高二数学:椭圆的定义教案

合集下载

高中数学人教版椭圆教案

高中数学人教版椭圆教案

高中数学人教版椭圆教案
教学内容:椭圆的性质和方程
教学目标:
1. 理解椭圆的定义和性质;
2. 掌握椭圆的标准方程和一般方程;
3. 能够应用椭圆的性质解决相关问题。

教学重点:
1. 椭圆的定义和性质;
2. 椭圆的标准方程和一般方程;
教学难点:
1. 掌握椭圆的性质,包括离心率、长轴、短轴、焦点等;
2. 能够根据给定的条件列出椭圆的方程。

教学方法:讲授结合练习,引导学生理解椭圆的性质和方程。

教学过程:
一、椭圆的定义和性质
1. 引导学生回顾椭圆的定义,并画出椭圆的几何图形;
2. 讲解椭圆的性质,包括离心率、焦点、长轴、短轴等;
3. 给出一些例题让学生熟悉椭圆的性质。

二、椭圆的方程
1. 讲解椭圆的标准方程和一般方程的推导过程;
2. 给出一些实例让学生练习列出椭圆的方程;
3. 引导学生讨论椭圆方程的性质和特点。

三、综合练习
1. 指导学生完成一些综合练习题,检测他们对椭圆的掌握程度;
2. 强调重点难点,指导学生进行错题订正。

教学反思:
通过本节课的教学,学生应该能够理解椭圆的定义和性质,掌握椭圆的方程,并能够灵活运用椭圆的性质解决相关问题。

在教学过程中,要注重引导学生思考,培养他们的逻辑推理能力,提高他们的数学解决问题的能力。

椭圆的定义教学教案

椭圆的定义教学教案

椭圆的定义教学教案第一章:导入教学目标:1. 让学生了解椭圆的概念,理解椭圆是一种圆的特殊情况。

2. 引导学生通过观察实际物体,发现椭圆的形状特点。

教学内容:1. 引导学生回顾圆的定义和性质。

2. 介绍椭圆的定义和形状特点。

3. 通过实际物体观察,让学生发现椭圆的形状特点。

教学步骤:1. 导入新课,提问:“我们学过的几何图形有哪些?”引导学生回顾已学的图形。

2. 提问:“圆是一种特殊的图形,那椭圆又是怎样的图形呢?”引入椭圆的概念。

3. 讲解椭圆的定义和性质,引导学生理解椭圆是一种圆的特殊情况。

4. 组织学生观察实际物体,如地球、太阳等,发现它们的形状特点是椭圆的。

5. 总结本节课的主要内容,强调椭圆的形状特点。

教学评价:1. 检查学生对椭圆定义的理解程度。

2. 评估学生通过观察实际物体发现椭圆形状特点的能力。

第二章:椭圆的性质教学目标:1. 让学生掌握椭圆的基本性质,如椭圆的焦点、长轴、短轴等。

2. 引导学生通过观察和实验,发现椭圆性质的特点。

教学内容:1. 讲解椭圆的基本性质,如焦点、长轴、短轴等。

2. 引导学生通过观察和实验,发现椭圆性质的特点。

教学步骤:1. 复习椭圆的定义,提问:“椭圆有哪些特殊的性质呢?”引导学生学习新的内容。

2. 讲解椭圆的焦点、长轴、短轴等基本性质,让学生理解椭圆的形状特点。

3. 组织学生进行观察和实验,如通过观察地球、太阳等实际物体,发现椭圆性质的特点。

4. 总结本节课的主要内容,强调椭圆的性质。

教学评价:1. 检查学生对椭圆性质的理解程度。

2. 评估学生通过观察和实验发现椭圆性质特点的能力。

第三章:椭圆的方程教学目标:1. 让学生掌握椭圆的标准方程及其推导过程。

2. 引导学生运用椭圆方程解决实际问题。

教学内容:1. 讲解椭圆的标准方程及其推导过程。

2. 引导学生运用椭圆方程解决实际问题。

教学步骤:1. 复习椭圆的性质,提问:“如何用数学公式来表示椭圆呢?”引导学生学习新的内容。

沪教版高中数学高二下册-第十二章12.3 椭圆的定义及其标准方程 教案

沪教版高中数学高二下册-第十二章12.3 椭圆的定义及其标准方程 教案

12.3椭圆的定义及标准方程一、教学目标:1、理解椭圆定义,经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法;2、掌握椭圆的标准方程,在化简椭圆标准方程的过程中,培养学生观察、辨析、归纳问题的能力;3、在求方程的过程中,培养学生战胜困难的意志品质并体会数学的简洁美、对称美。

二、教学重点及难点:(1)重点:椭圆定义及其标准方程; (2)难点:椭圆标准方程的推导;解决难点的关键在于抓住“如何建系”与“如何化简方程”两个环节。

三、教学辅助工具:PPT 课件、几何画板、每人一个自制的椭圆教具。

四、教学过程:(一)创设情境,引入课题 1、创设情境多媒体展示“嫦娥二号”运行轨道视频和图片,欣赏生活中丰富多彩的椭圆。

2、引入课题既然椭圆可以认为由圆演变而来,那么数学中是怎么定义椭圆的呢? 教师活动:引导学生回忆有关圆的相关知识,引导学生猜想:如何画出椭圆?设计意图:联系生活实际,利于学生的思考与想象。

通过学过的圆的相关知识,引导学生采用类比的思想猜想椭圆,有益于后续教学的顺利进行。

(二)实验探究、形成概念1、实验探究动手实验:取出提前准备好的具有一定长的细绳,并把细绳两端固定在画图板上的21,F F 两点,当绳长大于21,F F 两点的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆。

通过实验,思考如下问题:(1)在作图的过程中哪些量是变的? 12MF MF +的和是否变化? (2) 12MF MF +与12F F 的大小关系是?M2F1F(3)若绳长与两定点12F F 、的距离相等,画出的图形是? (4)绳长能小于两定点12F F 、之间的距离吗? 设计意图:(1) 给学生提供一个动手操作、合作学习的机会,在动手操作的过程中激发学生的学习热情与求知欲; (2) 通过实验,学生在问题的情境中去探究“在什么样的条件下,点的集合为椭圆”。

2、形成概念 教师活动:(1) 用几何画板动态演示椭圆的形成过程。

高二数学导学案椭圆的定义

高二数学导学案椭圆的定义

牡丹江市第二高级中学高二数学学案椭圆的标准方程设计人:王建辉 使用时间:学习目标1.掌握椭圆的定义及其标准方程.;2. 会用待定系数法求椭圆的标准方程;3. 初步体会用定义法求点的轨迹方程的思想.预习案:问题1.取一条定长的细绳,把它的两端都固定在黑板的同一点处,套上笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是?问题2. 如把细绳的两端拉开一段距离,分别固定在黑板的两点处,套上笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?椭圆的定义:平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

练习案:1. 判定下列椭圆的焦点在 哪个轴上,并指明a 2、b 2,写出焦点坐标。

1162522=+y x 116914422=+y x112222=++m y m x【思考】判断椭圆标准方程的焦点在哪个轴上的准则是什么?2.填空()()()。

则两焦点坐标为已知椭圆方程为。

的范围为轴上的椭圆,则表示焦点在方程。

的范围为轴上的椭圆,则表示焦点在方程_________1,9y 16x 3) (b y 19y b x 2) (a x 13y a x 1222222=+=+=+【思考】在求椭圆方程时,关键是弄清什么?3.填空:(1)已知椭圆的方程为: 1162522=+y x ,则a=_____,b=_______,c=_______,焦点坐标为:____________焦距等于______;若CD 为过左焦点F1的弦,则∆F 2CD 的周长为________检测案:1. 满足a=4,b=1,焦点在X 轴上的椭圆的标准方程为________________2. 满足a=4,c= 15 ,焦点在Y 轴上的椭圆的标准方程为___________3. 求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上的一点P 到两焦点距离的和等于10;(2)两个焦点的距离等于8,椭圆上的一点P 到两焦点距离的和等于10.(3)两个焦点的坐标分别是(0,-2)、(0,2),并且椭圆经过点35,22⎛⎫- ⎪⎝⎭作业案:见课时作业2。

高中数学椭圆详细教案

高中数学椭圆详细教案

高中数学椭圆详细教案
一、教学目标:
1. 了解椭圆的定义和性质;
2. 能够正确画出椭圆的图像;
3. 掌握椭圆的参数方程和标准方程;
4. 能够求解椭圆的焦点、离心率等相关参数。

二、教学内容:
1. 椭圆的定义和性质;
2. 椭圆的参数方程和标准方程;
3. 椭圆的焦点、离心率等相关参数的求解。

三、教学重点:
1. 椭圆的定义和性质;
2. 椭圆的参数方程和标准方程。

四、教学难点:
1. 椭圆的焦点、离心率等参数的求解。

五、教学过程:
1. 导入新课:通过提问引出学生对椭圆的认识;
2. 学习椭圆的定义和性质;
3. 讲解椭圆的参数方程和标准方程;
4. 指导学生练习绘制椭圆的图像;
5. 讲解椭圆的焦点、离心率等参数的求解方法;
6. 练习题目训练学生解题能力;
7. 总结本节课内容,梳理重点和难点。

六、教学手段:
1. 课件展示;
2. 书本教材;
3. 黑板和彩色粉笔。

七、教学评价:
1. 学生课堂表现;
2. 课后练习题的完成情况。

八、课后作业:
1. 完成课后练习题;
2. 复习本节课内容,准备期末考试。

高中数学椭圆教案

高中数学椭圆教案

高中数学椭圆教案高中数学椭圆教案一、知识目标1. 了解椭圆的定义及其性质。

2. 学会求椭圆的参数方程和标准方程。

3. 能够利用椭圆的性质解决相关问题。

二、能力目标1. 能够正确理解椭圆的特性。

2. 能够准确求解椭圆的参数方程及标准方程。

3. 能够应用椭圆的性质解决陈述问题。

三、情感目标1. 培养学生的数学兴趣,提高学生对数学的热爱和对知识的积极性。

2. 增强学生的发现问题和解决问题的能力。

四、教学重难点1. 椭圆的相关性质及应用。

2. 椭圆的参数方程的求解与应用。

五、教学方法1. 教师讲解与学生自主学习相结合的方式。

2. 案例分析与问题解决相结合的方式。

六、教学过程1. 教师引导学生了解椭圆的定义和性质。

2. 教师讲解椭圆的函数方程和参数方程的求解方法。

3. 分组讨论和解决椭圆相关问题。

4. 教师总结并进行知识点的巩固。

七、教学资源1. 板书、多媒体教学设备。

2. 相关习题和问题分析。

八、教学评价1. 教师观察学生在活动中的表现,以及对知识点的掌握程度。

2. 学生小组讨论活动的成果汇报。

3. 学生完成的作业。

九、教学拓展1. 教师可以设计一些具有挑战性的问题,激发学生的思维能力。

2. 引导学生应用椭圆的知识解决实际问题。

十、教学反思通过本课的教学,学生能够掌握和应用椭圆的相关知识,提高了解决问题的能力。

但在教学过程中,学生的参与度和学习兴趣有待提高,教师需要在课堂组织和教学方式上进行调整,以激发学生的学习动力。

高中数学椭圆定义的教案

高中数学椭圆定义的教案

高中数学椭圆定义的教案教学目标:1. 理解椭圆的定义;2. 掌握椭圆的性质和特点;3. 能够利用椭圆的性质解决实际问题。

教学重点:1. 椭圆的定义;2. 椭圆的性质。

教学难点:1. 椭圆的特点;2. 椭圆的参数方程。

教学准备:1. 课件或黑板、白板和粉笔;2. 相关教学资料。

教学过程:一、导入(5分钟)引入本节课的主题:椭圆。

通过展示椭圆的实际图片或视频,引起学生对椭圆的兴趣。

二、讲解椭圆的定义(10分钟)1. 定义椭圆:椭圆是平面上到两定点F1和F2的距离的和等于常数2a的动点P的轨迹。

2. 展示椭圆的定义图形,让学生理解椭圆的含义。

三、讲解椭圆的性质和特点(15分钟)1. 椭圆的性质:椭圆的两焦点的连线称为主轴,主轴的长度为2a;椭圆的短轴长度为2b,满足a>b。

2. 展示椭圆的性质图形,让学生掌握椭圆的主要特点。

四、练习与讨论(15分钟)1. 让学生自行尝试解决椭圆相关问题,并进行讨论和解答。

2. 帮助学生理解和掌握椭圆的参数方程,引导学生利用参数方程解决实际问题。

五、总结(5分钟)通过回顾本节课的内容,让学生对椭圆的定义和性质有更深刻的理解。

教学延伸:1. 鼓励学生进行有关椭圆的拓展研究,例如椭圆的三维图形等。

2. 鼓励学生利用椭圆的参数方程进行更复杂的实际问题求解。

板书设计:椭圆的定义:椭圆是平面上到两定点F1和F2的距离的和等于常数2a的动点P的轨迹。

椭圆的性质:主轴长度为2a,短轴长度为2b。

教学反思:教师在讲解椭圆的定义时,要引导学生理解椭圆的含义,并通过实例让学生更好地掌握椭圆的性质和特点。

同时,鼓励学生进行实际问题的求解,提高他们的数学解决问题能力。

高中数学椭圆定义讲解教案

高中数学椭圆定义讲解教案

高中数学椭圆定义讲解教案
一、教学目标:
1. 理解椭圆的定义;
2. 掌握椭圆的性质;
3. 能够应用椭圆解决实际问题。

二、教学重点:
椭圆的定义与性质。

三、教学难点:
如何确定椭圆的方程。

四、教学过程:
1. 引入:通过让学生观察椭圆的形状,引出椭圆的定义。

2. 概念讲解:讲解椭圆的定义,即平面上到两个固定点的距离之和等于定值的点的集合称
为椭圆。

3. 性质讲解:讲解椭圆的性质,如焦点、长轴、短轴等。

4. 示例分析:通过实例讲解如何确定椭圆的方程,以及如何应用椭圆解决实际问题。

5. 练习巩固:让学生做一些练习题,巩固所学知识。

6. 拓展延伸:让学生思考椭圆在现实生活中的应用,如椭圆形的运动轨迹等。

五、课堂总结:
椭圆是平面上到两个固定点的距离之和等于定值的点的集合,具有特定的性质和方程形式。

通过本节课的学习,我们对椭圆有了更深入的了解,能够解决相关问题。

六、作业布置:
布置相关练习题,巩固所学知识。

七、教学反思:
本节课通过引入、讲解、示例分析等环节,达到了教学目标。

但是在课堂练习环节的设置
上可以更具体一些,以加深学生对椭圆的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新修订高中阶段原创精品配套教材椭圆的定义教材定制 / 提高课堂效率 /内容可修改
Definition of ellipse
教师:风老师
风顺第二中学
编订:FoonShion教育
椭圆的定义
(第1课时)教案
教学目标:1、掌握椭圆的定义,椭圆标准方程的两种形式及其推导过程。

2、通过椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高运用坐标法解决几何问题的能力。

3、培养学生用数学的眼光观察生活,探索科学的思维习惯,培养学生的观察能力和探索能力。

教学重点:椭圆定义及椭圆标准方程的两种形式。

教学难点:椭圆标准方程的建立和推导。

教学过程:
情景设置:
教师:我们这节课讲的是椭圆及其标准方程,哪位同学能说出几个椭圆在实际生活及自然界的例子?
教师:我们要学会观察生活,而且要学会用我们的知识去分析和研究我们观察到的东西。

探索研究:
教师:椭圆在生活中这么普遍,那么哪位同学会画椭圆吗?(找学生回答)
教师演示椭圆的画法。

教师:哪位同学能用数学语言定义一下椭圆(找学生回答)
教师强调以下几点:
① 平面内②两个定点③常数大于两定点间距离
教师:我们现在知道什么是椭圆了,可是我们数学要研究一个曲线这还远远不够吧?首先要求出这个曲线的方程,然后通过方程研究曲线的性质。

教师:那么椭圆的方程怎么求呢?求曲线方程方法和步骤有哪些?
(同学回答,教师小结)
a2
x2
b2
y2
+
= 1 (a>b>0)
教师引导学生回答,由教师主笔完成焦点在x轴上的椭圆标准方程的推导。

推导完成后,继续引导学生探索焦点在y轴上的椭圆的标准方程。

焦点在x轴上的椭圆标准方程是:
y2
a2
+
x2
b2
=1 (a>b>0)
焦点在y轴上的椭圆标准方程是:
教师:在椭圆的标准方程形式上有何特点?方程中有几个参数呢?它们之间有什么关系?
(由学生回答,教师小结)
“三个参数,两个关系”
“三个参数,a、b、c
两个关系,等量关系:a2 - c2=b2
不等关系:a>b>0,a>c>0.
教师引导学生共同完成以下练习
16
x2
-9
y2
+
= 1
3、
5
x2
3
y2
+
= 2
1、
练习一、以下哪几个方程表示的是椭圆的标准方程
16
x2
16
y2
+
= 1
4、
2、2x2 + 4y2= 1
练习二
如果方程x2 + ky2= 2 是焦点在y轴上的椭圆的标准方程,那么实数k的取值范围是
例1、求适合下列条件的椭圆的标准方程:
两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点
p到两焦点距离的和等于10。

教师和同学一块儿完成解答。

教师引导,由学生自己总结一节课收获
教师小结:⑴ 注意观察生活,多思考,多分析,多研究
⑴ 知识① 椭圆的画法
② 椭圆的标准过程推导
③ 待定系数法求椭圆的标准方程
探索性问题: 当参数a、c变化时,将会对椭圆有什么样的影响?参数b有什么实际意义吗?
FoonShion教育研究中心编制
Prepared by foonshion Education Research Center。

相关文档
最新文档