数,x为未知数3. 一元一次不等式如ax+b>0(a≠0),其中a、b为已知数,x为未知数4. 代数式的加减法整理同类项后进行加减5. 代数式的乘法分配律、结合律、交换律的运用6. 代数式的因式分解三、平方根和立方根1. 平方数和平方根平方数是某个数的平方,平方根是某个数的算术平方根2. 平方根的求法开平方、开方运算3. 立方数和立方根立方数是某个数的立方,立方根是某个数的算术立方根4. 立方根的求法开立方、立方根的运算5. 有理数的平方与立方有理数的平方是对其绝对值的平方,有理数的立方是对其绝对值的立方四、多边形1. 多边形的基本认识多边形是由同一个平面上的若干条线段组成的闭合图形2. 多边形的内角和外角n边形的内角和等于180°×(n-2)n边形的外角和等于360°3. 正多边形边相等,角相等的多边形4. 不规则多边形五、相似1. 相似的概念对于两个图形,如果它们的形状相似(其中一图放大或缩小),则它们称之为相似的2. 相似三角形对于两个三角形,如果它们的对应角相等,则它们为相似三角形3. 相似三角形的性质相似三角形的性质包括对应边成比例、对应角相等、相似三角形的高线比例等六、函数1. 函数的概念对应关系中,一个自变量对应一个因变量的关系2. 函数的表示方法函数的图像、函数的解析式、函数的映射表示等3. 函数的性质奇函数、偶函数、周期函数、增减性与极值、奇偶性及周期性的判断等4. 函数的应用在实际问题中,函数的运用,如一元一次函数、二次函数等七、同比例1. 比例的概念两个量之间的相等关系2. 比例的性质比例中的乘除、比例式的变形3. 等比例四个数成等比的性质4. 倒数的概念两个数之积为1时,这两个数称为倒数5. 倒比例四个数成倒比的性质八、图形的旋转1. 图形的旋转图形绕定点旋转的变换2. 旋转的性质旋转变换后的图形3. 图形的对称图形相对于一条直线、一个点的对称4. 图形的变换平移、旋转、翻转的组合变换以上就是八年级上册数学知识点的归纳总结,希望能帮助到大家对这些知识点的理解和掌握。
八年级上下册数学知识点总结

数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。
2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。
3.乘方:乘方的概念,乘方的性质,乘方的运算法则。
4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。
5.分数:分数的概念,分数的性质,分数的加减法运算法则。
6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。
7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。
8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。
9.角:角的概念,角的分类,角的性质,角的度量。
10.平行线:平行线的概念,平行线的性质,平行线的判定。
二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。
2.勾股定理:勾股定理的概念,勾股定理的应用。
3.多边形:多边形的概念,多边形的分类,多边形的性质。
4.圆:圆的概念,圆的性质,圆的度量。
5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。
6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。
7.百分数:百分数的概念,百分数的性质,百分数的计算。
8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。
9.概率:概率的概念,概率的计算。
10.函数与图像:函数的概念,函数的性质,函数的图像。
八年级上册数学笔记知识点

八年级上册数学笔记知识点一、有理数1. 有理数:在现实生活中存在着大量的具有相反意义的量,如向东走与向西走,盈利与亏损等。
用一种符号表示具有相反意义的量就得到有理数。
2. 有理数的分类:整数和分数统称为有理数。
注意:0既不是正数也不是负数。
二、数轴1. 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
2. 建立数轴:先确定原点、再确定正方向、最后确定单位长度。
3. 理解数轴上的点与实数是一一对应的关系。
三、绝对值1. 定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
2. 规律总结:一个正数的绝对值是大于它本身;一个负数的绝对值是小于它的实际绝对值;0的绝对值是它本身。
四、相反数1. 定义:只有符号不同的两个数叫做互为相反数。
2. 注意:互为相反数的两个数不一定是异号,但一定是非零的数;符号不同的两个数也互为相反数。
如-a和a互为相反数,并且有绝对值较大的一个符号决定相反数的符号。
五、公式定理部分1. 代数式求值:把已知条件整体代入代数式中求出未知量的值。
2. 代数式的变形:根据代数式中数字与字母的特点,灵活运用乘法对加法的分配律,提取公因式以及公式法等使代数式得到简化。
3. 特殊三角形:等边三角形、等腰三角形、直角三角形等,分别根据其性质得出有关边、角的关系式,并注意综合运用。
六、三角形部分1. 等腰三角形:根据等腰三角形的特点综合运用勾股定理、三角形内角和定理、三角形稳定性等知识求出角度的大小。
2. 直角三角形:根据直角三角形的特点综合运用勾股定理、三角函数等知识求出线段的长或角的度数。
七、四边形部分平行四边形和梯形是两种最基本的四边形,其它四边形都是由这两种基本四边形通过转化而得到的或是它们的特例。
因此,在研究四边形的有关性质时,应从基本四边形的性质入手,结合具体四边形的特点进行转化(通过添加辅助线)来解决。
八、函数部分函数思想是初中数学中的一个重要思想,应通过具体问题来培养这种思想,应弄清一个函数包括定义域和对应法则两部分,注意函数的定义域优先的原则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a 注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a<⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。
五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a 必须是非负数。
2、性质:(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab ()0,0(≥≥=•b a ab b a )(4))0,0(>≥=b a bab a ()0,0(>≥=b a baba ) 3、运算结果若含有“a ”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式 六、实数的运算(1)六种运算:加、减、乘、除、乘方 、开方 (2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律加法交换律 a b b a +=+加法结合律 )()(c b a c b a ++=++ 乘法交换律 ba ab = 乘法结合律 )()(bc a c ab = 乘法对加法的分配律 ac ab c b a +=+)(第三章 图形的平移与旋转一、平移 1、定义在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。
2、性质平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
二、旋转 1、定义在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
第四章 四边形性质探索一、四边形的相关概念 1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n 边形的内角和等于•-)2(n 180°; 多边形的外角和定理:任意多边形的外角和等于360°。
6、设多边形的边数为n ,则多边形的对角线共有2)3(-n n 条。
从n 边形的一个顶点出发能引(n-3)条对角线,将n 边形分成(n-2)个三角形。
二、平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等 (3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形 (2)定理1:两组对角分别相等的四边形是平行四边形 (3)定理2:两组对边分别相等的四边形是平行四边形 (4)定理3:对角线互相平分的四边形是平行四边形 (5)定理4:一组对边平行且相等的四边形是平行四边形 4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积 S 平行四边形=底边长×高=ah 三、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)矩形的对边平行且相等 (2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形 (2)定理1:有三个角是直角的四边形是矩形 (3)定理2:对角线相等的平行四边形是矩形 4、矩形的面积 S 矩形=长×宽=ab 四、菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形 2、菱形的性质(1)菱形的四条边相等,对边平行 (2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形 4、菱形的面积S 菱形=底边长×高=两条对角线乘积的一半 五、正方形 (3~10分) 1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)正方形四条边都相等,对边平行 (2)正方形的四个角都是直角(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 (4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。
3、正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证它是菱形。
先证它是菱形,再证它是矩形。
4、正方形的面积设正方形边长为a ,对角线长为bS 正方形=222b a六、梯形(一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下: 一般梯形梯形 直角梯形 特殊梯形等腰梯形 (三)等腰梯形 1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形。
(选择题和填空题可直接用) (四)梯形的面积 (1)如图,DE AB CD S ABCD •+=)(21梯形 (2)梯形中有关图形的面积: ①BAC ABD S S ∆∆=; ②BOC AOD S S ∆∆=; ③BCD ADC S S ∆∆=七、有关中点四边形问题的知识点:(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形; (2)顺次连接矩形的四边中点所得的四边形是菱形; (3)顺次连接菱形的四边中点所得的四边形是矩形; (4)顺次连接等腰梯形的四边中点所得的四边形是菱形;(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形; (6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形; 八、中心对称图形 1、定义在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。